1: Stockdale	Hwy	& I-5	SB	Off-ramp
--------------	-----	-------	----	----------

	A		*	*	€.	4	4	Ť	-	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		A		P)	ት ት						4	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0		4.0	4.0						4.0	
Lane Util. Factor		0.95		1.00	0.95					Marca A	1.00	
Frt		0.98		1.00	1.00						1.00	
Flt Protected		1.00		0.95	1.00						0.95	
Satd. Flow (prot)		3457		1770	3539						1774	
Fit Permitted		1.00	7.36	0.61	1.00						0.95	
Satd. Flow (perm)		3457		1145	3539	4					1774	
Volume (vph)	0	163	30	27	58	0	0	. 0	0	543	0	1
	0.88	0.88	0.88	0.84	0.84	0.84	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	185	34	32	69	0	0	0	0	590	0	1
RTOR Reduction (vph)	0	29	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	190	0	32	69	0	0	0	0	0	591	0
Turn Type				Perm						Split		
Protected Phases		4			8					6	6	
Permitted Phases	24.47.434	College Section College	T. P. THE M. SECTION	8		* 0.00 (MI) (1.00 (MI) *	Contract of the Contract of th				-1,-17 v - 1,-17 384, 1-1	- 340 - 3 500
Actuated Green, G (s)		9.4		9.4	9.4	225		6-16-53	LE BOOK		42.6	
Effective Green, g (s)		9.4	19479800000000	9.4	9.4		- 1780 - W. H 478 - 410				42.6	S. STORY
Actuated g/C Ratio		0.16		0.16	0.16		01244	Agranta	L'ALK	King to the same	0.71	
Clearance Time (s)	, m. 20, 71, 7	4.0		4.0	4.0	. a max s namety			3.0	P. SMC and Street	4.0	
Vehicle Extension (s)	M2.8	3.0		3.0	3.0						3.0	
Lane Grp Cap (vph)		542		179	554						1260	***************************************
v/s Ratio Prot		c0.06			0.02			Table 1	924 Sec. 1		c0.33	
v/s Ratio Perm	· man to delicate	(C. 5)		0.03		K100013004C14				W 47 5 76 76	Singleton of Marketon disc	
v/c Ratio		0.35		0.18	0.12					Windshield	0.47	4734207
Uniform Delay, d1	WC.3253889	22.6		22.0	21.8	\$0.000,0000,000,000	ASSESSED TO THE STATE OF			v	3.8	
Progression Factor		1.00		1.22	1.11						1.00	
Incremental Delay, d2	1.28X 1.3236	0.4		0.5	0.1		3880 - 4840 - 20 3 - 20 3	2011/01/2017	o see annual of the see		1.3	18 19 19 19 1 Aug.,
Delay (s)		23.0		27.3	24.2	33.7				KASSAN	5.0	
Level of Service	127998 valoatins	С	10 P. M. M. J. J. P. V.	С	С	1,78 1.46-4 1.466	200 A COLOR	W	44.559.305.20	\$60019% DOLL 1800	Α	
Approach Delay (s)		23.0	Section 28 A		25.2			0.0			5.0	
Approach LOS		С		KB1 - KL99KQ MILLERS	С	. 947 . 25 2.69 95 3 8 3 8 3 8 3 8 3		Α			Α	Secretary Secretary
Intersection Summary												
HCM Average Control Dela	ay	30 R. ** 40. 30** #\$ \$0.	11.6	Н	CM Lev	el of Sei	rvice	Statute Security	В			
HCM Volume to Capacity r	atio		0.46									
Actuated Cycle Length (s)		washing a second	60.0			st time (W W	8.0	and and		
Intersection Capacity Utilization	ation		48.9%	IC	CU Leve	of Serv	rice		Α			
Analysis Period (min)			15	W. C.					CONTROL DE SUI DE LA SELECTION			
c Critical Lane Group								A of the				

	♪	-	*	1	4		4	†	-	-	Ţ	1
Movement	ĒBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	75	个个	74	7	ተተ	717	P)	4	77	ሻ	₽	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.97	7 7 700 555
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	1863	1583	1770	1813	
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	11/45
Satd. Flow (perm)	1770	3539	1583	1770	3539	1583	1770	1863	1583	1770	1813	
Volume (vph)	16	1345	20	52	1124	136	10	20	200	159	20	4
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.88	0.88	0.88	0.88	0.88	0.88
Adj. Flow (vph)	17	1431	21	55	1196	145	11	23.	227	181	23	5
RTOR Reduction (vph)	0	0	4	0	0	10	0	0	42	0	6	0
Lane Group Flow (vph)	17	1431	17	55	1196	135	11	23	186	181	22	0
Turn Type	Prot		Perm	Prot		Perm	Prot		Perm	Prot		
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	A ALE 105 TO 90040	2.0000 190 6 3000	4			8	7.1157, 346, 884,754		2	and an all the second section	2,494°40°, 375°	
Actuated Green, G (s)	2.0	58.1	58.1	6.2	62.3	62.3	5.0	20.4	20.4	19.3	34.7	
Effective Green, g (s)	2.0	58.1	58.1	6.2	62.3	62.3	5.0	20.4	20.4	19.3	34.7	CONTRACTOR Y
Actuated g/C Ratio	0.02	0.48	0.48	0.05	0.52	0.52	0.04	0.17	0.17	0.16	0.29	
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	Controller An
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	30	1713	766	91	1837	822	74	317	269	285	524	
v/s Ratio Prot	0.01	c0.40		0.03	c0.34		0.01	0.01		c0.10	0.02	
v/s Ratio Perm	c. 4,344000 ******		0.01		12400000175-00000000	0.09		+430,000 (400 (504 (505 (505 (505 (505 (505 (0.14	Military exercises	and the second s	
v/c Ratio	0.57	0.84	0.02	0.60	0.65	0.16	0.15	0.07	0.69	0.64	0.04	
Uniform Delay, d1	58.6	26.8	16.1	55.7	21.0	15.2	55.4	41.9	46.8	47.1	30.7	Trace Season and
Progression Factor	0.63	0.55	0.14	1.26	0.90	0.96	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	2.2	0.3	0.0	6.7	0.5	0.1	0.9	0.4	13.6	4.6	0.2	Company on to delive
Delay (s)	39.2	15.1	2.3	76.7	19.5	14.6	56.4	42.3	60.4	51.6	30.8	
Level of Service	D	В	Α	Е	В	В	Е	D	Ε	D	С	*** (/ * () ***
Approach Delay (s)		15.2			21.2			58.6	1624		48.9	
Approach LOS	KT-1101 JS86000-00/408	В	M. W. Y. A. Y. A. Marriell, &		С	220,000,000,000,000,000		Е	200,000	AN AN AN AND COMPANY AND	D	
Intersection Summary			177									
HCM Average Control D	elay		23.2	H	ICM Lev	el of Se	ervice		C	***		
HCM Volume to Capacity			0.80			-1, 4						
Actuated Cycle Length (8	3)		120.0	S	ium of le	ost time	(s)		16.0			
Intersection Capacity Util	lization		68.4%	10	CU Leve	of Ser	vice		С			
Analysis Period (min)			15								are to a	
c Critical Lane Group					Notal S						DE CONTR	

	♪		*	-	←	1	4	1	1	1	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	14/4	ተተተ	7	ሕ ኻ	个个	77	10 10	ተተጉ		16.14	ተ ቀጉ	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lane Util. Factor	0.97	0.91	1.00	0.97	0.95	1.00	0.97	0.91	12.	0.97	0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.97		1.00	0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	3433	4759	1524	3213	3167	1468	3273	4824		3183	4911	
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	3433	4759	1524	3213	3167	1468	3273	4824		3183	4911	
Volume (vph)	140	706	114	386	850	418	202	1082	229	321	956	131
Peak-hour factor, PHF	0.93	0.93	0.93	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	151	759	123	411	904	445	215	1151	244	341	1017	139
RTOR Reduction (vph)	0	0	17	0	0	38	0	0	0	0	0	0
Lane Group Flow (vph)	151	759	106	411	904	407	215	1395	0	341	1156	0
Heavy Vehicles (%)	2%	9%	6%	9%	14%	10%	7%	4%	8%	10%	3%	9%
Turn Type	Prot		Perm	Prot		Perm	Prot			Prot		
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			2			6			er to			1545
Actuated Green, G (s)	6.0	31.4	31.4	12.7	38.1	38.1	8.8	31.0		10.7	32.9	
Effective Green, g (s)	7.3	34.4	34.4	14.0	41.1	41.1	9.7	34.0		11.6	35.9	
Actuated g/C Ratio	0.07	0.31	0.31	0.13	0.37	0.37	0.09	0.31		0.11	0.33	
Clearance Time (s)	5.3	7.0	7.0	5.3	7.0	7.0	4.9	7.0		4.9	7.0	
Vehicle Extension (s)	2.0	6.0	6.0	2.0	5.3	5.3	2.0	3.1		2.0	2.4	
Lane Grp Cap (vph)	228	1488	477	409	1183	548	289	1491		336	1603	
v/s Ratio Prot	0.04	c0.16	ersteam Other must	c0.13	0.29	1914 2001/97/131-0000C-14	0.07	c0.29	m 30 8 mm - 103 - 10	c0.11	0.24	,
v/s Ratio Perm			0.08			0.30		1 44				
v/c Ratio	0.66	0.51	0.22	1.00	0.76	0.74	0.74	0.94	Maria Maria	1.01	0.72	
Uniform Delay, d1	50.1	30.9	27.9	48.0	30.2	29.9	48.9	36.9		49.2	32.6	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	5.5	1.3	1.1	45.7	4.7	8.8	8.7	11.3		52.9	1.5	Arrains)
Delay (s)	55.6	32.2	29.0	93.7	34.9	38.7	57.7	48.2		102.1	34.1	MAN THOMAS
Level of Service	Е	С	C	F	C	D	E	D		F	С	
Approach Delay (s)	un a nanagrapiere	35.2	59** 90 7-39E Figst-100	- Tetrity blader backets on	49.6	27 (-0.7 (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	100-cm annual season	49.5	27 300 7 2-430-57	-car no a same	49.6	1200
Approach LOS		D	* * * * * 1		D			D			D	
Intersection Summary												
HCM Average Control De	elav		47.1	Н	CM Lev	el of Se	rvice		D			
HCM Volume to Capacity			0.85					MARKET SECTION		STATE OF STA	ROOM NOTICE FO	
Actuated Cycle Length (s			110.0	S	um of lo	ost time	(s)		12.0	70 X		
Intersection Capacity Util			77.0%			el of Ser		a bearing of	D	8 (A) WOR (C TA)		
Analysis Period (min)			15	95.49.89							Supulsa e S	
c Critical Lane Group				A Bay of August 18			SHALLES IN THE	CAMPS AND A COMPANY				
Critical Lane Group												

	*	→	•	1	-	•	1	†	-	-	1	1
Movement	EBC	EBT	EBR	WBL	WBT	WBR	NBL	NBI	NBR	SBL	SBT	SBR
Lane Configurations	Charling re-	4	101011111	ሻ	4		"	†††	1	7	444	۲
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util, Factor		1.00		1.00	1.00		1.00	0.91	1.00	1.00	0.91	1.00
Frt		0.96		1.00	0.87		1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected		0.97		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1732		1770	1618		1770	5085	1583	1770	5085	1583
Fit Permitted		0.33		0.66	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)		589		1226	1618		1770	5085	1583	1770	5085	1583
Volume (vph)	133	1	50	87	37	264	50	1467	78	226	1320	149
Peak-hour factor, PHF	0.88	88.0	0.88	0.90	0.90	0.90	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	151	1	57	97	41	293	53	1561	83	240	1404	159
RTOR Reduction (vph)	0	13	0	0	209	0	0	0	6	0	0	13
Lane Group Flow (vph)	0	196	0	97	125	0	53	1561	77	240	1404	146
Turn Type	Perm			Perm	- 2		Prot		Perm	Prot		Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8	413			fo h	2			6
Actuated Green, G (s)		34.6		34.6	34.6		7.2	53.6	53.6	19.8	66.2	66.2
Effective Green, g (s)		34.6		34.6	34.6		7.2	53.6	53.6	19.8	66.2	66.2
Actuated g/C Ratio		0.29		0.29	0.29		0.06	0.45	0.45	0.17	0.55	0.55
Clearance Time (s)		4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Vehicle Extension (s)		3.0		3.0	3.0	_	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)		170		353	467		106	2271	707	292	2805	873
v/s Ratio Prot					0.21		0.03	c0.31	0.05	c0.14	0.28	12022
v/s Ratio Perm		c0.35		0.08	0.07		0.50	0.69	0.05	0.00		0.10
v/c Ratio		1.15		0.27	0.27		0.50 54.7	26.5	0.11	0.82	0.50	0.17
Uniform Delay, d1		42.7		33.0	32.9		0.83	0.73	19.3	48.4	16.7	13.3
Progression Factor		1.00		1.00	1.00		2.3	1.1	0,65	1.00	0.78	0.73
Incremental Delay, d2		116.5		0.4	0.3		47.9	20.6	12.8	15.6	0.6	0.4
Delay (s)		159.2 F		33.4 C	33.3 C		41.8 D	20.6 C	12.6 B	63.9 E	13.6	10.1
Level of Service		159.2		C	33.3		D	21.0	Ь	E	В	В
Approach Delay (s)		159.2 F			33.3 C	(9)		Z1.0			20.0 B	
Approach LOS					Ç						ь	
Intersection Summary	THE PARTY OF	民物社		de part	ALC: N		314				Jan Land	A Park
HCM Average Control D	elay		28.8	Н	CM Lev	el of Se	rvice		С			
HCM Volume to Capacity	y ratio		0.89						400			
Actuated Cycle Length (3)		120.0			st time			12.0			
Intersection Capacity Util	ization	= 4	82.9%	10	U Leve	of Sen	vice		E			
Analysis Period (mln)			15									
c Critical Lane Group												

	*		*	-	4-	4	4	†	1	1	ļ	4
Movement	EBL	ĒBT	EBR	WBL	WBT	WBR	NBL	NBT	NĒR	SBL	SBT	SBF
Lane Configurations	24	ት	*	A.A.	ተተተ	7	44	ተ ተ ጉ		AL	ተተተ	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Lane Util, Factor	0.97	0.91	1.00	0.97	0.91	1.00	0.97	0.91		0.97	0.91	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.96		1.00	1.00	0.85
FIt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	13.4	0.95	1.00	1.00
Satd. Flow (prot)	3367	4673	1509	3155	4550	1429	3019	4568		3242	4940	1455
Fit Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	3367	4673	1509	3155	4550	1429	3019	4568		3242	4940	1455
Volume (vph)	189	1144	196	300	1630	383	263	1026	422	248	1035	160
Peak-hour factor, PHF	0.94	0.94	0.94	0.95	0.95	0.95	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	201	1217	209	316	1716	403	280	1091	449	264	1101	170
RTOR Reduction (vph)	0	0	14	0	0	19	0	0	0	0	0	12
Lane Group Flow (vph)	201	1217	195	316	1716	384	280	1540	0	264	1101	158
Heavy Vehicles (%)	4%	11%	7%	11%	14%	13%	16%	8%	10%	8%	5%	11%
Turn Type	Prot		Perm	Prot		Perm	Prot			Prot		Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			2			6						4
Actuated Green, G (s)	6.0	35.5	35.5	13.0	42.5	42.5	9.9	37.0	The same of the sa	8.1	35.2	35.2
Effective Green, g (s)	8.3	38.4	38.4	15.3	45.4	45.4	12.1	40.0		10.3	38.2	38.2
Actuated g/C Ratio	0.07	0.32	0.32	0.13	0.38	0.38	0.10	0.33		0.09	0.32	0.32
Clearance Time (s)	6.3	6.9	6.9	6.3	6.9	6.9	6.2	7.0	6.0	6.2	7.0	7.0
Vehicle Extension (s)	2.0	5.9	5.9	2.0	6.5	6.5	2.0	4.3		2.0	4.3	4.3
Lane Grp Cap (vph)	233	1495	483	402	1721	541	304	1523		278	1573	463
v/s Ratio Prot	0.06	0.26	/5	c0.10	c0.38		c0.09	c0.34		0.08	0.22	and the second second
v/s Ratio Perm			0.14			0.28						0.12
v/c Ratio	0.86	0.81	0.40	0.79	1.00	0.71	0.92	1.01		0.95	0.70	0.34
Uniform Delay, d1	55.3	37.5	31.9	50.8	37.2	31.7	53.5	40.0		54.6	35.9	31.3
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	25.7	4.2	1.5	9.0	21.0	6.7	31.4	25.8		39.6	2.6	2.0
Delay (s)	80.9	41.7	33.4	59.8	58.2	38.4	84.9	65.8		94.2	38.5	33.3
Level of Service	F	D	С	E	E	D	F	E		F	D	C
Approach Delay (s)		45.5			55.1			68.8			47.5	
Approach LOS		D			E			E		1.	D	
Intersection Summary												
HCM Average Control D			54.8	·	ICM Lev	vel of Se	ervice		D			
HCM Volume to Capacity			0.94							nather and the		
Actuated Cycle Length (s			120.0		ium of lo				8.0			
Intersection Capacity Uti	lization	1	86.6%	10	CU Leve	el of Ser	vice	no and the Valid	E		2 W. v. (ma)	
Analysis Period (min)			15									
c Critical Lane Group												

	*	-	*	1	4	1	4	†	1	-	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	الدار	ተተተ	7	44	ተተተ	7	444	ተተተ	*	16.56	ተተተ	7
Ideal Flow (vphpl)	1900	1900	1900		1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	0.97	0.91	1.00	0.97	0.91	1.00	0.94	0.91	1.00	0.97	0.91	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	3183	4759	1468	3213	4673	1495	4586	4988	1495	3303	4940	1392
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	3183	4759	1468	3213	4673	1495	4586	4988	1495	3303	4940	1392
Volume (vph)	341	1824	317	625	1826	293	410	1187	494	193	1142	253
Peak-hour factor, PHF	0.95	0.95	0.95	0.96	0.96	0.96	0.95	0.95	0.95	0.94	0.94	0.94
Adj. Flow (vph)	359	1920	334	651	1902	305	432	1249	520	205	1215	269
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	359	1920	334	651	1902	305	432	1249	520	205	1215	269
Heavy Vehicles (%)	10%	9%	10%	9%	11%	8%	11%	4%	8%	6%	5%	16%
Turn Type	Prot		Perm	Prot		Perm	Prot		Perm	Prot		Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			2			6			8			4
Actuated Green, G (s)	12.4	44.5	44.5	17.7	49.8	49.8	8.8	39.8	39.8	6.0	37.0	37.0
Effective Green, g (s)	14.7	47.5	47.5	20.0	52.8	52.8	11.0	43.3	43.3	8.2	40.5	40.5
Actuated g/C Ratio	0.11	0.35	0.35	0.15	0.39	0.39	0.08	0.32	0.32	0.06	0.30	0.30
Clearance Time (s)	6.3	7.0	7.0	6.3	7.0	7.0	6.2	7.5	7.5	6.2	7.5	7.5
Vehicle Extension (s)	2.0	4.6	4.6	2.0	4.9	4.9	2.0	6.0	6.0	2.0	6.0	6.0
Lane Grp Cap (vph)	347	1674	517	476	1828	585	374	1600	480	201	1482	418
v/s Ratio Prot	0.11	c0.40		c0.20	0.41		c0.09	0.25		0.06	0.25	
v/s Ratio Perm	- 10		0.23			0.20			0.35		and the second	0.19
v/c Ratio	1.03	1.15	0.65	1.37	1.04	0.52	1.16	0.78	1.08	1.02	0.82	0.64
Uniform Delay, d1	60.1	43.8	36.7	57.5	41.1	31.4	62.0	41.5	45.9	63.4	43.9	41.0
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	57.5	73.7	3.5	178.5	32.4	1.5	95.9	3.9	65.4	68.7	5.2	7.4
Delay (s)	117.7	117.4	40.2	236.0	73.5	33.0	157.9	45.4	111.3	132.1	49.1	48.4
Level of Service	F	F	D	F	E	C	F	D	F	F	D	D
Approach Delay (s)		107.6			106.2			83.0			59.0	
Approach LOS		F			F			F			E	
Intersection Summary												
HCM Average Control D	elay		92.6	H	CM Lev	el of Se	ervice		F		P-43.35	
HCM Volume to Capacit		The Charles and Charles	1.18								The state of the s	
Actuated Cycle Length (135.0	S	um of lo	ost time	(s)		16.0			
Intersection Capacity Ut			96.3%			el of Ser			F	1 40		
Analysis Period (min)			15						74.733)			145 M. C
c Critical Lane Group	A CONTRACTOR OF THE PARTY OF TH		2.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4		and the same of	A. C. M. Charles	7.5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				7.00

	À	*******	*	*	4-		4	†	1	1	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	斯斯	ተተተ	7	ሻሻ	ት ትት	7	NN	ተተ ጉ		R.R.	ተተተ	۴
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	.,	4.0	4.0	4.0
Lane Util. Factor	0.97	0.91	1.00	0.97	0.91	1.00	0.97	0.91		0.97	0.91	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.97		1.00	1.00	0.85
FIt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	3433	4988	1495	3367	4940	1495	3433	4938		3400	4988	1553
FIt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	3433	4988	1495	3367	4940	1495	3433	4938		3400	4988	1553
Volume (vph)	430	996	278	250	1091	655	251	1260	279	499	1870	512
Peak-hour factor, PHF	0.94	0.94	0.94	0.95	0.95	0.95	0.95	0.95	0.95	0.96	0.96	0.96
Adj. Flow (vph)	457	1060	296	263	1148	689	264	1326	294	520	1948	533
RTOR Reduction (vph)	0	0	14	0	0	34	0	0	0	0	0	40
Lane Group Flow (vph)	457	1060	282	263	1148	656	264	1620	0	520	1948	493
Heavy Vehicles (%)	2%	4%	8%	4%	5%	8%	2%	2%	3%	3%	4%	4%
Turn Type	Prot		Perm	Prot		Perm	Prot			Prot		Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases		52 5 5 5	8			4			63500.4			2
Actuated Green, G (s)	10.0	25.7	25.7	15.3	31.0	31.0	7.0	29.0	freis, freisgift	10.0	32.0	32.0
Effective Green, g (s)	10.0	27.7	27.7	15.3	33.0	33.0	7.0	31.0		10.0	34.0	34.0
Actuated g/C Ratio	0.10	0.28	0.28	0.15	0.33	0.33	0.07	0.31	100 to	0.10	0.34	0.34
Clearance Time (s)	4.0	6.0	6.0	4.0	6.0	6.0	4.0	6.0		4.0	6.0	6.0
Vehicle Extension (s)	1.0	2.0	2.0	1.0	2.0	2.0	1.0	2.0		1.0	2.0	2.0
Lane Grp Cap (vph)	343	1382	414	515	1630	493	240	1531		340	1696	528
v/s Ratio Prot	c0.13	0.21		0.08	0.23	400	0.08	0.33		c0.15	c0.39	020
v/s Ratio Perm	00.10	0.21	0.20	0.00	0.20	0.46	0.00	0.00		00.10	60.55	0.34
v/c Ratio	1.33	0.77	0.68	0.51	0.70	1.33	1.10	1.06		1.53	1.15	0.93
Uniform Delay, d1	45.0	33.2	32.2	38.9	29.2	33.5	46.5	34.5	kalenda kana	45.0	33.0	31.9
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.06	1.15	1.17
Incremental Delay, d2	168.3	2.3	3.6	0.4	1.1	161.8	87.5	40.1	SECTION AND	247.3	71.6	18.4
Delay (s)	213.3	35.5	35.8	39.3	30.4	195.3	134.0	74.6		295.0	109.5	55.9
Level of Service	F	D.0	D	D	C	F	F	Ε		F	F	55.5 E
Approach Delay (s)	Hittary States	80.4			85.6			82.9			132.1	
Approach LOS		F			F		- 34	F	1, 14 × 15	TOVE SECTION	F	Cutalegal,
Intersection Summary												
HCM Average Control D		. 10 T. A.	99.8	Н	CM Lev	el of Se	ervice	a 1.8,	F	dreta.		
HCM Volume to Capacit			1.33	978.03351\ ² 113.03.9 <u>02</u> 1					C 1/4/10-04	Agrantis as analos	Same Constitution	Land Man
Actuated Cycle Length (100.0			ost time			16.0			
Intersection Capacity Ut	ilization	orton miles de la	93.4%	IC	U Leve	of Ser	vice	New Opinion and Pro	F		Consulto - * -	
Analysis Period (min)			15									
c Critical Lane Group												

	<u></u> ▲	destanting to	*	1	4	-	4	†	P	-	\$	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	34	ተተተ	7"	444	<u>ት</u>	7	444	444	7"	দৃদ্	<u>ት</u>	7
Ideal Flow (vphpl)	1900	1900	1900		1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	0.97	0.91	1.00	0.94	0.91	1.00	0.94	0.91	1.00	0.97	0.91	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	3155	4940	1429	4627	4803	1429	4757	4803	1417	3273	4803	1455
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	3155	4940	1429	4627	4803	1429	4757	4803	1417	3273	4803	1455
Volume (vph)	136	2020	485	773	2056	210	173	420	294	216	1344	88
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	142	2104	505	805	2142	219	186	452	316	232	1445	95
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	142	2104	505	805	2142	219	186	452	316	232	1445	95
Heavy Vehicles (%)	11%	5%	13%	10%	8%	13%	7%	8%	14%	7%	8%	11%
Turn Type	Prot		Perm	Prot		Perm	Prot		Perm	Prot		Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			2			6			8			4
Actuated Green, G (s)	6.0	41.1	41.1	8.7	43.8	43.8	6.0	39.2	39.2	6.0	39.2	39.2
Effective Green, g (s)	8.3	43.4	43.4	11.0	46.1	46.1	8.2	41.4	41.4	8.2	41.4	41.4
Actuated g/C Ratio	0.07	0.36	0.36	0.09	0.38	0.38	0.07	0.34	0.34	0.07	0.34	0.34
Clearance Time (s)	6.3	6.3	6.3	6.3	6.3	6.3	6.2	6.2	6.2	6.2	6.2	6.2
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	218	1787	517	424	1845	549	325	1657	489	224	1657	502
v/s Ratio Prot	0.05	c0.43		c0.17	0.45		0.04	0.09	** *** ****	c0.07	c0.30	eferror action of the effective of the
v/s Ratio Perm			0.35			0.15			0.22			0.07
v/c Ratio	0.65	1.18	0.98	1.90	1.16	0.40	0.57	0.27	0.65	1.04	0.87	0.19
Uniform Delay, d1	54.4	38.3	37.8	54.5	37.0	26.9	54.2	28.4	33.1	55.9	36.8	27.5
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	6.8	86.0	34.2	413.1	78.9	2.2	2.4	0.1	2.9	69.8	5.4	0.2
Delay (s)	61.2	124.3	72.0	467.6	115.8	29.0	56.6	28.5	36.1	125.7	42.2	27.7
Level of Service	E	F	E	F	F	С	Ε	С	D	F	D	С
Approach Delay (s)		111.5			199.3			36.5			52.3	2000.00 000000
Approach LOS		F			F			D			D	
Intersection Summary												
HCM Average Control De	elay		123.2	ŀ	ICM Lev	el of Se	rvice		F		3.472.4	
HCM Volume to Capacity	/ ratio		1.12									
Actuated Cycle Length (s	s)		120.0		Sum of Ic				16.0			4915
Intersection Capacity Util	ization		98.0%	K	CU Leve	of Ser	vice		F			
Analysis Period (min)		4.4	15			and the same of						A STATE OF
c Critical Lane Group								,				

	•	K _		7	†	1	1	1	W	•	*	7
Movement	WBL	WBR	WBR2	NBL	NBT	NBR	SBL	SBT	SBR	SEL2	SEL	SER
Lane Configurations	ħ	Z.		MA	ተተጉ		7	<u>ቀ</u> ቀቀ	۲	ሻ	Ä	77
Ideal Flow (vphpl)	1900		1900	1900	1900	1900	1900	1900	1900			
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	1.00		0.97	0.91		1.00	0.91	1.00	0.95	0.95	0.88
Frt	1.00	0.85		1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	0.95	1.00
Satd. Flow (prot)	1752	1577		3433	5046		1770	4988	1583	1681	1663	2787
Fit Permitted	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	0.95	1.00
Satd. Flow (perm)	1752	1577		3433	5046	, ,	1770	4988	1583	1681	1663	2787
Volume (vph)	104	148	11	1700	932	51	88	1344	587	756	90	1680
Peak-hour factor, PHF	0.88	0.88	0.88	0.96	0.96	0.96	0.95	0.95	0.95	0.96	0.96	0.96
Adj. Flow (vph)	118	168	12	1771	971	53	93	1415	618	788	94	1750
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	25	0	0	59
Lane Group Flow (vph)	118	180	0	1771	1024	0	93	1415	593	451	431	1691
Heavy Vehicles (%)	3%	2%	8%	2%	2%	2%	2%	4%	2%	2%	7%	2%
Turn Type	Split			Prot			Prot	(42 / K	Perm	Split		pm+ov
Protected Phases	3	3		5	2	A.C. a. Von est. ordinate accordance	1	6		4	4	5
Permitted Phases			47.19						6			4
Actuated Green, G (s)	9.0	9.0		33.8	59.0		8.0	33.2	33.2	25.7	25.7	59.5
Effective Green, g (s)	9.0	9.0		33.8	60.0		8.0	34.2	34.2	27.0	27.0	60.8
Actuated g/C Ratio	0.08	0.08	Name and additional formation	0.28	0.50		0.07	0.29	0.29	0.22	0.22	0.51
Clearance Time (s)	4.0	4.0		4.0	5.0	25	4.0	5.0	5.0	5.3	5.3	4.0
Vehicle Extension (s)	1.5	1.5		1.0	2.0		1.0	2.0	2.0	2.0	2.0	1.0
Lane Grp Cap (vph)	131	118		967	2523		118	1422	451	378	374	1505
v/s Ratio Prot	0.07	c0.11		c0.52	0.20		0.05	0.28		0.27	0.26	c0.33
v/s Ratio Perm									0.39			0.30
v/c Ratio	0.90	1.53		1.83	0.41		0.79	1.00	1.31	1.19	1.15	1.12
Uniform Delay, d1	55.1	55.5		43.1	18.8		55.2	42.8	42.9	46.5	46.5	29.6
Progression Factor	1.00	1.00		0.70	0.55		1.16	0.54	0.51	1.00	1.00	1.00
Incremental Delay, d2	48.8	274.6		376.4	0.3	Yes	19.5	18.7	152.4	110.1	94.9	64.9
Delay (s)	103.9	330.1		406.8	10.6		83.3	41.8	174.3	156.6	141.4	94.5
Level of Service	F	F		F	В		F	D	F	F	F	F
Approach Delay (s)	240.5				261.6	200 00 No		82.2			112.8	
Approach LOS	F				F			F			F	
Intersection Summary												
HCM Average Control D	elay	en de	162.3	Н	ICM Lev	el of Se	rvice		F			
HCM Volume to Capacit	y ratio		1.45									
Actuated Cycle Length (120.0		um of lo				12.0			
Intersection Capacity Ut	ilization	1	17.0%	IC	CU Leve	of Serv	/ice		Н			
Analysis Period (min)			15									
c Critical Lane Group												

	A	-	*	1	4	1	4	†	1	1	Ţ	1
Movement	EBL	EBŤ	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	44	<u></u>		أواو	<u>ት</u>	77	14.14	ተ ቀڼ		PA	<u></u>	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Lane Util. Factor	0.97	0.91		0.97	0.91	1.00	0.97	0.91		0.97	0.91	1.00
Frt	1.00	0.97		1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85
Fit Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	3433	4867		3273	4759	1583	3400	5024		3303	4893	1495
FIt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00	43	0.95	1.00	1.00
Satd. Flow (perm)	3433	4867		3273	4759	1583	3400	5024		3303	4893	1495
Volume (vph)	544	1298	346	200	1548	568	384	1323	102	571	1872	657
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.96	0.96	0.96
Adj. Flow (vph)	573	1366	364	211	1629	598	404	1393	107	595	1950	684
RTOR Reduction (vph)	0	0	0	0	0	43	0	0	0	0	0	26
Lane Group Flow (vph)	573	1730	0	211	1629	556	404	1500	0	595	1950	658
Heavy Vehicles (%)	2%	3%	4%	7%	9%	2%	3%	2%	4%	6%	6%	8%
Turn Type	Prot	M. College		Prot	ert in	Perm	Prot		200	Prot	y Lang	Perm
Protected Phases	7	4		3	8	Security pleases of	5	2	2.27 . 4.7.2.24	1	6	2001
Permitted Phases						8						6
Actuated Green, G (s)	16.0	40.7		9.0	33.7	33.7	12.0	35.7		16.0	39.7	39.7
Effective Green, g (s)	16.0	42.0		9.0	35.0	35.0	12.0	37.0		16.0	41.0	41.0
Actuated g/C Ratio	0.13	0.35		0.08	0.29	0.29	0.10	0.31	and the same of th	0.13	0.34	0.34
Clearance Time (s)	4.0	5.3		4.0	5.3	5.3	4.0	5.3		4.0	5.3	5.3
Vehicle Extension (s)	0.5	2.0		0.5	2.0	2.0	0.5	2.0		0.5	2.0	2.0
Lane Grp Cap (vph)	458	1703		245	1388	462	340	1549	4.572	440	1672	511
v/s Ratio Prot	c0.17	0.36	No. No. of the Journal of	0.06	0.34		0.12	0.30		c0.18	0.40	3. 04 COMPANY
v/s Ratio Perm						0.38						0.46
v/c Ratio	1.25	1.02	W. Mr. T. Mills	0.86	1.17	1.20	1.19	0.97	tani milimining sakenyok	1.35	1.17	1.29
Uniform Delay, d1	52.0	39.0		54.9	42.5	42.5	54.0	40.9		52.0	39.5	39.5
Progression Factor	1.00	1.00		0.75	0.36	0.26	1.00	1.00		0.78	0.37	0.31
Incremental Delay, d2	130.0	25.8		2.9	78.9	93.1	110.4	16.5		159.9	75.5	130.6
Delay (s)	182.0	64.8		44.4	94.1	104.2	164.4	57.4	0.000 Amount & 000 L/A	200.6	90.0	142.8
Level of Service	F	Е	arch4	D	F	F	F	Е		F	F	F
Approach Delay (s)		94.0	AND THE PERSON NAMED IN	27 A.S. (Men. Water, 1980an) 2004	92.2		X11.500 VVV	80.1	The state of the s		121.5	eru er kongazikuşayıcı
Approach LOS		F			F			F	2		F	
Intersection Summary												
HCM Average Control D	elav		99.9	Н	CM Lev	el of Se	ervice		F	10.000		
HCM Volume to Capacity		A STATE OF THE PARTY OF THE PAR	1.33		,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,					AL VALUE AND A CONTRACTOR OF THE PARTY OF TH	TO THE STATE OF	100000000000000000000000000000000000000
Actuated Cycle Length (s	A ALEXANDER THAT WAS A STREET OF THE PARTY O		120.0	S	um of le	st time	(s)	147	16.0			NAME OF
Intersection Capacity Uti			5.9%			of Ser			G	what styling		to the specific of the
Analysis Period (min)			15		5-1-1			10-145				
c Critical Lane Group	- CANADA CANADA CANADA						w	Walter State of W	A STATE OF THE STATE OF	The second second	Mary Control	

	1	-	-	1	-	*	1	1	. 1	-	1	1
Movement	EEL	EBT	EBR	WEL	Wen	WER	NOL	NOT	NBR	SEL	SBIT	SBR
Lane Configurations	7	444		7	444	energe:	. 7	F	200220000	7	4	E RESERVE
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	0.91		1.00	0.91		1.00	1.00		0.95	0.95	
Frt	1.00	1.00		1.00	1.00		1.00	0.85		1.00	0.87	
Fit Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.99	-
Satd. Flow (prot)	1770	5084		1770	5073		1770	1583		1681	1531	
Fit Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95		
Satd. Flow (perm)	1770	5084		1770	5073		1770	1583		1681	1531	
Volume (vph)	50	2729	3	31	3063	52	9	0	33	219	1	150
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.80	0.80	0.80	0.90	0.90	0.90
Adj. Flow (vph)	52	2843	3	32	3191	54	- 11	0	41	243	. 1	167
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	52	2846	0	32	3245	0	11	41	0	217	194	0
Turn Type	Prot			Prot	- 14		Split			Split		
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases												
Actuated Green, G (s)	5.0	95.0		3.8	93.8		17.0	17.0		19.0	19.0	
Effective Green, g (s)	5.0	95.0		3.8	93.8		17.0	17.0		19.0	19.0	.00
Actuated g/C Ratio	0.03	0.63		0.03	0.62		0.11	0.11		0.13	0.13	
Clearance Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3,0	
Lane Grp Cap (vph)	59	3203		45	3155		200	178		212	193	
v/s Ratio Prot	0.03	c0.56		0.02	c0.64		0.01	c0.03		c0.13	0.13	
v/s Ratio Perm												
v/c Ratio	0.88	0.89		0.71	1.03		0.06	0.23		1.02	1.01	
Uniform Delay, d1	72.6	23.5		73.0	28.5		59.7	60.9		65.9	65.9	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	75.7	3.4		41.4	23.9		0.5	3.0		68.1	66.1	
Delay (5)	148.3	26.8		114.3	52.4		60.3	63.9		134.0	132.0	
Level of Service	F	C		F	D		E	E		F	F	
Approach Delay (s)		29.0			53.0			63.2			133.1	
Approach LOS		C			D			E			F	
Intersection Summary	1000	200	H. SPER	STORY.		THE REAL PROPERTY.	NOTE OF		S ESTE			999
HCM Average Control D	elay		47.6		ICM Le	vel of S	ervice		D			
HCM Volume to Capaci	ty ratio		0.93	13		7.00			5.000			
Actuated Cycle Length (s)		150.8			ost time			16.0			
Intersection Capacity Ut	ilization		84.4%	. ,	CU Lev	el of Se	rvice		Ė			
Analysis Period (min) c Critical Lane Group			15									

	ᄼ	-	*	1	4	4	4	1	/	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	19	የ ቱ		18	የ ጉ			स	7		4	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0			4.0	4.0		4.0	
Lane Util. Factor	1,00	0.95		1.00	0.95			1.00	1.00		1.00	
Frt	1.00	0.99		1.00	0.99			1.00	0.85		0.97	
Flt Protected	0.95	1.00		0.95	1.00			0.97	1.00		0.99	
Satd. Flow (prot)	1770	3420		1770	3386			1797	1568		1778	
Flt Permitted	0.95	1.00		0.95	1.00			0.97	1.00		0.99	
Satd. Flow (perm)	1770	3420	3000 3000	1770	3386			1797	1568	-30 \$000 222 10 \$000 322	1778	Proc. 1004 1 2 2 2 2
Volume (vph)	29	2235	102	458	2165	120	89	58	265	71	146	58
Peak-hour factor, PHF	0.95	0.95	0.95	0.96	0.96	0.96	0.90	0.90	0.90	0.88	0.88	0.88
Adj. Flow (vph)	31	2353	107	477	2255	125	99	64	294	81	166	66
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	17	0	0	0
Lane Group Flow (vph)	31	2460	0	477	2380	0	0	163	277	0	313	0
Heavy Vehicles (%)	2%	5%	2%	2%	6%	2%	3%	2%	3%	3%	2%	3%
Turn Type	Prot			Prot			Split		Perm	Split		
Protected Phases	5	2	a II ji zwazi i wa	1	6		3	3		4	4	
Permitted Phases	6.216								3			
Actuated Green, G (s)	2.7	49.1		18.9	65.3			18.5	18.5		18.5	
Effective Green, g (s)	2.2	49.6		18.4	65.8			18.0	18.0	15.7 x2552.3 2	18.0	
Actuated g/C Ratio	0.02	0.41		0.15	0.55			0.15	0.15		0.15	
Clearance Time (s)	3.5	4.5		3.5	4.5			3.5	3.5		3.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0	3.0		3.0	
Lane Grp Cap (vph)	32	1414		271	1857			270	235		267	
v/s Ratio Prot	0.02	c0.72	10-10-10-10-10-10-10-10-10-10-10-10-10-1	c0.27	0.70		ARCHANIS AND ASSESSED.	0.09	10 St. 0 St. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	- W. C. C. S.	c0.18	
v/s Ratio Perm		4.17%				58			0.19			
v/c Ratio	0.97	1.74	24990.1.002	1.76	1.28	18 1-198 IV TUNN I S 199		0.60	1.18		1.17	
Uniform Delay, d1	58.9	35.2		50.8	27.1			47.7	51.0		51.0	
Progression Factor	1.02	0.66	and the r. month of	1.00	1.00		CORPORATION CONTRACTOR AND	1.00	1.00	years set olerandari	1.00	
Incremental Delay, d2	107.0	334.6		356.8	131.0			3.8	115.6		109.9	
Delay (s)	167.1	357.8	10.1470.0490.032.u	407.6	158.1		er ammel Maxazon	51.4	166.6		160.9	4945-45 WAY
Level of Service	F	F		F	F			D	F		F	
Approach Delay (s)	200 14395 102-126	355.5	20,000,000	country to grane the	199.8	\$1000 THOMAS (\$100)	81.000.750807-00.051 Liu	125.5		and the state of	160.9	Street Street
Approach LOS	100	F			F			F	117	244	F	
Intersection Summary												
HCM Average Control D	elav		255.6		ICM Lev	el of Se	rvice		F			
HCM Volume to Capaci			1.56		The second section of the second	TO A STREET OF THE PARTY OF THE			en typineerin v			Company of the second
Actuated Cycle Length (NEW OF THE	120.0		Sum of Id	st time	(s)		16.0			
Intersection Capacity Ut		1	22.2%		CU Leve			Service colours	Н	A 1.00 A 10 M 10 M 10	W. C. T. C. A. C. C.	
Analysis Period (min)		- 120-98	15							SU YOU		
c Critical Lane Group					TOWN MEMORIES				A STATE OF S			
C CITACON LONIO C. COP												

	♪		*	1	4	4	4	†	-	1	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	444		ሻሻ	ተ ቀጭ		ኻኻ	ተተተ	7	ሻሻ	ተት	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0	Y	4.0	4.0	4.0	4.0	4.0	
Lane Util. Factor	0.97	0.91		0.97	0.91		0.97	0.91	1.00	0.97	0.91	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	0.98	1.00	1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Frt	1.00	0.98		1.00	1.00		1.00	1.00	0.85	1.00	0.97	
Fit Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	3433	5000		3433	5069		3433	5085	1559	3433	4911	
FIt Permitted	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	3433	5000		3433	5069		3433	5085	1559	3433	4911	
Volume (vph)	492	1661	187	240	1645	33	70	1043	243	19	1440	378
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.94	0.94	0.94	0.95	0.95	0.95
Adj. Flow (vph)	518	1748	197	253	1732	35	74	1110	259	20	1516	398
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	9	0	0	0
Lane Group Flow (vph)	518	1945	0	253	1767	0	74	1110	250	20	1914	0
Confl. Peds. (#/hr)		*- #CAC9 (*** *** *** *** *** *** *** *** *** *	2		**************************************	2			2		140000 SSSS SSS 10000 - 1	2
Turn Type	Prot		. , ,	Prot		4.7	Prot		Perm	Prot		5.153
Protected Phases	5	2		1	6	BORY COLLEGE	3	8		7	4	Section Control
Permitted Phases				30 B		1000	5250 545	17 7 F	8			100
Actuated Green, G (s)	20.0	57.7	PROFESSION BRANCOS	11.0	48.7	*.s.=100200110	6.0	55.7	55.7	3.6	53.3	KAN BON N
Effective Green, g (s)	20.0	59.0		11.0	50.0	1256	6.0	57.0	57.0	3.6	54.6	\$54KN.
Actuated g/C Ratio	0.14	0.40		0.08	0.34		0.04	0.39	0.39	0.02	0.37	
Clearance Time (s)	4.0	5.3	71.87	4.0	5.3		4.0	5.3	5.3	4.0	5.3	
Vehicle Extension (s)	0.5	2.0	alle de la marchial I	0.5	2.0		0.5	2.0	2.0	0.5	2.0	
Lane Grp Cap (vph)	468	2012		258	1729		141	1977	606	84	1829	
v/s Ratio Prot	c0.15	c0.39		0.07	c0.35	4.7	c0.02	0.22	000	0.01	c0.39	
v/s Ratio Perm	00.10	00.00	3555	0.07	00.00	1 1971	00.02	0.22	0.17	0.01	00.00	100000
v/c Ratio	1.11	0.97	8.6000000	0.98	1.02		0.52	0.56	0.41	0.24	1.05	ALTESTA.
Uniform Delay, d1	63.3	42.8	615-139A (N)	67.7	48.3		68.9	35.0	32.6	70.2	46.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	74.0	13.6	10.00	50.3	27.4		1.6	0.2	0.2	0.5	34.4	A Continue
**************************************	137.3	56.4	a a sanara	118.0	75.7		70.5	35.2	32.8	70.7	80.4	
Delay (s) Level of Service	F	E	1	F	F.		Ε	D	C	Ε	F	CORDING-
	•	73.4			81.0		-	36.6	Y	•	80.3	
Approach Delay (s) Approach LOS		E			F			D			F	
Intersection Summary												
HCM Average Control D			70.3	H	ICM Lev	el of Se	rvice		Е			
HCM Volume to Capacit			0.99	The same of the sa					and the same of th			
Actuated Cycle Length (146.6		ium of lo				12.0			
Intersection Capacity Ut	ilization		92.9%	10	CU Leve	of Ser	vice		F			
Analysis Period (min)			15	74 m 3 /								
c Critical Lane Group						•		,				

	1	-	*	W.	4	4	4	†	1	1	\	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሕ ካ	የ ተሱ		<u>ች</u> ካ	ተ	7	27	44	T.	ሕኻ	44	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	0.97	*0.90		0.97	0.91	1.00	0.97	0.95	1.00	0.97	0.95	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.99	1.00	1.00	0.99	1.00	1.00	0.99
Flpb, ped/bikes	1.00	1.00	40	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	3433	4983	AC	3400	4988	1546	3433	3539	1546	3433	3539	1560
FIt Permitted	0.95	1.00		0.95	1,00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	3433	4983		3400	4988	1546	3433	3539	1546	3433	3539	1560
Volume (vph)	123	1855	110	507	1872	319	178	391	597	417	414	173
Peak-hour factor, PHF	0.95	0.95	0.95	0.96	0.96	0.96	0.93	0.93	0.93	0.93	0.93	0.93
Growth Factor (vph)	100%	100%	100%	100%	120%	100%	100%	100%	100%	100%	100%	100%
Adj. Flow (vph)	129	1953	116	528	2340	332	191	420	642	448	445	186
RTOR Reduction (vph)	0	0	0	0	0	40	0	0	76	0	0	8
Lane Group Flow (vph)	129	2069	0	528	2340	292	191	420	566	448	445	178
Confl. Peds. (#/hr)			2			2			2			2
Heavy Vehicles (%)	2%	2%	2%	3%	4%	3%	2%	2%	3%	2%	2%	2%
Turn Type	Prot			Prot		Perm	Prot		Perm	Prot		Perm
Protected Phases	5	2		1	6		3	8		7	4	1.00.11
Permitted Phases				134 MATA		6		T. P. L. J.	8	BIAN S		4
Actuated Green, G (s)	5.0	35.3	\$275 Carlo	11.0	41.3	41.3	27.1	34.7	34.7	10.0	17.6	17.6
Effective Green, g (s)	5.0	37.0		11.0	43.0	43.0	27.1	36.0	36.0	10.0	18.9	18.9
Actuated g/C Ratio	0.05	0.34		0.10	0.39	0.39	0.25	0.33	0.33	0.09	0.17	0.17
Clearance Time (s)	4.0	5.7		4.0	5.7	5.7	4.0	5.3	5.3	4.0	5.3	5.3
Vehicle Extension (s)	1.0	2.0		1.0	2.0	2.0	1.0	2.0	2.0	1.0	2.0	2.0
Lane Grp Cap (vph)	156	1676		340	1950	604	846	1158	506	312	608	268
v/s Ratio Prot	0.04	0.42		c0.16	c0.47	004	0.06	0.12	000	c0.13	0.13	200
v/s Ratio Prot v/s Ratio Perm	0.04	V,72		00.10	60.41	0.21	0.00	0.12	0.42	00.10	0.10	0.12
v/c Ratio	0.83	1.23		1.55	1.20	0.48	0.23	0.36	1.12	1.44	0.73	0.66
	52.1	36.5		49.5	33.5	25.2	33.1	28.2	37.0	50.0	43.2	42.6
Uniform Delay, d1 Progression Factor	1.00	1.00		1.02	1.06	1.07	1.00	1.00	1.00	1.00	1.00	1.00
	27.5	110.9	Bin Emerc	250.2	90.5	0.3	0.0	0.1	76.7	213,6	3.9	4.7
Incremental Delay, d2	79.6	147.4		300.7	126.2	27.3	33.1	28.3	113.7	263.6	47.1	47.3
Delay (s)	7 8.0 E	F	A (MOSSON	500.7	120.2 F	Z1.5	C	20.3 C	F	203.0 F	D	47.3 D
Level of Service	-	143.4			144.7		U	72.8			137.0	U
Approach Delay (s) Approach LOS		F			F			72.0 E			137.0 F	
Intersection Summary	37 - 22 - 43 20 - 10											
HCM Average Control D	elav		131.6	F	ICM Lev	el of Se	nvice		F			
HCM Volume to Capacit			1.31		IOW LC	rei oi oc	AVIOC				10-1-A	
Actuated Cycle Length (9.67070157574	110.0	C	ium of L	net time	(e)	T 1 2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16.0	25-19-21-12	Spirostrane	
Intersection Capacity Ut		1	15.2%						Н	Park Brown Kin	TOTAL MEDICAL	ACT CA
Analysis Period (min)	nzativii	(September 1981)	15.276	The state of the s					100 m	4 35 Sec. 35		
c Critical Lane Group			19	Marie Aber						73 C. (1880)		

	۶	-	*	•	-	4	4	1	-	1	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		f ttt	7		444					দৃদ্		77
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0	4.0		4.0		201707-201-7: #88883000007-201-	100° SQ1000000 70° 1 Q000		4.0		4.0
Lane Util. Factor		0.86	1.00		0.91	4 2 44				0.97		0.88
Frpb, ped/bikes		1.00	1.00		0.99					1.00		1.00
Flpb, ped/bikes		1.00	1.00		1.00					1.00	1.07	1.00
Frt		1.00	0.85		0.96					1.00	1 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.85
Fit Protected		1.00	1.00		1.00			3.5	1 38	0.95		1.00
Satd. Flow (prot)		6346	1583		4789					3433		2760
FIt Permitted		1.00	1.00		1.00					0.95		1.00
Satd. Flow (perm)		6346	1583		4789					3433		2760
Volume (vph)	0	2195	675	0	1358	575	0	0	0	690	0	1340
Peak-hour factor, PHF	0.96	0.96	0.96	0.95	0.95	0.95	0.93	0.93	0.93	0.95	0.95	0.95
Growth Factor (vph)	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	150%
Adj. Flow (vph)	0	2286	703	0	1429	605	0	0	0	726	0	2116
RTOR Reduction (vph)	0	0	207	0	69	0	0	0	0	0	0	3
Lane Group Flow (vph)	0	2286	496	0	1965	0	0	0	0	726	0	2113
Confl. Peds. (#/hr)			7274			2						
Heavy Vehicles (%)	2%	3%	2%	2%	3%	2%	2%	2%	2%	2%	2%	3%
Turn Type			Perm						(custom	(custom
Protected Phases		2			6					4		
Permitted Phases	S. Calledon		2			Apply Cal				4		4
Actuated Green, G (s)		35.7	35.7		35.7					62.4		62.4
Effective Green, g (s)		38.0	38.0		38.0					64.0		64.0
Actuated g/C Ratio		0.35	0.35		0.35					0.58		0.58
Clearance Time (s)	18854	6.3	6.3		6.3					5.6		5.6
Vehicle Extension (s)		4.3	4.3		4.9					3.4		3.4
Lane Grp Cap (vph)		2192	547		1654					1997	3.04	1606
v/s Ratio Prot		0.36			0.42					0.21		
v/s Ratio Perm			0.44									0.77
v/c Ratio		1.04	0.91		1.19					0.36		1.32
Uniform Delay, d1		36.0	34.3		36.0					12.2		23.0
Progression Factor		1.03	1.09		0.70					1.00		1.00
Incremental Delay, d2		21.0	2.7		88.8		, S.,			0.1		146.7
Delay (s)		58.1	40.2		114.1					12.3		169.7
Level of Service		E	D		F					В		L F
Approach Delay (s)		53.9			114.1			0.0			129.5	
Approach LOS		D			F			Α			F	
Intersection Summary												
HCM Average Control D		4	96.8	H	ICM Lev	el of Se	ervice		F	and the		-1027
HCM Volume to Capacit		7 & W. W.	1.31	c N. 14. 165	100 marting and 100 marting an		NA 100 BY 100 BY	75.000 av21.79mm			Constitution and the	
Actuated Cycle Length (110.0		um of lo				8.0			
Intersection Capacity Uti	lization	1	16.1%									
Analysis Period (min)			15		5467 P			** N - A				
c Critical Lane Group												

	ⅉ	-	*	1	4	4	1	†	1	1	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተተ _ጉ	7		ት	7	7		7			
Ideal Flow (vphpl) 1	900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0	4.0		4.0	4.0	4.0		4.0			
Lane Util. Factor		0.86	0.86		0.91	1.00	1.00		1.00			
Frpb, ped/bikes		1.00	1.00		1.00	0.98	1.00		1.00			
Flpb, ped/bikes		1.00	1.00		1.00	1.00	1.00		1.00			
Frt		0.95	0.85		1.00	0.85	1.00		0.85			
Flt Protected		1.00	1.00		1.00	1.00	0.95		1.00			
Satd. Flow (prot)		4558	1335		5085	1550	1752		1538			
Flt Permitted		1.00	1.00	hans.	1.00	1.00	0.95		1.00			
Satd. Flow (perm)		4558	1335		5085	1550	1752		1538			
Volume (vph)	0	1240	1645	0	1217	610	717	0	379	0	0	0
	0.96	0.96	0.96	0.95	0.95	0.95	0.93	0.93	0.93	0.92	0.92	0.92
Adj. Flow (vph)	0	1292	1714	0	1281	642	771	0	408	0	0	0
RTOR Reduction (vph)	0	71	0	0	0	0	0	0	16	0	0	0
Lane Group Flow (vph)	0	1790	1145	0	1281	642	771	0	392	0	0	0
Confl. Peds. (#/hr)						2						
Heavy Vehicles (%)	2%	2%	4%	2%	2%	2%	3%	2%	5%	2%	2%	2%
Turn Type			Free			Free	Prot	C	ustom			
Protected Phases		2			6		8					
Permitted Phases			Free			Free			8			
Actuated Green, G (s)		48.5	110.0		48.5	110.0	51.4		51.4			3.0
Effective Green, g (s)		49.4	110.0		49.4	110.0	52.6		52.6			
Actuated g/C Ratio		0.45	1.00		0.45	1.00	0.48		0.48			
Clearance Time (s)		4.9			4.9		5.2		5.2			
Vehicle Extension (s)		5.7			5.7		5.3	Best	5.3			
Lane Grp Cap (vph)		2047	1335		2284	1550	838		735			
v/s Ratio Prot		0.41			0.25	te "·	0.44					
v/s Ratio Perm	•		0.86			0.41			0.27			
v/c Ratio		0.87	0.86		0.56	0.41	0.92		0.53	(Ser		10.1
Uniform Delay, d1		27.5	0.0		22.3	0.0	26.7		20.1			
Progression Factor		1.06	1.00		0.53	1.00	1.00		1.00			100
Incremental Delay, d2		4.2	0.7		0.4	0.3	15.9		1.5			
Delay (s)		33.4	0.7		12.1	0.3	42.7		21.6			
Level of Service		C	Α		В	Α	D		С			
Approach Delay (s)		21.0			8.2			35.4			0.0	
Approach LOS		С			Α			D			Α	
Intersection Summary												
HCM Average Control Dela	y		19.7	Н	CM Lev	vel of Se	rvice		В			
HCM Volume to Capacity ra		152.00	0.86			That Albert						
Actuated Cycle Length (s)			110.0	S	um of le	ost time	(s)		0.0			
Intersection Capacity Utiliza	ation		82.6%			el of Ser			E	in jul		
Analysis Period (min) c Critical Lane Group			15									

	<u> </u>	-	V	1	4		1	Ť	1	-	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	ă	ተ ተኩ		Ä	ተተጉ		Ä	ተተ	7	ħ	412	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	2,0 1 0.000000000000000000000000000000000	4.0	4.0		4.0	4.0	4.0	4.0	4.0	
Lane Util. Factor	1.00	0.91		1.00	0.91		1.00	0.95	1.00	1.00	0.95	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	0.98	1.00	0.99	2017-1-120-1-2017-1-120-1-1
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Frt	1.00	0.97	en versidense vitera fil talende	1.00	0.98	Dr. 10 4 10 5 10 10 10 10 10 10 10 10 10 10 10 10 10	1.00	1.00	0.85	1.00	0.90	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1770	4914	eur danskride et fan it wêrd	1770	4996		1770	3539	1553	1770	3159	of homesto.
Flt Permitted	0.95	1.00	Perk Sarah	0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1770	4914	a security on the Author Author	1770	4996	QVV1146	1770	3539	1553	1770	3159	egedőr "Júgla trejg".
Volume (vph)	306	999	258	242	1132	134	259	190	193	197	205	384
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.92	0.92	0.92	0.93	0.93	0.93
Adj. Flow (vph)	326	1063	274	257	1204	143	282	207	210	212	220	413
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	4	0	0	0
Lane Group Flow (vph)	326	1337	0	257	1347	0	282	207	206	212	633	0
Confl. Peds. (#/hr)			2			3			5	- 1-		3
Turn Type	Prot			Prot		50.3	Prot		Perm	Prot	201	
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases									8		11341	
Actuated Green, G (s)	20.9	33.9		16.9	29.9	- M.S MORT - MODEL OF	18.0	18.0	18.0	22.6	22.6	
Effective Green, g (s)	20.9	35.2		16.9	31.2		18.0	19.3	19.3	22.6	23.9	M. Other
Actuated g/C Ratio	0.19	0.32		0.15	0.28		0.16	0.18	0.18	0.21	0.22	
Clearance Time (s)	4.0	5.3	4.0.40	4.0	5.3	176	4.0	5.3	5.3	4.0	5.3	
Vehicle Extension (s)	1.0	2.0	0.0000.000.000	1.0	2.0		1.0	2.0	2.0	1.0	2.0	aginana anjenio stali
Lane Grp Cap (vph)	336	1572		272	1417		290	621	272	364	686	
v/s Ratio Prot	c0.18	0.27	A. 1884 A. LANGE CO.	0.15	c0.27		c0.16	0.06		0.12	c0.20	ahili aran-kasasa
v/s Ratio Perm	930								0.14			
v/c Ratio	0.97	0.85	7.4488884868	0.94	0.95	KILLERI & LALLER M. P. 40	0.97	0.33	0.76	0.58	1.22dr	
Uniform Delay, d1	44.2	34.9		46.1	38.6		45.8	39.7	43.1	39.4	42.1	N 444
Progression Factor	1.15	1.40		1.00	1.00		1.00	1.00	1.00	1.00	1.00	oranji ngalek monto
Incremental Delay, d2	29.7	3.6		39.2	14.7		44.9	0.1	10.2	1.5	17.8	in that is
Delay (s)	80.5	52.5	•	85.3	53.4		90.6	39.8	53.3	41.0	59.9	9945345840(H)(V)
Level of Service	F	D		F	D		F	D	D	D	E	
Approach Delay (s)		58.0			58.5			64.4		_	55.2	
Approach LOS	3 30	E			E			Е		- 47	E	
Intersection Summary												
HCM Average Control D			58.6	H	ICM Lev	el of Se	rvice	والاودو	E			
HCM Volume to Capacity			0.91									
Actuated Cycle Length (s			110.0		um of lo				12.0			
Intersection Capacity Uti	ization	3	37.9%	IC	CU Level	of Ser	vice		E			
Analysis Period (min)			15		Z Z Z				Trice In			

2038 No Build PM Parsons Transportation Group

c Critical Lane Group

	1	-	*	-	4	1	4	1	P	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	The second	↑ ↑		ħ	የ ሴ	:	Ž.	የ ጉ		Ä	44	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	1.00
Frpb, ped/bikes	1.00	1.00	J. J	1.00	1.00		1.00	0.99		1.00	1.00	0.98
Fipb, ped/bikes	1.00	1.00		1.00	1.00	1072.4	1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.98	99000 NO 118 NO 189 119 119 11	1.00	0.99		1.00	0.88		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1770	3283		1736	3252		1703	2955	*****	1770	3471	1500
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00	Table.	0.95	1.00	1.00
Satd. Flow (perm)	1770	3283		1736	3252	Green Carlotte Contract de la	1703	2955	37 VC X380 X40 X	1770	3471	1500
Volume (vph)	91	877	136	207	934	53	215	41	204	63	63	105
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.92	0.92	0.92	0.88	0.88	0.88
Adj. Flow (vph)	98	943	146	223	1004	57	234	45	222	72	72	119
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	12
Lane Group Flow (vph)	98	1089	Ö	223	1061	0	234	267	0	72	72	107
Confl. Peds. (#/hr)	- 00	1000	2	Carlo Carlos Mais		3			2			2
Heavy Vehicles (%)	2%	7%	11%	4%	10%	10%	6%	3%	6%	2%	4%	6%
Turn Type	Prot	, ,,	· 1 /0	Prot	1070	1070	Prot		0,0	Prot	1 70	Perm
Protected Phases	7	4	alitani i sichi	3	8		5	2	Show Fall	1	6	r Cilli
Permitted Phases	K03.757.59	4		J	U			.		Carlo de la	V	6
	8.4	42.0	Chath is Suf	18.1	51.7		20.8	34.4	WINESCHOOL	6.9	20.5	20.5
Actuated Green, G (s)	8.4	43.3		18.1	53.0		20.8	35.7		6.9	21.8	21.8
Effective Green, g (s)	0.07	0.36		0.15	0.44		0.17	0.30	Mark Mark	0.06	0.18	0.18
Actuated g/C Ratio	4.0	5.3		4.0	5.3		4.0	5.3		4.0	5.3	5.3
Clearance Time (s)				1.0	4.0	tarent la bassaria		4.0	Hithurine No. Scie	1.0	4.0	
Vehicle Extension (s)	1.0	4.0	AUTO C			A.1922	1.0					4.0
Lane Grp Cap (vph)	124	1185	entertaine de la Company	262	1436	YOURS CONTRACT	295	879	kiri sentromasa	102	631	273
v/s Ratio Prot	0.06	c0.33		c0.13	0.33		c0.14	0.09		c0.04	0.02	
v/s Ratio Perm	and the second second		ONE AND LONG TWO			Marchaeth o go'i belle all a con			AND DESCRIPTIONS		nik sawara ara	0.08
v/c Ratio	0.79	0.92		0.85	0.74		0.79	0.30		0.71	0.11	0.39
Uniform Delay, d1	54.9	36.7	NAC OFFICE NAME OF STREET	49.6	27.8		47.5	32.6		55.6	41.0	43.3
Progression Factor	1.00	1.00		0.82	0.31		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	26.5	11.5		13.1	1.2		12.8	0.9	a a mai na manana a a manana	16.6	0.4	4.2
Delay (s)	81.4	48.1	79.5	54.1	9.9		60.3	33.4		72.1	41.4	47.4
Level of Service	F	D		D	Α		E	С		E	D	D
Approach Delay (s)		50.9			17.5			46.0			52.5	
Approach LOS		D			В			D			D	
ntersection Summary												
HCM Average Control Do			37.0	H	ICM Lev	el of Se	rvice		D			
HCM Volume to Capacity			0.79									
Actuated Cycle Length (s			120.0		um of lo			•	16.0			
Intersection Capacity Util	ization		82.0%	2.0% ICU Level of Service				D				
Analysis Period (min)			15									
c Critical Lane Group												

	♪	-	*	•	-	1	4	†	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WET	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ä	የ ጉ		Ä	ረ ት		Ä	^		Ä	44	۴
Ideal Flow (vphpl)	1900	1900	1900		1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	0.99
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.98		1.00	0.99		1.00	0.98		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1736	3288		1719	3180		1626	3351		1736	3471	1474
Flt Permitted	0.95	1.00		0.95	1.00	3.6	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1736	3288		1719	3180		1626	3351		1736	3471	1474
Volume (vph)	227	784	103	151	792	35	131	591	66	53	1051	233
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.94	0.94	0.94
Adj. Flow (vph)	244	843	111	162	852	38	141	635	71	56	1118	248
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	13
Lane Group Flow (vph)	244	954	0	162	890	0	141	706	0	56	1118	235
Confl. Peds. (#/hr)		NEST COLUMN SERVICION NO	2	PT C PROPERTIES	2002-0-0-00-00-00-0	5	Maria (10. 100 Maria 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.		4	264, 1972, 240, 2817, 240, 2	1 10 10 10 10 10 10 10 10 10 10 10 10 10	2
Heavy Vehicles (%)	4%	7%	13%	5%	13%	6%	11%	5%	14%	4%	4%	8%
Turn Type	Prot	***************************************		Prot			Prot		-	Prot		Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	Cobellores	50 - 77 - 12 (10 - 10 - 10 - 10 - 10 - 10 - 10 - 10			6			10F13137-7711-33-4		Translate 111 51	PROSENT LICENSES	4
Actuated Green, G (s)	17.0	39.3		12.0	34.3		11.8	44.3		6.2	38.7	38.7
Effective Green, g (s)	17.0	40.2		12.0	35.2	American Company	11.8	45.6	skiller if later	6.2	40.0	40.0
Actuated g/C Ratio	0.14	0.34		0.10	0.29		0.10	0.38		0.05	0.33	0.33
Clearance Time (s)	4.0	4.9		4.0	4.9		4.0	5.3		4.0	5.3	5.3
Vehicle Extension (s)	1.0	2.0		1.0	2.0		1.0	2.0	5753	1.0	2.0	2.0
Lane Grp Cap (vph)	246	1101		172	933		160	1273		90	1157	491
v/s Ratio Prot	0.14	c0.29	A FREE STATE OF	0.09	c0.28		c0.09	0.21		0.03	c0.32	701
v/s Ratio Perm	V, 1.7	00.20		0.00	00.20		00.00	V.L.		0.00	OU.UL	0.17
v/c Ratio	0.99	0.87	ANG BOOK	0.94	0.95		0.88	0.55		0.62	0.97	0.48
Uniform Delay, d1	51.4	37.4	***********	53.7	41.6		53.4	29.2		55.8	39.3	31.7
Progression Factor	0.56	0.39		1.00	1.00		1.00	1.00	rana kana	1.00	1.00	1.00
Incremental Delay, d2	42.5	5.9		51.2	20.2		38.2	0.3		9.2	18.6	0.3
	71.2	20.6		104.8	61.8		91.6	29.5		65.0	57.9	32.0
Delay (s) Level of Service	E	20.0 C	<u> </u>	F	E		F	20.5 C	Salah (1947)	E	51.8 E	32.0 C
The second secon		30.9			68.4	4357		39.9	19. Za 19. Z		53.7	
Approach Delay (s) Approach LOS		30.9 C			00.4 E			39.9 D			55.7 D	
					-							N. Comm. Dr. Comm. Comm. C.
Intersection Summary			40.5		0144	1.60						
HCM Average Control D		art Street Marie and	48.5	H	CM Lev	el of Se	rvice	ey selem one	D		al a water was mo	
HCM Volume to Capacity			0.92				/		40.0			
Actuated Cycle Length (s		e con established	120.0				12.0	Same Carry St.				
Intersection Capacity Uti	lization	137 A T	88.9%	the season is the control of the season and the sea		0.05	E					
Analysis Period (min)			15				n was a war		**	War and		
c Critical Lane Group	310					K C P						

ALTERNATIVE A

CORSIM MAINLINE DATA

		,			
	•				
		•			

Year 2038 Build Alt. A - AM

									sov										
Freeway Segment	Demand	Served	% Served	Travel Time	Delay Time	Speed	Density	LOS	Cumulative Time	Veh - Miles	Veh - Hours	Veh - Delay	CORSIM Served Volumes/L ane	Speed Ratio	Veh-Hours (40 MPH)	Veh-Delay (<40 MPH)	Length	Length*C ORSIM Served Volumes/L	Length*E
	(vph)	(vph)		(sec/veh)	(sec/veh)	(MPH)	(veh/in/mi)	(HCM 2000)	(sec/veh)	(VMT)	(VHT)	(VHD)	(vphl)	40	(VHT)	(VHD)	(ft)	ane	5280
SR-99 NB Mainline												,							
SR-99 NB south end of the network to White Ln Off Ramp	7,075	7,087	100%	55	6	59	31	D	55	6310	107	11	1772	0	0	0	4,648	8234513	27
White Ln Off Ramp to White Ln Loop On Ramp	5,950	5,848	98%	20	1	61	24	С	74	1959	32	2	1462	0	0	0	1,768	2584993	8
White Ln Loop On Ramp to White Ln Direct On Ramp	7,590	7,162	94%	8	2	47	38	Ε	82	755	16	5	1791	0	0	0	555	993728	4
White Ln Direct On Ramp to Ming Ave Off Ramp	8,285	8,015	97%	80	8	58	32	D	162	10357	178	18	1603	0	0	0	6,844	10971514	41
Ming Ave Off Ramp to C-D (SR58 WB) Off Ramp	7,370	7,373	100%	11	1	60	25	C	174	1411	24	2	1475	0	0	0	1,009	1487871	5
SR58 WB Off Ramp to SR58 EB Off Ramp	6,245	6,117	98%	27	2	60	23	Ç	201	2783	46	3	1359	0	0	0	2,414	3281350	10
SR58 EB Off Ramp to Ming Ave On Ramp	4,990	4,994	100%	25	1	62	20	C	226	2167	35	1	1249	0	0	0	2,292	2861677	9
Ming Ave On Ramp to SR 58 On Ramp	5,990	5,888	98%	8	1	60	25	C	234	754	13	1 1	1472	0	0	0	676	995021	3
SR 58 On Ramp to California Off Ramp	7,175	7,163	100%	40	5	58	30	D	274	4660	81	9	1791	0	0	0	3,410	6106088	19
California Off Ramp to California Ave Loop On Ramp	6,025	6,026	100%	16	1	62	24	C	291	1701	28	1	1506	0	0	0	1,491	2246154	7
California Ave Loop On Ramp to California Ave Direct On Ramp	7,075	6,780	96%	9	1	58	29	D	300	1008	17	2	1695	0	0	0	785	1330477	4
California Ave Direct On Ramp to Rosedale Hwy Off Ramp	7,555	6,881	91%	33	3	57	28	D	333	3572	62	6	1529	0	0	0	2,800	4281553	15
Rosedale Hwy Off Ramp to Buck Owens/Sillect Ave Off Ramp	5,590	5,192	93%	17	1 1	61	21	С	349	1475	24	1 1	1298	0	0	0	1,500	1947038	6
Buck Owens Blvd/Sillect Ave Off Ramp to Buck Owens Blvd/Sillect Ave On Ramp	4,795	4,432	92%	24	1	63	18	В	373	1842	29	1	1108	0	0	0	2,194	2431171	7
Buck Owens Blvd/Sillect Ave On Ramp to Airport Dr Off Ramp	5,515	5,124	93%	35	3	59	22	C	408	2914	49	4	1281	0	0	0	3,000	3843113	12
Airport Dr Off Ramp to SR99 NB north end of the network	3,775	3,556	94%	41	1	63	14	В	448	2512	40	1	889	0	0	0	3,726	3312740	10
SR-99 SB Mainline									- 10	0.400	5.4		4044	0		0	4.400	4500054	- 11
SR99 SB north end of the network to Airport Dr On Ramp	4,035	4,055	101%	48	1	64	16	В	48	3460	54	1	1014	0	0	0	4,498	4560354	14
Airport Dr On Ramp to Rosedale Hwy Off Ramp	5,485	5,450	99%	32	3	60	22	C	80	2919	49	4	1211	0	0	0	2,800	3390966	12 7
Rosedale Hwy Off Ramp to Rosedale Hwy Loop On Ramp	4,110	4,113	100%	25	1	63	16	В	105	1769	28	1 1	1028	0	0	0	2,271	2335042	3
Rosedale Hwy Loop On Ramp to Rosedale Hwy Direct On Ramp	5,210	5,253	101%	10	1	55	21	C	115	796	14	2	1313	0	0	0	800	1050640	16
Rosedale Hwy Direct On Ramp to California Ave Off Ramp	6,045	6,073	100%	38	5	57	26	D	153	3676	65	8	1518	0	0	0	3,200 1,229	4858720 1417805	4
California Ave Off Ramp to California Ave On Ramp	4,550	4,615	101%	13	1	62	19	C	167	1074	17 40	3	1154 1299	0	0	0	2,433	3161217	10
California Ave On Ramp to SR58 EB Off Ramp	5,110	5,197	102%	28	2	60	17	В	1	2399	33	1	1058	0	0		2,561	2708578	8
SR58 EB Off Ramp to Ming Ave Off Ramp	4,155	4,231	102%	28		62 63		В	223	2053 1257	20	'	825	0	0	0	2,012	1659372	5
Ming Ave Off Ramp to SR58 WB On Ramp	3,220 5,745	3,299 5,792	102%	22 52	3	62	13	В	296	5174	84	4	1287	0	0		4,715	6068275	16
SR58 WB On Ramp to Ming Ave On Ramp	.,		100%	63		59	. 27	D	360	6749	115	11	1629	0	0	0	5,403	8801217	27
Ming Ave On Ramp to White Ln Off Ramp	6,530 4,860	6,516 4,841	100%	19	6	63	19	C	379	1623	26	"	1076	0	0	0	1,770	1904087	6
White Ln Off Ramp to White Ln Loop On Ramp White Ln Loop On Ramp to White Ln Direct On Ramp	5,120	4,953	97%	10	'	62	20	c	389	839	13		1238	0	0	0	894	1107085	3
White Ln Direct On Ramp to SR99 SB south end of the network	5,565	5,193	93%	52	2	62	21	c	441	4696	75	3	1298	0	0	0	4,777	6201143	19
WSP EB Mainline	0,000	0,100	00%	02	-	OE.				1000									
WSP west end of the network to West Beltway Off Ramp	2,230	2,279	102%	6	2	47	24	С	6	186	4	1	1140	0	0	0	431	491211	2
West Beltway Off Ramp to West Beltway Loop On Ramp	1,485	1,487	100%	14	1	61	12	В	20	349	6	0	743	0	0	0	1,239	921135	3
West Beltway Loop On Ramp to West Beltway Direct On Ramp	3,010	2,796	93%	9		61	15	В	29	436	7	0	932	0	0	0	824	767831	2
West Beltway Direct On Ramp to Allen Rd Off Ramp	3,300	3,073	93%	57	2	62	16	В	86	3023	49	2	1024	0	0	o	5,195	5321354	16
Allen Rd Off Ramp to Allen Rd On Ramp	2,920	2,699	92%	33	1	63	14	В	119	1537	24	1 1	900	0	0	o	3,006	2704649	8
Allen Rd On Ramp to Calloway Dr Off Ramp	4,920	4,665	95%	61	4	60	26	С	180	4745	79	6	1555	0	0	0	5,338	8299843	26
Calloway Dr Off Ramp to Calloway Dr Loop On Ramp	3,960	3,796	96%	25	1	63	20	С	204	1645	26	1	1265	0	0	o	2,288	2895388	9
Calloway Dr Loop On Ramp to Calloway Dr Direct On Ramp	4,900	4,653	95%	11	1	59	26	D	216	882	15	1	1551	0	0	0	1,000	1551133	5
Calloway Dr Direct On Ramp to Coffee Dr Off Ramp	6,050	5,867	97%	51	5	59	32	D	267	4956	84	8	1956	0	0	0	4,373	8551868	27
Coffee Dr Off Ramp to Mohawk St/Truxtun Ave Off Ramp	5,025	4,836	96%	59	3	61	21	С	326	4821	79	4	1382	0	0	0	5,275	7288328	21
Mohawk St/Truxtun Ave Off Ramp to Coffee Dr On Ramps	1,935	1,839	95%	32	1	63	15	В	358	1026	16	0	919	0	0	0	2,945	2707839	8
Coffee Dr On Ramps to SR99 SB & Ming Ave C-D Off Ramp	3,810	3,700	97%	111	6	61	20	С	468	6972	114	6	1233	0	0	0	9,938	12257032	37
SR99 SB & Ming Ave C-D Off Ramp to H St Off Ramp	1,930	1,836	95%	23	1	63	15	В	491	729	12	0	918	0	0	0	2,098	1925544	6
H St Off Ramp to SR 99 NB&SB On Ramp	1,648	1,564	95%	30	1	63	12	В	522	830	13	0	782	0	0	0	2,802	2191619	7
SR99 NB&SB On Ramp to Chester Ave On Ramp	3,535	3,408	96%	47	4	60	12	В	569	2662	45	4	974	0	0	0	4,076	3968918	9
Chester Ave On Ramp to Union Ave Off Ramp	4,560	4,401	97%	27	2	61	18	С	596	2022	33	2	1257	0	0	0	2,419	3041651	8
Union Ave Off Ramp to Union Ave Loop On Ramp	3,525	3,405	97%	17	1 1	63	18	С	613	989	16	1	1135	0	0	0	1,533	1739955	5
Union Ave Loop On Ramp to Union Ave Direct On Ramp	3,865	3,698	96%	8	0	62	20	С	621	518	8	0	1233	0	0	0	739	911015	3
Union Ave Direct On Ramp to Cottonwood Rd Off Ramp	4,190	4,044	97%	31	2	62	22	С	652	2149	35	2	1348	0	0	0	2,800	3774618	12
Cottonwood Rd Off Ramp to Cottonwood Rd On Ramp	3,560	3,445	97%	28	1	63	18	С	680	1666	27	1 1	1148	0	0	0	2,553	2931950	9
Cottonwood Rd On Ramp to SR58 east end of the network	3,870	3,739	97%	25	1	62	20	c	705	1631	26	1	1246	0	0	0	2,304	2871245	9

Year 2038 Build Alt. A - AM

Year 2038 Build Ait. A - AM									sov										
Freeway Segment	Demand	Served	% Served	Travel Time	Delay Time	Speed (MPH)	Density (veh/in/mi)	LOS (HCM 2000)	Cumulative Time	Veh - Miles (VMT)	Veh - Hours (VHT)	Veh - Delay	CORSIM Served Volumes/L ane (vphi)	Speed Ratio	Veh-Hours (40 MPH)	Veh-Delay (<40 MPH)	Length (ft)	Length*C ORSIM Served Volumes/L ane	Length*D nsity
	(vph)	(vph)		(sec/veh)	(Seciven)	(MPN)	(VOIDITUILI)	(HCM 2000)	(Socitori)	(0)	(1117)	(*****)	((****)	(/			
WSP WB Mainline													1700				0.404	4044480	13
SR58 east end of the network to Brundage Ln Off Ramp(Cottonwood Rd)	5,270	5,303	101%	26	1 1	63	28	D	26	2411	38	1 1	1768	0	0	0	2,401	4244168	1
Brundage Ln Off Ramp(Cottonwood Rd) to Brundage Ln On Ramp(Cottonwood Rd)	5,035	5,063	101%	18	1	62	27	D	44	1555	25	1	1688	0	0	0	1,622	2737341	8
Brundage Ln On Ramp(Cottonwood Rd) to Brundage Ln Off Ramp(Union Ave)	5,350	5,355	100%	44	7	56	33	D	88	3657	65	10	1785	0	0	°	3,491	6230970	21
Brundage Ln Off Ramp(Union Ave) to Brundage Ln On Ramp(Union Ave)	4,170	4,082	98%	17	1	61	22	C	105	1205	20	1	1361	0	\ °	0	1,558	2120023	7
Brundage Ln On(Union Ave) Ramp to Union Ave On Ramp	4,535	4,409	97%	12	1	61	24	C	117	904	15	1	1470	0	0	0	1,082	1590288	5
Union Ave On Ramp to Chester Ave Off Ramp	5,100	4,963	97%	23	1	61	20	С	140	1931	32	2	1418	0	0	0	2,060	2920923	8
Chester Ave Off Ramp to H St On Ramp	4,070	3,952	97%	38	2	62	21	C	178	2573	42	2	1317	0	0	0	3,439	4530481	14
H St On Ramp to SR 99 NB Off Ramp	4,705	4,612	98%	25	1	61	19	С	203	1920	32	2	1318	0	0	0	2,200	2899223	8
SR 99 NB Off Ramp to SR 99 SB Off Ramp	3,520	3,444	98%	21	1	61	19	С	224	1253	20	1	1148	0	0	0	1,923	2207828	7
SR 99 SB Off Ramp to SR 99 NB On Ramp	2,320	2,218	96%	24	1	62	18	В	248	913	15	1	1109	0	0	0	2,175	2411966	7
SR 99 NB On Ramp to Coffee Dr Off Ramp	3,820	3,753	98%	107	6	61	20	С	355	6842	111	6	1251	0	0	0	9,612	12026081	37
Coffee Dr Off Ramp to Mohawk St/Truxtun Ave On Ramp	1,870	1,843	99%	23	1	63	15	В	378	748	12	0	921	0	0	0	2,144	1975224	6
Mohawk St/Truxtun Ave On Ramp to Coffee Dr Loop On Ramp	4,030	3,966	98%	53	2	63	16	В	431	3688	59	2	991	0	0	0	4,911	4869011	15
Coffee Dr Loop On Ramp to Coffee Dr Direct On Ramp	4,180	4,101	98%	12	0	63	16	В	444	893	14	0	1025	0	0	0	1,150	1179066	4
Coffee Dr Direct On Ramp to Calloway Dr Direct Off Ramp	4,480	4,348	97%	48	2	62	17	В	492	3653	59	2	1087	0	0	0	4,423	4807536	14
Calloway Dr Direct Off Ramp to Calloway Dr Loop Off Ramp	3,830	3,689	96%	11	0	62	15	В	503	699	11	0	922	0		0	1,000	922175	3
Calloway Dr Loop Off Ramp to Calloway Dr On Ramp	2,920	2,800	96%	24		63	15	8	528	1197	19	1	933	0	0	0	2,258	2107730	6
Calloway Dr On Ramp to Allen Rd Off Ramp	3,420	3,287	96%	58	3	62	18	В	586	3270	53	3	1096	0		0	5,238	5739312	18
			96%	27		64	11	В	612	1016	16	0	723	0			2,473	1787155	5
Allen Rd Off Ramp to Allen Rd On Ramp	2,270	2,168	1	57	1		J		669	2460	39		831	0	0	0	5,215	4332332	13
Allen Rd On Ramp to West Beltway Off Ramp	2,620	2,492	95%		2	62	13		į.	433	7		545	0	0	0	2,099	1144060	3
West Beltway Off Ramp to West Beltway Loop On Ramp	1,120	1,090	97%	22	0	64	9	^	692	1	'	0	659	0		0	526	346608	1
West Beltway Loop On Ramp to West Beltway Direct On Ramp	1,440	1,318	92%	6	0	62	11	^	698	131	2	"	800	0	0		507	405625	;
West Beltway Direct On Ramp to WSP west end of the network	1,745	1,600	92%	6	0	60	13	В	703	154	3	0	800	U			307	400020	
SR99 NB C-D			,		,		1						1005				500	742000	2
Ming Ave On Ramp to SR99 NB C-D On Ramp	1,375	1,395	101%	8	1	43	24	C	8	140	3	0	1395	0	0	0	533	743668	1
SR99 NB C-D On Ramp to WSP C-D Off Ramp	2,500	2,543	102%	18	1 1	53	16	В	26	674	13	0	1017	0	0	0	1,400	1423996	4
WSP C-D Off Ramp to SR99 C-D Off Ramp	1,000	1,010	101%	31	2	51	20	С	57	442	9	1	1010	0	0	0	2,315	2339076	9
SR99 SB C-D							,												
SR58 WB C-D On Ramp to WSP C-D On Ramp	1,200	1,222	102%	8	1 1	42	29	D	8	117	3	0	1222	0) °	0	504	615661	3
WSP C-D On Ramp to SR99 SB C-D Off Ramp	2,525	2,526	100%	7	1	45	19	С	16	235	5	0	1263	0	0	0	492	621433	2
WSP EB C-D 1																,			,
Coffee Dr Loop On Ramp to Coffee Dr Direct On Ramp	915	928	101%	12	1	49	19	С	12	149	3	0	928	0	0	0	846	785469	3
Coffee Dr Direct On Ramp to WSP EB C-D Off Ramp	1,875	1,876	100%	62	2	53	18	В	73	1699	32	11	938	0	0	0	4,778	4482433	16
WSP EB C-D 2																			
WSP EB C-D On Ramp to Mohawk St Off Ramp	3,090	3,030	98%	· 28	1	52	23	С	28	1243	24	1	1212	0	0	0	2,161	2619175	9
Mohawk St Off Ramp to Mohawk St On Ramp	1,580	1,536	97%	26	1 1	54	14	В	55	600	11	0	768	0	0	0	2,064	1585152	6
Mohawk St On Ramp to Truxtun Ave Off Ramp	1,580	1,530	97%	33	1	50	15	В	87	700	14	0	765	0	0	0	2,440	1866936	7
WSP EB C-D 3	.,	.,																	
WSP EB C-D On Ramp to SR 99 SB Off Ramp	1,880	1,851	98%	6	0	52	15	В	6	151	3	0	926	0	0	0	432	399881	1
SR 99 SB Off Ramp to SR 99 SB C-D On Ramp	555	546	98%	26	1	47	7	A	32	184	4	0	546	0	0	0	1,780	971213	2
SR 99 SB C-D On Ramp to Ming Ave Off Ramp	1,490	1,468	99%	28	1	48	15	В	60	551	11	0	734	0	0	0	1,982	1455259	6
WSP WB C-D																1	4 000	E4 4000	
Fruxtun Ave On Ramp to Mohawk St Loop On Ramp	800	780	98%	14	0	64	6	^	14	195	3 5	0	390 635	0	0	0	1,320 1,300	514998 825533	3
Mohawk St Loop On Ramp to Mohawk St Direct On Ramp Mohawk St Direct On Ramp to WSP WB Off Ramp	1,305 2,160	1,270 2,127	97% 98%	14 17	1 1	62 61	10	A B	28 45	314 604	10	1 1	1063	0	0	0	1,500	1595100	1
MODERN OF PRIOR OF REITH IN WAS ARE OF LEATH	2,100	2,121	9070	ı ''	, '	91	I "	1	1 ~	1 304	1		1					•	•

Year 2038 Build Alt. A - PM

Year 2038 Build Alt. A - PM									sov										
Freeway Segment	Demand	Served	% Served	Travel Time	Delay Time	Speed	Density	LOS	Cumulative Time	Veh - Miles	Veh - Hours	Veh - Delay	CORSIM Served Volumes/L ane	Speed Ratio	Veh-Hours (40 MPH)	Veh-Delay (<40 MPH)	Length	Length*C ORSIM Served Volumes/L	Length*D
	(vph)	(vph)		(sec/veh)	(sec/veh)	(MPH)	(veh/ln/mi)	(HCM 2000)	(sec/veh)	(VMT)	(VHT)	(VHD)	(vphi)	40	(VHT)	(VHD)	(ft)	ane	5280
SR-99 NB Mainline													4004			0	4.848	7725057	24
SR-99 NB south end of the network to White Ln Off Ramp	6,655	6,657	100%	51	2	62	27	D	51	5839	94	2	1664	0	0	0	4,648 1,768	7735957 2460216	8
White Ln Off Ramp to White Ln Loop On Ramp	5,575	5,566	100%	20	1 1	62	23	C	70	1864	30 14	3	1392 1672	0	0	0	555	927683	3
White Ln Loop On Ramp to White Ln Direct On Ramp	7,230	6,686	92%	,	2	51	33	D D	78 161	703 9530	172	24	1479	0	0	0	6,844	10121728	40
White Ln Direct On Ramp to Ming Ave Off Ramp	7,915 7,065	7,395 6,781	93%	84 13	12	56 53	26	c	175	1310	25	4	1356	0	0	0	1,009	1368426	5
Ming Ave Off Ramp to C-D (SR58 WB) Off Ramp SR58 WB Off Ramp to SR58 EB Off Ramp	5,935	5,456	92%	27	2	60	21	c	202	2484	42	3	1212	0	0	0	2,414	2926760	9
SR58 EB Off Ramp to Ming Ave On Ramp	4,270	4,065	95%	25	1	63	16	В	227	1765	28	1	1016	0	0	o	2,292	2329474	7
Ming Ave On Ramp to SR 58 On Ramp	5,120	4,836	94%	8	0	61	20	С	234	619	10	1	1209	0	0	0	676	817301	3
SR 58 On Ramp to California Off Ramp	6,240	6,016	96%	39	3	60	24	С	273	3897	65	5	1504	0	0	0	3,410	5128299	16
California Off Ramp to California Ave Loop On Ramp	5,530	5,308	96%	16	1 1	62	21	С	290	1499	24	1	1327	0	0	0	1,491	1978557	6
California Ave Loop On Ramp to California Ave Direct On Ramp	6,905	6,108	88%	9	1 1	57	27	D	299	911	16	2	1527	0	0	0	785	1198675	4
California Ave Direct On Ramp to Rosedale Hwy Off Ramp	7,805	6,598	85%	36	6	53	30	D	335	3459	66	11	1466	0	0	0	2,800	4105464	16
Rosedale Hwy Off Ramp to Buck Owens/Silled Ave Off Ramp	6,005	5,209	87%	16	1	62	21	С	352	1480	24	1	1302	0	0	0	1,500	1953375	6
Buck Owens Blvd/Sillect Ave Off Ramp to Buck Owens Blvd/Sillect Ave On Ramp	5,605	4,859	87%	24	1	63	19	С	375	2019	32	1	1215	0	0	0	2,194	2664942	8
Buck Owens Blvd/Sillect Ave On Ramp to Airport Dr Off Ramp	6,395	5,618	88%	34	3	60	24	С	410	3193	53	4	1404	0	0	0	3,000	4213313	13
Airport Dr Off Ramp to SR99 NB north end of the network	5,030	4,446	88%	41	2	62	18	В	450	3140	50	2 .	1112	0	0	0	3,726	4141868	13
SR-99 SB Mainline																			
SR99 SB north end of the network to Airport Dr On Ramp	4,735	4,758	100%	48	1 1	63	19	С	48	4062	64	2	1189	0	0	0	4,498	5350146	16
Airport Dr On Ramp to Rosedale Hwy Off Ramp	6,805	6,904	101%	35	6	55	30	D	84	3763	68	11	1534	0	0	0	2,800	4296050	16
Rosedale Hwy Off Ramp to Rosedale Hwy Loop On Ramp	5,495	5,664	103%	26	2	60	24	C -	110	2438	41	3	1416	0	0	0	2,271	3215793 1386240	10 6
Rosedale Hwy Loop On Ramp to Rosedale Hwy Direct On Ramp	6,870	6,931	101%	13	5	42	36	E .	123	1059	25	9	1733	0	0	0	800 3,200	6520453	31
Rosedale Hwy Direct On Ramp to California Ave Off Ramp	8,210	8,151	99%	54	20	40	51	,	177	4868	122	45	2038 1611	,	122	0	1,229	1979305	6
California Ave Off Ramp to California Ave On Ramp	6,555	6,442	98%	14	'	60	27	D D	191 220	1500 3329	25 58	6	1800	0		0	2,433	4380434	14
California Ave On Ramp to SR58 EB Off Ramp	7,495	7,202	96% 96%	29	3 2	58 61	30	c	248	2820	46	2	1454	۰		0	2,561	3722542	12
SR58 EB Off Ramp to Ming Ave Off Ramp	6,055 4,850	5,814 4,617	95%	28	1 1	62	24 18	c	270	1758	28	1	1154	0	0	0	2,012	2322502	7
Ming Ave Off Ramp to SR58 WB On Ramp SR58 WB On Ramp to Ming Ave On Ramp	7,590	7,109	94%	67	17	49	28	D	337	6495	131	33	1580	0	0	0	4,715	7448338	25
Ming Ave On Ramp to White Ln Off Ramp	8,435	7,514	89%	115	57	34	56	F	452	8095	240	120	1878	. 1	202	37	5,403	10148961	57
White Ln Off Ramp to White Ln Loop On Ramp	6,365	5,629	88%	20	1 1	61	23	С	471	1887	31	2	1251	0	o	0	1,770	2213955	8
White Ln Loop On Ramp to White Ln Direct On Ramp	6,915	6,129	89%	10	1	61	25	С	481	1038	17	1	1532	0	0	o	894	1369876	4
White Ln Direct On Ramp to SR99 SB south end of the network	7,560	6,506	86%	53	3	61	27	D	534	5879	96	5	1627	0	0	0	4,777	7769791	24
WSP EB Mainline																			
WSP west end of the network to West Beltway Off Ramp	2,220	2,217	100%	7	2	44	25	С	7	181	4	1	1109	0	0	0	431	477764	2
West Beltway Off Ramp to West Beltway Loop On Ramp	1,350	1,267	94%	14	1	60	11	A	21	297	5	0	634	0	0	0	1,239	784907	2
West Beltway Loop On Ramp to West Beltway Direct On Ramp	2,690	2,586	96%	9	1 1	61	14	В	30	404	7	0	862	0	0	0	824	710398	2
West Beltway Direct On Ramp to Allen Rd Off Ramp	2,965	2,835	96%	57	2	63	15	В	87	2788	44	1 1	945	0	0	0	5,195	4908640	15
Allen Rd Off Ramp to Allen Rd On Ramp	2,655	2,543	96%	32	1	63	13	В	119	1448	23	1	848	0	0	0	3,006	2547986	8
Allen Rd On Ramp to Calloway Dr Off Ramp	4,530	4,351	96%	60	4	61	24	С	179	4423	73	5	1450	0	0	0	5,338	7741310	24
Calloway Dr Off Ramp to Calloway Dr Loop On Ramp	3,730	3,606	97%	25	1 1	63	19	С	204	1563	25	1	1202	0	0	0	2,288	2750481	8
Calloway Dr Loop On Ramp to Calloway Dr Direct On Ramp	4,770	4,558	96%	12	1 1	58	26	D	216	863	15	1 1	1519	0	0	0	1,000	1519333	5
Calloway Dr Direct On Ramp to Coffee Dr Off Ramp	5,880	5,703	97%	50	4	60	31	D	266	4776	79	6	1901	0	0	0	4,373 5.275	8313685	25
Coffee Dr Off Ramp to Truxtun Ave/Mohewk St Off Ramp	5,055	4,869	96%	58	3	62	21	C	324	4857	79	3	1391	0	0	0	5,275 2 045	7338365	21
Truxtun Ave Off Ramp to Coffee Dr On Ramps	2,355	2,296	97%	32	1 1	63	18	C	356	1280	20	8	1148	0	0	0	2,945 9,938	3380212 14700041	10 45
Coffee Dr On Ramps to SR99 SB & Ming Ave C-D Off Ramp	4,525	4,438	98%	111	7	61	24	c c	467 490	917	137 15	1	1154	0			2,098	2421617	7
SR99 SB Off Ramp(and C-D Ming Ave) to H St Off Ramp	2,355 2,047	2,309 1,986	98% 97%	23 30		62 63	19 16	, a	521	1053	17	'	993	0	0	0	2,802	2781931	8
H St Off Ramp to SR 99 NB&SB On Ramp	4,745	4,275	90%	49	6	58	16	В	570	3357	58	7	1221	0	0	0	4,076	4978630	12
SR99 NB&SB On Ramp to Chester Ave On Ramp	5,935	5,410	91%	28	2	60	23	c	598	2487	42	3	1546	0	0	0	2,419	3739037	10
Chester Ave On Ramp to Union Ave Off Ramp Union Ave Off Ramp to Union Ave Loop On Ramp	6,935 64910	4,517	91%	28 17	1	62	24	c	614	1312	21	1	1506	0	0	0	1,533	2308289	7
Union Ave On Ramp to Union Ave Loop On Ramp Union Ave Loop On Ramp to Union Ave Direct On Ramp	5,575	5,086	91%	9		59	29	D	623	712	12	1	1695	0	0	0	739	1252851	4
Union Ave Loop on Ramp to Union Ave Direct On Ramp Union Ave Direct On Ramp to Cottonwood Rd Off Ramp	6,150	5,727	93%	32	3	59	32	D	655	3047	51	4	1909	0	0	0	2,800	5345387	17
CHOILETTO DIEGO OIL THEIRP TO CONCENTION THE CITY	-,	,	1		1 1		1	I	1	1 1		1		l	I	l		1 1	13
Cottonwood Rd Off Ramp to Cottonwood Rd On Ramp	5,245	4,893	93%	, 28	1 1	62	26	D	683	2366	38	2	1631	0	0	0	2,553	4163603	13

Year 2038 Build Alt. A - PM

									sov										
Freeway Segment	Demand	Served	% Served	Travel Time	Delay Time	Speed	Density	LOS	Cumulative Time	Veh - Miles	Veh - Hours	Veh - Delay	CORSIM Served Volumes/L ane	Speed Ratio	Veh-Hours (40 MPH)	Veh-Delay (<40 MPH)	Length	Length*C ORSIM Served Volumes/L	nsity
	(vph)	(vph)		(sec/veh)	(sec/veh)	(MPH)	(veh/ln/mi)	(HCM 2000)	(sec/veh)	(VMT)	(VHT)	(VHD)	(vphi)	40	(VHT)	(VHD)	(ft)	ane	5280
WSP WB Mainline																			
SR58 east end of the network to Brundage Ln Off Ramp(Cottonwood Rd)	5,030	5,064	101%	26	1	63	27	D	26	2302	37	1	1688	0	0	0	2,401	4052568	12
Brundage Ln Off Ramp(Cottonwood Rd) to Brundage Ln On Ramp(Cottonwood Rd)	4,725	4,717	100%	18	1 1	62	25	c	44	1449	23	1	1572	0	0	0	1,622	2550541	8
Brundage Ln On Ramp(Cottonwood Rd) to Brundage Ln Off Ramp(Union Ave)	5,255	5,219	99%	39	3	60	29	D	83	3451	57	4	1740	0	0	0	3,491	6073331	19
Brundage Ln Off Ramp(Union Ave) to Brundage Ln On Ramp(Union Ave)	4,265	4,222	99%	17	1	62	23	c	101	1246	20	1	1407		0	0	1,558	2192677	7
Brundage Ln On(Union Ave) Ramp to Union Ave On Ramp	4,625	4,545	98%	12	1	60	25	c	113	931	15	1	1515				1,082	1639194	5
Union Ave On Ramp to Chester Ave Off Ramp	5,395	5,323	99%	23		60	22	c	136	2071	34	2	1521	0			2,060	3133044	9
Chester Ave Off Ramp to H St On Ramp	4,280	4,249	1	38		Į	1		1	i	45	2	1416	0	0	0	3,439	4870254	15
H St On Ramp to SR 99 NB Off Ramp	1	1	99%		2	62	23	C	174	2767		1	1		0		2,200	3080482	8
SR 99 NB Off Ramp to SR 99 SB Off Ramp	4,940	4,901	99%	25	2	60	20	C	199	2041	34	2	1400	1	0	0	1,923	2432403	8
	3,820	3,795	99%	21	1	61	21	С	220	1379	23	1 1	1265	0		1		2807338	"
SR 99 SB Off Ramp to SR 99 NB On Ramp	2,595	2,581	99%	24	1	62	21	С	244	1063	17	1	1291	0	0	0	2,175	1	40
SR 99 NB On Ramp to Coffee Dr Off Ramp	4,225	4,290	102%	108	7	61	23	C	352	7819	128	8	1430	0	0	0	9,612	13744546	ı
Coffee Dr Off Ramp to Mohawk St/Truxtun Ave On Ramp	2,650	2,686	101%	24	1	62	22	С	375	1091	18	1	1343	0	0	0	2,144	2878899	9
Mohawk St/Truxtun Ave On Ramp to Coffee Dr Loop On Ramp	6,430	6,355	99%	54	2	62	26	С	429	5911	95	4	1589	0	0	0	4,911	7801942	24
Coffee Dr Loop On Ramp to Coffee Dr Direct On Ramp	6,670	6,556	98%	13	1	61	27	D	442	1428	23	1	1639	0	0	0	1,150	1884922	6
Coffee Dr Direct On Ramp to Calloway Dr Direct Off Ramp	7,220	7,073	98%	50	4	60	29	D	493	5967	99	7	1768	0	0	0	4,423	7821257	24
Calloway Dr Direct Off Ramp to Calloway Dr Loop Off Ramp	6,225	6,091	98%	11	1	61	25	С	504	1154	19	1	1523	0	0	0	1,000	1522675	5
Calloway Dr Loop Off Ramp to Calloway Dr On Ramp	4,875	4,764	98%	25	1	62	26	С	529	2037	33	2	1588	0	0	0	2,258	3585704	11
Calloway Dr On Ramp to Allen Rd Off Ramp	5,755	5,589	97%	63	8	58	32	D	591	5615	97	12	1863	0	0	0	5,238	9757696	32
Allen Rd Off Ramp to Allen Rd On Ramp	3,525	3,454	98%	27	1	63	18	С	618	1618	26	1	1151	0	0	0	2,473	2847289	9
Allen Rd On Ramp to West Beltway Off Ramp	3,895	3,792	97%	58	3	61	21	С	676	3747	61	3	1264	0	0	0	5,215	6592455	20
West Beltway Off Ramp to West Beltway Loop On Ramp	1,510	1,468	97%	23		63	12	В	699	583	9	0	734	0		0	2,099	1540246	5
West Beltway Loop On Ramp to West Beltway Direct On Ramp	1,935	1,842	95%	6		61	15	В	705	184	3	0	921	0	0	0	526	484525	1
West Beltway Direct On Ramp to WSP west end of the network	2,280	2,184	96%	6		59	19	c	711	210	4	0	1092			0	507	553619	2
SR99 NB C-D	2,200	2,104	0070	_		30	10			210									
Ming Ave On Ramp to SR99 NB C-D On Ramp	1,350	4.207	99%							404	3	0	1337	0	0	0	533	712594	2
SR99 NB C-D On Ramp to WSP C-D Off Ramp	1	1,337	1	8	1	44	23	C	8	134			1021	0		0	1,400	1429708	1
·	2,480	2,553	103%	18	1 1	53	16	В	26	677	13	0	1		1		2,315	1958027	1
WSP C-D Off Ramp to the end of C-D network	850	846	100%	30	2	52	16	В	57	370	7	0	846	0	0	0	2,310	1800027	
SR99 SB C-D												,						244004	
SR58 WB C-D On Ramp to WSP C-D On Ramp	1,225	1,213	99%	8	1	42	29	D	8	116	3	0	1213	0	0	0	504	611201	3
WSP C-D On Ramp to SR99 SB C-D On Ramp	2,740	2,662	97%	8	1	42	21	С	16	251	6	1	1331	0	0	0	492	654729	2
WSP EB C-D 1																		,	·
Coffee Dr Loop On Ramp to Coffee Dr Direct On Ramp	1,100	1,106	101%	12	1	49	23	С	12	178	4	0	1106	0	0	0	846	935507	4
Coffee Dr Direct On Ramp to WSP EB C-D Off Ramp	2,170	2,155	99%	62	2	53	20	С	74	1952	37	1	1078	0	0	0	4,778	5148916	18
WSP EB C-D 2																			
WSP EB C-D On Ramp to Mohawk St Off Ramp	2,700	2,608	97%	28	1	53	20	С	28	1070	20	1	1043	0	0	0	2,161	2254744	8
Mohawk St Off Ramp to Mohawk St On Ramp	1,300	1,250	96%	26	1	54	12	В	54	489	9	0	625	0	0	0	2,064	1289794	5
Nohawk St On Ramp to Truxtun Ave Off Ramp	1,300	1,247	96%	33	1	51	12	В	87	571	11	0	624	0	0	0	2,440	1521371	6
WSP EB C-D 3																			
WSP EB C-D On Ramp to SR 99 SB Off Ramp	2,170	2,107	97%	6	0	51	17	В	6	173	3	0	1053	0	0	0	432	455069	1
SR 99 SB Off Ramp to SR 99 SB C-D On Ramp	655	626	96%	26	1	47	8	A	32	212	5	0	626	0	0	0	1,780	1114948	
R 99 SB C-D On Ramp to Ming Ave Off Ramp	1,860	1,805	97%	34	7	44	23	С	66	756	17	4	903	0	0	0	1,982	1788953	9
VSP WB C-D																,		,	,
nuxtun Ave On Ramp to Mohawk St Loop On Ramp	1,710	1,653	97%	14	0	64	13	В	14	414	7	0	826	0	0	0	1,320	1090782	1
Iohawk St Loop On Ramp to Mohawk St Direct On Ramp	2,735	2,620	96%	15	1	60	22	C	29	648	11	1	1310	0	0	0	1,300 1,500	1703065 2753925	
Iohawk St Direct On Ramp to WSP WB Off Ramp	3,780	3,672	97%	17	2	59	25	С	46	1043	18	2	1836	0	1 0	1 0	1,500	2100025	1 '

SR-99 Traffic Operations - White Ln. to Airport Dr.

A M	PEAK	
AW	PEAN	

SR-99 NB																			Evil	Location														
			Name_		White Ln O	ff	I	Ming Ave O	ff		SR-58 WB	Off		SR-58 EB (Off	Ca	lifornia Ave	Off		sedale Hwy	Off	Buc	Owens Bl	vd Off		Airport Dr (Off	Г	SR-99 NE	3				
Entry Location	1		Node #		298			303			304			306			151			96			128			98			164					
me	Node #	Volume .		Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol%	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	e Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	,			 '
-99 NB	163	7075		1125	. 16	5950	798	11	5152	786	11	4365	877	12	3488	728	10	2761	865	12	1895	270	4	1626	566	8	1060	1060	15	0				
te Ln Loop On	533	1640			Х	1640	82	5	1558	238	15	1320	265	16	1055	220	13	835	262	16	573	82	5	492	171	10	321	321	20	0				
te Ln Direct On	299	695			X	695	35	. 5	660	101	15	559	112	16	447	93	. 13	354	111	16	243	35	5	208	72	10	136	136	20	0				
g Ave On	187	1000			X	1000		Х	1000		Х	1000		Х	1000	50	5	950	298	30	652	93	9	559	195	19	365	365	36	0	1	<u> </u>	1	
58 WB On	310	1185			X	1185		X	1185		Х	1185		X	1185	59	5	1126	353	30	773	110	9	663	231	19	432	432	36	0	1			
ifornia Ave Loop On	132	1050			X	1050		X	1050		X	1050		X	1050		X	1050	53	5	998	142	14	856	298	28	558	558	53	0				 '
ifornia Ave Direct On	130	480			X	480		X	480		Х	480		X	480		X	480	24	5	456	65	14	391	136	28	255	255	53	0				
k-Owens Blvd On	97	720			X	720		X	720		Х	720		X	720	1	X	720		×	720		X	720	72	10	648	648	90	0				
														-																				
				1125		***************************************	915		***************************************	1125			1255		-	1150			1965		<u> </u>	795		***************************************	1740			3775						

AM PEAK

SR-99 SB																																			
			Name	R	sedale Hwy	Off	1 0	alifornia Ave	Off	1	SR-58 EB	Off		Ming Ave C	ff		White Ln C	ff	Exit	Location SR-99 SB		T .						I							
Entry Location			Node #		102			105	, 011		313	,,,		314	"		322	"		95															
ame	Node #	Volume		Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol % N
R-99 SB	100	4035		1303	32	2733	930	23	1803	356	9	1447	326	8	1121	318	8	803	803	20	0														\vdash
rport Dr On	101	1450		73	5	1378	469	32	909	180	12	729	164	11	565	160	11	405	405	28	0									l	'		lacksquare		
osedale Hwy Loop On	103	1100			X	1100	55	5	1045	206	19	839	189	. 17	650	184	17	465	465	42	0						l				'	<u> </u>			\longrightarrow
osedale Hwy Direct On	104	835			X	835	42	5	793	157	. 19	637	143	17	493	140	17	353	353	42	0									1	'				
alifornia Ave On	137	560			X	560		X	560	56	10	504	113	20	391	111	20	280	280	50	0	1											L		\leftarrow
estside Pkwy EB/SR-58 WB On	555	2525			X	2525		X	2525		X	2525		X	2525	717	28	1808	1808	72	. 0	1									'				
ing Ave On	318	785			Х	785		.X.	785		Х	785		Х	785	39	5	746	746	95	0											<u>'</u> ــــــــــــــــــــــــــــــــــــ	1		
hite Ln Loop On	323	260			X	260		X	260		Х	260		Х	260		Х	260	260	100	0	1.													
hite Ln Direct On	324	445	7		X	445		X	445		Х	445		X	445		X	445	445	100	0														
																											I								
				1375			1495		-	955		***************************************	935			1670			5565			100 100 10						18 7 18 11 11						155 (XII) 5.	

Westside Parkway/SR-58 Traffic Operations - West Beltway to Cottonwood Rd.

AM PEAK

WSP/SR-58	:В		l																																	
			l																Exit	Location																
			Name	We	est Beltwa	v Off		Allen Rd (Off	T 0	alloway Dr	Off		Coffee Rd (Off	Mohav	k St/Truxtu	n Ave Off		9 SB/Ming	Ave Off		H St Off	f		Jnion Ave (Off	Co	ttonwood R	d Off		SR-58 EB	3			
Entry Location			Node #		569		l	574		581 589		596			613		ļ	617			375			385			169									
18		≠ Volume		Volume		New Volume	Volume		New Volume	Volume		New Volume	Volume		New Volume	Volume	T	New Volum	e Volume		New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volum	Volume	Vol %	Ne
tside Pkwy EB		2230		745	33	1485	289	13	1196		S81 S89 S89	18	249	123	6	126	18	1	108	30	1	78	13	1	65	65	3	0								
Beltway Loop On	570				X	1525	76	5	1449	427	28			16			32	302	149	10	153	22	1	131	36	2	94	16	1	78	78	5	0	T		
Beltway Direct On	571				×	290	15	5	276	121			45	16		702	32	57	28	10	29	4	1	25	7	2	18	3	1	15	15	5	0			
Rd On		2000			×	2000	10	Y	2000	100	5			22			45	562	277	14	284	42	2	243	68	3	175	30	1	146	146	7	0		1	
oway Dr Loop On	583				- X	940		Ŷ	940	100	V			5			58	344	170	18	174	25	3	149	41	4	107	18	2	89	89	9	0			\top
oway Dr Direct On	584				- Ŷ	1150		l ÷	1150	 	- ÷			5			58	421	208	18	213	31	3	182	51	4	131	22	2	109	109	9	0		1	
ee Rd Loop/Direct On	601				- Ŷ	1875		₩ ÷	1875		-		- 38	- v		072		1875	925	49	950	139	7	811	226	12	585	99	5	486	486	26	0			\top
99 NB&SB On	369				- Ŷ	1887		Ŷ	1887		Ŷ			l û	1070		l · · ·	1887	923	- 40 - X	1887	100	×	1887	525	28	1362	231	12	1131	1131	60	0			\top
ster Ave On	372				- Ŷ	1025		Ŷ	1025		-		-	- ÷			l v	1025		X	1025		×	1025	51	5	974	165	16	809	809	79	0			
n Ave Loop On		340			- ·	340		l ÷	340		- 			l û		———	 	340		X	340		Y.	340		×	340	17	- 5	323	323	95	0	T		
n Ave Direct On	377		-		~ ^	325		- ÷	325		 			-			 	325		×	325		×	325		×	325	16	5	309	309	95	0			
onwood Rd	386				-	310			310		 	310		 	310		 	310		×	310		Ŷ	310		×	310	100	X	310	310	100	0	1		
inou i i	1 300	310				1 310		1	1 310		 ^ 	310			1 310	 	1	310			1 310			1 310					1	1	1	1		1		
,				745			380			960	<u> </u>		1025			3090			1880	L		282			1035			630			3870			2,1273317703		

WSP/SR-58 WE	3																																		
			Name	Brundage I	n Off (Call	lenuned Pd\	I Brundage	- I n Off /	Inion Aug)	1 0	haataa A	0#	1	SR-99 NB (24	· · · · · · · · · · · · · · · · · · ·	SR-99 SB O			Location Coffee Rd C	и	Calle	way Dr Dire	not Off	Callo	way Dr Loc	on Off	1	Allen Rd O	ff	- W	est Beltway	Off	Wes	stside Pkwy W
Entry Location			Node #	Di undage i	404	390 395									זונ	1	3K-99 3D U	/II		27	""	Callo	eay Dr Dille	oct OII	Callo	62 62	op On		60	"	1	74			77
	Node #	Volume		Volume		New Volume	Volume		I Name Value	Volume	Vol %	New Volume	Volume	399 Vol %	New Volum	Volume	Vol %	New Volume	Volume		New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %
58 WB		5270		235	4	5035	1164	22	3871	855	16	3016	760	14	2256	769	15	1487	759	14	728	113	2	615	160	3	454	175	3	279	182	3	97	97	2
dage Ln On (Cottonwood Rd)	387			200	X	315	16	5	299	66	21	233	59	10	174	59	19	115	59	19	56	0	3	48	12	4	35	14	4	22	14	4	7	7	2
dage Ln On (Union Ave)		365			Ŷ	365	10	<u>v</u>	365	81	22	284	72	20	213	73	20	140	72	20	69	11	3	58	15	4	43	17	5	26	17	5	9	9	3
Ave On		565			X	565			565	28	5	537	135	24	402	137	24	265	135	24	130	20	4	109	29	5	81	31	6	50	32	6	17	17	3
on	397				X	635			635		×	635	160	25	475	162	26	313	160	25	153	24	4	129	34	5	96	37	6	59	38	6	20	20	3
9 NB On	15	1500			X	1500		×	1500	†	X	1500	1	X	1500	102	X	1500	766	51	734	114	8	620	162	11	458	177	12	282	184	12	98	98	7
awk St & Truxtun Ave On	32	2160			X	2160		X	2160		X	2160		X	2160		X	2160		X	2160	336	16	1824	476	.22	1348	519	24	829	541	25	287	287	13
fee Rd Loop On	54	150			X	150		X	150		X	150		X	150		X	150		X	150	8	5	143	8	5	135	52	35	83	54	36	29	29	19
fee Rd Direct On	56	300			X	300		X	300		×	300		X	300		X	300		X	300	15	5	285	15	. 5	270	104	35	166	108	36	58	58	19
oway Dr On	64	500			Х	500		X	500		×	500		×	500		X	500		Х	500		X	500		X	500	25	5	475	310	62	165	165	33
n Rd On	71	350			X	350		X	350		Х	350		X	350		X	350		X	350		X	350		X	350		X	350	18	5	333	333	95
st Beltway Loop On	75	320			X	320		X	320		Х	320		X	320		X	320		Х	320		X	320		X	320		X	320		X	320	320	100
t Beltway Direct On	76	305			X	305		X	305		X	305		X	305		X	305		Х	305		X	305		X	305		X	305		X	305	305	100
									1				1														1	1150			1500			1745	

SR-99 Traffic Operations - White Ln. to Airport Dr.

SR-99 NE	3																																		
5.1. 55 M2																			Exit	Location															
Entry Locatio			Name		White Ln (Off		Ming Ave	Off		SR-58 WB	Off		SR-58 EB (Off	Ca	ilifornia Ave	Off	Re	sedale Hwy	Off	Buck	c Owens B	lvd Off	/	Airport Dr C	Off		SR-99 N	В					
ame			Node #		298		-	303			304			306			151			96			128			98			164						
		# Volume		Volume		New Volume		Vol %	New Volum		Vol%	New Volum	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume					\rightarrow
R-99 NB		6655	_	1080	16	5575	733	11	4842	774	12	4068	1141	17	2926	419	6	2507	765	. 11	1743	116	2	1627	373	6	1253	1253	19	0					
/hite Ln Loop On		1655			X	1655	83	5	1572	251	15	1321	371	22	950	136	8	814	248	15	566	38	2	528	121	7	407	407	25	. 0					
hite Ln Direct On	299				X	685	34	5	651	104	15	547	153	22	393	56	8	337	103	15	234	16	2	219	50	7	168	168	25	0					
ling Ave On		850			X	850		X	850		X	850		Х	850	43	- 5	808	246	29	561	37	4	524	120	14	404	404	47	0					
R-58 WB On	310	1120			X	1120		X	1120		Х	1120		Х	1120	56	5	1064	324	29	740	49	4	690	158	14	532	532	47	0					$\overline{}$
alifornia Ave Loop On	132	1375			Х	1375		X	1375		X	1375		Х	1375		X	1375	69	5	1306	87	6	1219	280	20	939	939	68	0					
alifornia Ave Direct On	130	900			X	900		X	900		Х	900		X	900		X	900	45	5	855	57	- 6	798	183	20	615	615	68	0			-		
uck-Owens Blvd On	97	790			X	790		X	790		X	790		X	790		Y	790	-10	v	790		Y	790	70	10	711	711	90	0			1		
												-			1		_^_	700			700			700	1				- 00				1		
				1080			850	ii ii	***************************************	1130			1665			710			1800			400			1365			5030		· L	- 350			W.F	
eck				1080			850)		1130			1665			710			1800			400			1365			5030			(0	
				0			()		0	1					0			0			0			0			0000						0	

PM PEAK

FINIFEAN			T																																	
SR-99 SB																																				
			Name	D-	adala II.	-0"				_								_	Exit	Location_															_	
F-4-1			-	l Ro	sedale Hwy	Off	C	alifornia Ave	e Off	1 '	SR-58 EB (Off	1	Ming Ave C	lff .		White Ln C	ff	1	SR-99 SE	3	1														
Entry Location			Node #		102	_		105			313			314			322			95																_
		Volume	+	Volume		New Volume			New Volume		_	New Volume	-	Vol %	New Volume	Volume	Vol.%	New Volume	Volume	Vol %	New Volum	e Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	Nr.
R-99 SB		4735		1207	25	3529	976	21	2553	524	11	2029	404	9	1625	434	9	1191	1191	25	0															\bot
port Dr On		2070		104	5	1967	544	26	1423	292	-14	1131	225	11	906	242	12	664	664	32	0															
sedale Hwy Loop On	103	1375			X	1375	69	5	1306	268	20	1038	207	15	831	222	16	609	609	44	0															1
sedale Hwy Direct On	104	1340			X	1340	67	5	1273	261	20	1012	201	15	810	216	16	594	594	44	0	1								1						Т
lifornia Ave On	137	940			X	940		Х	940	. 94	10	846	168	18	678	181	19	497	497	53	0															Т
estside Pkwy EB/SR-58 WB On	555	2740			X	2740		X	2740		Х	2740		X	2740	732	27	2008	2008	73	0	1												***************************************		\top
ng Ave On	318	845	1		Х	845		X	845		X	845		X	845	42	5	803	803	95	0															+
hite Ln Loop On	323	550			Х	550		Х	550		X	550		X	550		v	550	550	100	1 0	+								-						+
hite Ln Direct On	324	645			X	645		X	645		X	645		Y	645		V	645	645	100	1 0	_									_					+
									1 10			040		<u> </u>	040		^-	040	040	100	+	+														+
		-		1310			1655			1440			1205			2070			7560						1. 18.00			ARTING NO.			100,000			100000		_
													1200			20/0			1000																	

Westside Parkway/SR-58 Traffic Operations - West Beltway to Cottonwood Rd.

PM PEAK

WSP/SR-58 E	В																																			
			Name	w	est Beltwa	v Off		Allen Rd C	Aff		Calloway Dr	0#		0-# D10	N#		0.5			Location			110101				2//			10"		00.50.51				
Entry Location			Node #		569	y On		574	/11	١ ٢	581	Oli	l '	Coffee Rd C 589	л	Monaw	St/Truxtun	Ave Off	SR-9	9 SB/Ming A	Ave Off		H St Off 617		١ '	Union Ave (375	Эπ	"	ottonwood R 385	α Οπ	1	SR-58 EB 169				
me		# Volume	140do #	Volume		New Volume	Volume	Vol %	New Volume	Volume		New Volume	Volume		New Volume	Volume	596 Vol %		Volume	613 Vol %		Volume		1	Volume		New Volume	Volume		New Volume	Volume		New Volume	Volume	Vol %	Name
estside Pkwy EB	568			870	39	1350	229	10	1121	298	13	823	158	7	664	355	16	New Volume 310	148	701 %	New Volume 161	Volume	VOI 76	New Volume 140	voiume	VOI 76	112	volume	VOI 76	92	92	4	New volume	Volume	VOI 76	14dw A
st Beltway Loop On	570	1340			X	1340	67	5	1273	339	25	934	180	13	755	403	30	352	169	13	183	24		159	20	2	127	22	2	105	105	8	0			+-
ast Beltway Direct On	571	275			Х	275	14	5	261	69	25	192	37	13	155	83	30	72	35	13	38	5	2	33	7	2	26	4	2	22	22	8	0			+-
en Rd On	576	1875			X	1875		X	1875	94	5	1781	343	18	1439	768	41	670	321	17	349	46	2	303	62	3	241	41	2	200	200	11	n			+
lloway Dr Loop On	583	1040			X	1040		X	1040		X	1040	52	5	988	528	51	460	221	21	240	31	3	208	42	4	166	28	3	137	137	13	0			+
lloway Dr Direct On	584	1110			X	1110		X	1110		X	1110	56	5	1055	563	51	491	236	21	256	33	3	222	45	4	177	30	3	147	147	13	0			_
ffee Rd Loop/Direct On	601	2170			Х	2170		X	2170		Х	2170		X	2170		X	2170	1041	48	1129	148	7	982	200	9	782	134	6	648	648	30	0			_
-99 NB&SB On		2698			X	2698		Х	2698		Х	2698		X	2698		X	2698		X	2698		X	2698	549	20	2149	369	14	1780	1780	66	0			\top
ester Ave On	372	1190			X	1190		Х	1190		X	1190		Х	1190		X	1190		X	1190		X	1190	60	5	1131	194	16	936	936	79	0			T
on Ave Loop On		665			X	665		Х	665		X	665		X	665		Х	665		X	665		X	665		X	665	33	5	632	632	95	0			\top
on Ave Direct On	377				Χ	575		Х	575		Х	575		X	575		X	575		X	575		X	575		Х	575	29	5	546	546	95	0			
tonwood Rd	386	300			. X	300		Х	300		X	300		Х	300		X	300		X	300		X	300		Х	300		X	300	300	100	0			1
				870			310			800			825			2700			2170		1	308			1025			905			5545			981		

PM PEAK

-58 WB	WSP/SR-58 W	В																																			
Entry Location Note: # Volume Volume				Name	Brundage Ln	Off (Cott	tonwood Rd)	Brundag	e I n Off (I	Inion Ave)	1 0	hester Ave	Off T		P-00 NR O	#	T	D 00 00 0	<u> </u>			u	Calla	WOW Dr Dire	not Off	Caller	un Dr Loc	on Off		Allen Pd Of	4	10/4	est Baltway	0"	Wes	teide Pkun	WB
The Node # Volume Volum	Entry Location	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			- and go Li		tormood ridy	Dranaug	390	onion Ave)	`			•		"	·	40 40	П	١ ،		ш	Callo	way or one	SCI OII	Callo	way Dr Loc	pp On]			'	***	74	JII	VV 63	77	WD
R-SB WB 162 5030 305 6 4725 964 19 3762 876 17 2886 654 13 2232 716 14 1516 565 11 951 141 3 810 194 4 616 276 5 340 228 5 112 112 2 1142 2 1144			# Volume		Volume V		New Volume	Volume	Vol %	New Volume	Volume		New Volume	Volume		Man Volume	Volume	Vol. 9/	Naw Values	\/olume	Vol %	Namy	Volume	Val 94	Now Volume	Volume	Vol 94	New Volume	Volume		New Volume	Volume	Vol %	New Volume	Volume	Val %	New
undage In On (Coltonwood Rd) 387 530	-58 WB	162	5030		305	6												14						3			4			5			5			2	- Item
mdage In On (Union Ave) 391 380	undage Ln On (Cottonwood Rd)	387	530	-		X	530	27	5		117	22	_			- BECK	1.10	18						4				0.10	37	7	-	220	6		_	3	
ion Ave On 392 770 X 770 X 770 39 5 732 166 22 566 181 24 384 143 19 241 36 5 205 49 6 166 70 9 86 58 8 28 28 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	undage Ln On (Union Ave)	391	360			X	360		X	360	84	23	276	63	17		68	10		70		12.7	14	4		10	- 5	50	26	7	- 10	22	6	11	11	3	
Ston 397 660 X 660 X 660 X 660 X 660 X 660 150 23 510 164 25 347 129 20 217 32 5 185 44 7 141 63 10 78 52 8 26 26 4 -99NB On 15 1830 X 1630 X	ion Ave On	392	770			X	770		X			5						24			10	91	36		205	49		156	70	-			8	28		4	
Reg MB On 15 1830 X 1630 X 163	St on	397	660			X	660		X	660		X	-	150	23			25			10		32	5	2.00	44	7		63	10	78	52	8	26	26	4	
chawk \$1.6 Truxtun Ave On 32 3780 X 3780 562 15 3218 770 20 2448 1098 29 1350 906 24 444 444 12 5 168 169 169 169 169 169 169 169 169 169 169	R-99 NB On	15	1630			X	1630		X	1630		×		100	Y	0.10	104	V .					152	9		208	13			18	- ''	245	15	120	120	7	
fifee Rd Lop On 54 240 X	shawk St & Truxtun Ave On	32	3780			X	3780		X			×			Ŷ			- Ŷ		000	- 3/ V		102	15		200	10			10			24			12	
fife Rd Direct On 56 550 X 550	offee Rd Loop On	54	240			×	240		X			X			Y	240					- v	delication of the second		5		12	5		1000	E. C	1000					16	
Set Bellowy Loop On 75 425 X 4	offee Rd Direct On	56	550			×	550		X			X			Y			Ŷ					28	- 5	220	28	5	20.10	222				33	90			
en Rd On 71 370 X	illoway Dr On	64	880			X	880		X			X			X			~ ^ ·			Ŷ		20	<u>y</u>		20	×			5		100					$\overline{}$
Set Beltway Loop On 75 425 X 425 D X 4	en Rd On	. 71	370			×	370		X	370		X			X			Ŷ			~~~			- Ŷ			- X			¥			5			95	
1 P. H. D. 1 P. L. D.	est Beltway Loop On	75	425			X	425		X	425		X	-		Y			Ŷ			-			~~~~				425		Y		10	×			-	$\overline{}$
	est Beltway Direct On	76	345			Х	345		×			X			X		J	X			X			×			X	720		X			X				

Year 2018 Build Alt. A - AM

									sov										
Freeway Segment	Demand	Served	% Served	Travel Time	Delay Time	Speed	Density	LOS	Cumulative Time	Veh - Miles	Veh - Hours	Veh - Delay	CORSIM Served Volumes/L ane	Speed Ratio	Veh-Hours (40 MPH)	Veh-Delay (<40 MPH)	Length	Length*C ORSIM Served Volumes/L	Length*E
	(vph)	(vph)		(sec/veh)	(sec/veh)	· (MPH)	(veh/ln/mi)	(HCM 2000)	(sec/veh)	(VMT)	(VHT)	(VHD)	(vphi)	40	(VHT)	(VHD)	(ft)	ane	5280
SR-99 NB Mainline										,		,			,				
SR-99 NB south end of the network to White Ln Off Ramp	5,070	5,082	100%	50	1 1	63	20	С	50	4462	71	2	1271	0	0		4,648	5905284	18
White Ln Off Ramp to White Ln Loop On Ramp	4,390	4,400	100%	19	1 1	63	18	В	69	1473	24] 1	1100	0	0	0	1,768	1944800	6
White Ln Loop On Ramp to White Ln Direct On Ramp	6,020	5,845	97%	7	1 1	53	28	D	77	614	12	2	1461	0	0	0	555	810994	3
White Ln Direct On Ramp to Ming Ave Off Ramp	6,724	6,623	99%	77	5	60	25	С	154	8566	142	9	1325	0	0	0	6,844	9065905	33
Ming Ave Off Ramp to C-D (SR58 WB) Off Ramp	5,985	6,100	102%	11	1	61	20	С	165	1166	19	1	1220	0	0	0	1,009	1230980	4
SR58 WB Off Ramp to SR58 EB Off Ramp	5,140	5,185	101%	27	1 1	61	19	С	192	2362	39	2	1152	0	0	0	2,414	2781196	9
SR58 EB Off Ramp to Ming Ave On Ramp	4,114	4,204	102%	25	1 1	63	17	В	217	1824	29	1	1051	0	0	0	2,292	2408606	7
Ming Ave On Ramp to SR 58 On Ramp	4,915	4,951	101%	8	1 1	61	20	С	224	634	10	1	1238	0	0	0	676	836719	3
SR 58 On Ramp to California Off Ramp	6,014	6,092	101%	39	3	59	25	С	264	3951	67	6	1523	0	0	0	3,410	5193430	16
California Off Ramp to California Ave Loop On Ramp	5,044	5,041	100%	16	1	62	20	С	280	1424	23	1	1260	0	0	0	1,491	1879033	6
California Ave Loop On Ramp to California Ave Direct On Ramp	5,904	5,691	96%	9	1 1	60	24	С	289	846	14	1	1423	0	0	0	785	1116859	4
California Ave Direct On Ramp to Rosedale Hwy Off Ramp	6,273	5,842	93%	32	. 2	60	23	С	320	3060	51	3	1298	0	0	0	2,800	3634815	12
Rosedale Hwy Off Ramp to Buck Owens/Silled Ave Off Ramp	4,394	4,227	96%	16	1	63	17	В	337	1201	19	1	1057	0	0	0	1,500	1585125	5
Buck Owens Blvd/Sillect Ave Off Ramp to Buck Owens Blvd/Sillect Ave On Ramp	3,824	3,722	97%	24	1 1	63	15	В	361	1547	25	1	931	0	0	0	2,194	2041517	6
Buck Owens Blvd/Sillect Ave On Ramp to Airport Dr Off Ramp	4,224	4,088	97%	34	2	61	17	В	394	2324	38	2	1022	0	0	0	3,000	3065625	10
Airport Dr Off Ramp to SR99 NB north end of the network	2,719	2,609	96%	40	1	63	10	A	434	1842	29	1	652	0	0	0	3,726	2430284	7
SR-99 SB Mainline																		,	
SR99 SB north end of the network to Airport Dr On Ramp	3,210	3,225	100%	48	1	64	13	В	48	2749	43	1	806	0	0	0	4,498	3625950	11
Airport Dr On Ramp to Rosedale Hwy Off Ramp	4,490	4,491	100%	31	2	62	18	В	79	2393	39	2	998	0	0	0	2,800	2794193	9
Rosedale Hwy Off Ramp to Rosedale Hwy Loop On Ramp	3,830	3,836	100%	25	1 1	63	15	В	104	1650	26	1	959	0	0	0	2,271	2177889	7.
Rosedale Hwy Loop On Ramp to Rosedale Hwy Direct On Ramp	4,775	4,800	101%	10	1 1	57	18	С	113	727	13	1	1200	0	0	0	800	960000	3
Rosedale Hwy Direct On Ramp to California Ave Off Ramp	5,510	5,538	101%	37	3	59	23	С	150	3361	57	5	1385	0	0	0	3,200	4430667	14
California Ave Off Ramp to California Ave On Ramp	4,340	4,341	100%	13	0	62	17	В	164	1011	16	1	1085	0	0	0	1,229	1333772	4
California Ave On Ramp to SR58 EB Off Ramp	4,805	4,808	100%	27	2	61	19	С	191	2218	37	2	1202	0	0	0	2,433	2924669	9
SR58 EB Off Ramp to Ming Ave Off Ramp	3,900	3,825	98%	28	1	62	15	В	219	1856	30	1	956	0	0	0	2,561	2448956	7
Ming Ave Off Ramp to SR58 WB On Ramp	3,029	2,995	99%	22	1 1	63	12	В	241	1141	18	0	749	0	0	0	2,012	1506485	5
SR58 WB On Ramp to Ming Ave On Ramp	4,614	4,530	98%	51	2	63	14	В	292	4048	65	2	1007	0	0	0	4,715	4746783	12
Ming Ave On Ramp to White Ln Off Ramp	5,129	5,041	98%	60	3	61	20	С	352	5172	84	4	1260	0	0	0	5,403	6808793	20
White Ln Off Ramp to White Ln Loop On Ramp	3,709	3,625	98%	19	0	63	14	В	371	1215	19	0	806	0) 0	0	1,770	1425833	5
White Ln Loop On Ramp to White Ln Direct On Ramp	3,884	3,791	98%	10	0	63	15	В	381	642	10	0	948	0	0	0	894	847289	3
White Ln Direct On Ramp to SR99 SB south end of the network	4,254	4,008	94%	52	2	63	16	8	433	3626	58	2	1002	0	0	. 0	4,777	4786554	14
WSP EB Mainline																			
WSP west end of the network to Allen Rd off ramp	1,015	1,009	99%	83	3	61	8	A	83	1425	23	1	504	0	0	0	7,689	3878002	11
Allen Rd Off Ramp to Allen Rd On Ramp	956	981	103%	32	0	64	5	A	115	559	9	0	327	0	0	0	3,006	982962	3
Allen Rd On Ramp to Calloway Dr Off Ramp	2,665	2,668	100%	59	3	62	14	В	174	2706	44	2	889	0	0	0	5,338	4747261	14
Calloway Dr Off Ramp to Calloway Dr Loop On Ramp	2,140	2,138	100%	24	0	64	11	В	198	926	14	0	713	0	0	0	2,288	1630581	5
Calloway Dr Loop On Ramp to Calloway Dr Direct On Ramp	2,880	2,833	98%	11	1	61	15	В	209	536	9	1	944	0	0	0	1,000	944333	3
Calloway Dr Direct On Ramp to Coffee Dr Off Ramp	3,940	3,907	99%	49	3	61	21	С	258	3273	53	3	1302	0	0	0	4,373	5695687	17
Coffee Dr Off Ramp to Truxtun Ave/Mohawk St Off Ramp	3,299	3,223	98%	58	2	62	13	В	316	3214	51	2	921	0	0	0	5,275	4857306	13
Truxtun Ave Off Ramp to Coffee Dr On Ramps	909	886	97%	31	0	65	7	A	347	494	8	0	443	0	0	0	2,945	1304930	4
Coffee Dr On Ramps to SR99 SB & Ming Ave C-D Off Ramp	2,311	2,254	98%	108	3	63	12	В	455	4247	68	2	751	0	0	0	9,938	7465370	22
SR99 SB Off Ramp(and C-D Ming Ave) to H St Off Ramp	1,181	1,134	96%	23	0	63	9	A	478	451	7	0	567	0	0	0	2,098	1189304	4
H St Off Ramp to SR 99 NB&SB On Ramp	921	872	95%	30	0	64	7	A	507	463	7	0	436	0	0	0	2,802	1221322	4
SR99 NB&SB On Ramp to Chester Ave On Ramp	2,486	2,512	101%	46	4	61	9	A	554	1959	32	2	718	0	0	0	4,076	2924821	7
Chester Ave On Ramp to Union Ave Off Ramp	3,236	3,245	100%	27	1	62	13	В	580	1490	24	1	927	0	0	0	2,419	2242528	6
Union Ave Off Ramp to Union Ave Loop On Ramp	2,521	2,534	101%	17	0	63	13	В	597	736	12	0	845	o	0	0	1,533	1294874	4
Union Ave Loop On Ramp to Union Ave Direct On Ramp	2,841	2,797	98%	8	0	62	15	В	605	391	6	0	932	0	0	0	739	688994	2
Union Ave Direct On Ramp to Cottonwood Rd Off Ramp	3,185	3,165	99%	31	1	62	17	В	636	1681	27	1	1055	. 0	0		2,800	2954000	1
·····					· 1			_	1	1		1	1		1	1	1	1	1
Cottonwood Rd Off Ramp to Cottonwood Rd On Ramp	2,771	2,746	99%	28	1 1	63	14	В	663	1328	21	1	915	0	0	1 0	2,553	2336846	7

		,							sov	1			CORSIM					Length*C	
Freeway Segment	Demand	Served	% Served	Travel Time	Delay Time	Speed	Density	LOS	Cumulative Time	Veh - Miles	Veh - Hours	Veh - Delay	Served Volumes/L ane	Speed Ratio	Veh-Hours (40 MPH)	Veh-Delay (<40 MPH)	Length	ORSIM Served Volumes/L	Leng
	(vph)	(vph)		(sec/veh)	(sec/veh)	(MPH)	(veh/in/mi)	(HCM 2000)	(sec/veh)	(VMT)	(VHT)	(VHD)	(vphl)	40	(VHT)	(VHD)	(ft)	ane	52
/SP WB Mainline																		,	
R58 east end of the network to Brundage Ln Off Ramp(Cottonwood Rd)	3,475	3,494	101%	26	1	64	18	С	26	1589	25	0	1165	0	0	0	2,401	2796365	
undage Ln Off Ramp(Cottonwood Rd) to Brundage Ln On Ramp(Cottonwood Rd)	3,220	3,215	100%	18	1	63	17	В	43	988	16	0	1072	٥	0	0	1,622	1738243	1
undage Ln On Ramp(Cottonwood Rd) to Brundage Ln Off Ramp(Union Ave)	3,480	3,453	99%	38	1	62	18	c	81	2285	37	1	1151	0	0	0	3,491	4017753	1
undage Ln Off Ramp(Union Ave) to Brundage Ln On Ramp(Union Ave)	2,811	2,793	99%	17	1	63	15	В	98	824	13	0	931	0	0		1,558	1450498	1
undage Ln On(Union Ave) Ramp to Union Ave On Ramp	3,195	3,121	98%	12	1 1	62	17	В	110	639	10	1	1040	0	0	0	1,082	1125641	1
nion Ave On Ramp to Chester Ave Off Ramp	3,761	3,717	99%	23	1	62	15	В	133	1446	24	1	1062	0	0	0	2,060	2187916	1
nester Ave Off Ramp to H St On Ramp	2,785	2,804	101%	37	1	63	15	В	170	1826	29	1	935	0	0	0	3,439	3213746	1
St On Ramp to SR 99 NB Off Ramp	3,480	3,468	100%	24	1	61	14	В	195	1443	24	1	991	0	0	0	2,200	2179886	1
R 99 NB Off Ramp to SR 99 SB Off Ramp	2,381	2,387	100%	21	1	62	13	В	216	870	14	0	796	0	0	0	1,923	1529747	1
R 99 SB Off Ramp to SR 99 NB On Ramp	1,356	1,383	102%	23	1	64	11	A	239	570	9	0	692	٥	0		2,175	1504230	1
R 99 NB On Ramp to Coffee Dr Off Ramp	2,566	2,600	101%	105	3	63	14	В	344	4741	76	3	867	0	0	0	9,612	8328798	-
offee Dr Off Ramp to Mohawk St/Truxtun Ave On Ramp	896	921	103%	23	0	64	7	_ A	367	374	6	0	460	0	0	0	2,144	987098	- 1
phawk St/Truxtun Ave On Ramp to Coffee Dr Loop On Ramp	2,516	2,473	98%	53	1	64	10	A .	420	2301	36	1	618	0	0	0	4,911	3036226	}
iffee Dr Loop On Ramp to Coffee Dr Direct On Ramp	2,646	2,584	98%	12		64	10	A	432	563		0	646	0	0	0	1,150	742756	
iffee Dr Direct On Ramp to Calloway Dr Direct Off Ramp	2,901	2,800	97%	48	1	63	11	A .	480	2357	37	1	700	0	0	0	4,423	3096100	- 1
illoway Dr Direct Off Ramp to Calloway Dr Loop Off Ramp	2,251	2,185	97%	11	0	61	9	A .	491	414	7	0	546	0	0	0	1,000	546250	
illoway Dr Loop Off Ramp to Calloway Dr On Ramp	1,301	1,234	95%	24	0	64	6	A .	515	528	8	0	411	0	0	0	2,258	928791	
illoway Dr On Ramp to Allen Rd Off Ramp	1,621	1,552	96%	57	2	63	8	A	572	1545	25	1	517	0	0	0	5,238	2709443	٠
en Rd Off Ramp to Allen Rd On Ramp	536	560	104%	26	0	65	3	A .	598	262	4	0	187	0	0	0	2,473	461215	
en Rd On Ramp to WSP to west end of the network	656	690	105%	89	1	64	5	A	687	1091	17	0	230	0	0	0	8,347	1920207	7
R99 NB C-D																_			
ng Ave On Ramp to SR99 NB C-D On Ramp	1,165	1,220	105%	8	1	44	21	С	8	122	3	0	1220	0	0	0	533	650260	١
199 NB C-D On Ramp to WSP C-D Off Ramp	2,010	2,057	102%	18		53	13	В	26	546	10	0	823	0	0	0	1,400	1151640	□
SP C-D Off Ramp to the end of C-D network	800	831	104%	31	2	51	16	8	57	364	7	0	831	0	0	0	2,315	1924537	7
R99 SB C-D		001	10170		_														4
58 WB C-D On Ramp to WSP C-D On Ramp	1,025	1,003	98%	8	1	42	24	С	8	96	2	0	1003	0	0	0	504	505260	١ ١
SP C-D On Ramp to SR99 SB C-D On Ramp	1,585	1,547	98%	7		47	11	A	15	145	3	0	773	0	0	0	492	380439	, L
SP EB C-D 1	1,000	1,047	00%																
ffee Dr Loop On Ramp to Coffee Dr Direct On Ramp	830	833	100%	12	1	49	22	С	12	134	3	0	833	0	0	0	846	704718	,
free Dr Direct On Ramp to WSP EB C-D Off Ramp	1,400	1,378	98%	62	2	53	21	c	73	1248	24	1	689	0	0	0	4,778	3292998	8
SP EB C-D 2	1,400	1,576	00%	OZ.	_	•													
	2,390	2,353	98%	28	1	53	20	С	28	966	18	1	941	0	0	0	2,161	2033933	3
SP EB C-D On Ramp to Mohawk St Off Ramp	'		100%	26		54	11	В	54	462		0	591	0	0	0	2,064	1219308	в
hawk St Off Ramp to Mohawk St On Ramp	1,185 1,185	1,182 1,185	100%	32	1	51	12	В	87	543	11	0	593	0	0	0	2,440	1446005	5
hawk St On Ramp to Truxtun Ave Off Ramp	1,185	1,160	100%	32	'	01		_											
SP EB C-D 3 PEB C-D On Ramp to SR 99 SB Off Ramp	1,130	1,106	98%	6	0	52	17	В	6	90	2	0	553	0	0	0	432	238788	- 1
99 SB Off Remp to SR 99 SB C-D On Remp	570	557	98%	26	1	47	8	A	32	188	4	0	557	0	0	0	1,780 1,982	991460 1360643	
99 SB C-D On Ramp to Ming Ave Off Ramp	1,440	1,373	95%	28	1	48	18	С	60	515	11	0	687	0	0	0	1,982	1300043	,
SP WB C-D											,		274	0	0	0	1,320	494010	0
xtun Ave On Ramp to Mohawk St Loop On Ramp	780	749	96%	14	0	64	13	B	14 29	187 292	5	0	374 590	"	0	0	1,300	787000	
hawk St Loop On Ramp to Mohawk St Direct On Ramp	1,225	1,180	96%	15		60	22		. 29									1166250	

Year 2018 Build Alt. A - PM

			T						sov				CORSIM		T			Length*C	T
Freeway Segment	Demand	Served	% Served	Travel Time	Delay Time	Speed	Density	LOS	Cumulative Time	Veh - Miles	Veh - Hours	Veh - Delay	Served Volumes/L ane	Speed Ratio	Veh-Hours (40 MPH)	Veh-Delay (<40 MPH)	Length	ORSIM Served Volumes/L	nai
	(vph)	(vph)		(sec/veh)	(sec/veh)	(MPH)	(veh/in/mi)	(HCM 2000)	(sec/veti)	(VMT)	(VHT)	(VHD)	(vphl)	40	(VHT)	(VHD)	(ft)	ane	52
WSP WB Mainline																		,	,
SR58 east end of the network to Brundage Ln Off Ramp(Cottonwood Rd)	3,790	3,817	101%	26	1	64	20	С	26	1736	27	1	1272	0	0	0	2,401	3054872	1
Brundage Ln Off Ramp(Cottorwood Rd) to Brundage Ln On Ramp(Cottorwood Rd)	3,531	3,528	100%	18	1	63	19	С	43	1084	17	1	1176	0	0	0	1,622	1907472	1
Brundage Ln On Ramp(Cottonwood Rd) to Brundage Ln Off Ramp(Union Ave)	3,941	3,932	100%	39	2	62	21	С	82	2600	42	2	1311	0	0	0	3,491	4575537	1
Brundage Ln Off Ramp(Union Ave) to Brundage Ln On Ramp(Union Ave)	3,041	3,040	100%	17	1	63	16	В	99	897	14	0	1013	0	0	0	1,558	1578773	
Brundage Ln On(Union Ave) Ramp to Union Ave On Ramp	3,386	3,354	99%	12	1	62	18	С	111	688	11	1	1118	0	0	0	1,082	1209676	
Jnion Ave On Ramp to Chester Ave Off Ramp	4,116	4,119	100%	23	1	61	17	В	134	1603	26	1	1177	0	0	0	2,060	2424522	1
Chester Ave Off Ramp to H St On Ramp	3,216	3,243	101%	37	1	63	17	В	171	2112	34	1 1	1081	0	0	0	3,439	3717559	1
H St On Ramp to SR 99 NB Off Ramp	4,092	4,070	99%	25	1	61	17	В	196	1695	28	1 1	1163	0	0	0	2,200	2558076	1
SR 99 NB Off Ramp to SR 99 SB Off Ramp	3,151	3,120	99%	21	1	62	17	В	217	1137	18	1	1040	0	0	0	1,923	1999920	1
SR 99 SB Off Ramp to SR 99 NB On Ramp	1,902	1,854	97%	23	1	63	15	В	241	763	12	0	927	0	0	0	2,175	2015790	1
SR 99 NB On Ramp to Coffee Dr Off Ramp	3,122	3,068	98%	106	4	62	16	В	346	5591	90	4	1023	0	0	0	9,612	9828804	
Coffee Dr Off Ramp to Mohawk St/Truxtun Ave On Ramp	1,267	1,254	99%	23	1	63	10	A	369	509	8	0	627	٥	0	0	2,144	1343859	1
Mohawk St/Truxtun Ave On Ramp to Coffee Dr Loop On Ramp	3,866	3,707	96%	63	1	63	15	В	422	3448	55	1	927	0	0	0	4,911	4551269	
Coffee Dr Loop On Ramp to Coffee Dr Direct On Ramp	4,136	3,924	95%	13	0	63	16	В	435	855	14	0	981	0	0	0	1,150	1128006	
coffee Dr Direct On Ramp to Calloway Dr Direct Off Ramp	4,551	4,328	95%	49	2	62	17	В	484	3644	59	3	1082	0	0	0	4,423	4785907	
calloway Dr Direct Off Ramp to Calloway Dr Loop Off Ramp	3,666	3,484	95%	11	0	62	14	В	495	660	11	0	871	0	0	0	1,000	871000	1
calloway Dr Loop Off Ramp to Calloway Dr On Ramp	2,431	2,285	94%	24	0	63	12	В	519	977	15	0	762	0	0	0	2,258	1719843	
alloway Dr On Ramp to Allen Rd Off Ramp	2,916	2,800	96%	58	3	62	. 14	В	577	2792	45	2	933	0	0	0	5,238	4888451	
Illen Rd Off Ramp to Allen Rd On Ramp	1,101	1,055	96%	26	0	64	5	A	604	494	8	0	352	0	0	0	2,473	869672	
Illen Rd On Ramp to WSP to west end of the network	1,166	1,117	96%	89	1	64	8	A	693	1758	28	0	372	0	0	0	8,347	3107866	
SR99 NB C-D																			
ling Ave On Ramp to SR99 NB C-D On Ramp	1,095	1,114	102%	8	1	45	19	С	8	112	2	0	1114	0	0	0	533	593762	
R99 NB C-D On Ramp to WSP C-D Off Ramp	1,925	1,948	101%	18		53	12	В	26	517	10	0	779	0	0	0	1,400	1090880	1
/SP C-D Off Ramp to the end of C-D network	705	717	102%	30	1	52	14	В	56	314	6	0	717	0	0	0	2,315	1659083	
SR99 SB C-D																			
R58 WB C-D On Ramp to WSP C-D On Ramp	1,250	1,255	100%	8	1	42	30	D	8	120	3	0	1255	0	0	0	504	632520	
/SP C-D On Ramp to SR99 SB C-D On Ramp	1,925	2,046	106%	7	0	47	15	В	15	191	4	0	1023	0	0	0	492	503193	
VSP EB C-D 1																			
offee Dr Loop On Ramp to Coffee Dr Direct On Ramp	905	899	99%	12	1	49	22	С	12	144	3	0	899	0	0	0	846	760554	- 1
offee Dr Direct On Ramp to WSP EB C-D Off Ramp	1,650	1,656	100%	62	2	53	21	С	73	1499	28	1 1	828	0	0	0	4,778	3955228	3
VSP EB C-D 2																			
/SP EB C-D On Ramp to Mohawk St Off Ramp	1,760	1,726	98%	28	1	53	20	С	28	708	13	1	690	0	0	0	2,161	1491522	2
ohawk St Off Ramp to Mohawk St On Ramp	825	942	114%	26		54	11	В	54	368	7	0	471	0	0	0	2,084	972144	
ohawk St On Ramp to Truxtun Ave Off Ramp	935	944	101%	32	1	51	12	В	87	432	8	0	472	0	0	0	2,440	1151070	<u> </u>
VSP EB C-D 3																			
(SP EB C-D On Ramp to SR 99 SB Off Ramp	1,420	1,356	95%	6	0	52	17	В	6	111	2	0	678	0	0	0	432	292788	
R 99 SB Off Ramp to SR 99 SB C-D On Ramp	615	567	92%	26	1	47	8	A	32	191	4	0	567	0	0	0	1,780 1,982	1009705	
R 99 SB C-D On Ramp to Ming Ave Off Ramp	1,735	1,668	96%	28	1	48	18	С	60	625	13	0	834	0	0	0	1,902	1302493	
VSP WB C-D										201	4	0	562	0	0	0	1,320	741510	
nadun Ave On Remp to Mohewk St Loop On Remp	1,190 2,014	1,124 1,909	94% 95%	14 15	0	64 60	13 22	B	14 29	281 472	8	1	955	0	0	0	1,300	1240850	
ohawk St Loop On Ramp to Mohawk St Direct On Ramp	2,599	2,459	60 /6	17	' 1	50	l 22	c	1 **	699	12	1	1230	۱ ،	1 0	١ ،	1,500	1844250	اه

Year 2018 Build Alt. A - PM

									SOV										
Freeway Segment	Demand	Served	% Served	Travel Time	Delay Time	Speed	Density	LOS	Cumulative Time	Veh - Miles	Veh - Hours	Vah - Delay	CORSIM Served Volumes/L ane	Speed Ratio	Veh-Hours (40 MPH)		Length	Length*C ORSIM Served Volumes/L	Length*
CD CO ND M	(vph)	(vph)		(sec/veh)	(sec/veh)	(MPH)	(veh/ln/mi)	(HCM 2000)	(sec/veh)	(VMT)	(VHT)	(VHD)	(vphi)	40	(VHT)	(VHD)	(ft)	ane	5280
SR-99 NB Mainline																			
SR-99 NB south end of the network to White Ln Off Ramp	4,665	4,675	100%	50	1 1	63	18	C	50	4106	65	2	1169	0	0	l ° l	4,648	5431769	1
White Ln Off Ramp to White Ln Loop On Ramp	3,975	3,985	100%	19	1 1	63	16	В	69	1334	21	1	996	0	0	0	1,768	1761370	1
White Ln Loop On Ramp to White Ln Direct On Ramp White Ln Direct On Ramp to Ming Ave Off Ramp	5,460	5,249	96%	7	1 1	56	24	C	76	552	10	1	1312	0	0	0	555	728299	
	6,065	5,919	98%	76	4	61	22	С	152	7657	125	7	1184	0	0	0	6,844	8101243	1
Ming Ave Off Ramp to C-D (SR58 WB) Off Ramp SR58 WB Off Ramp to SR58 EB Off Ramp	5,231	5,224	100%	11	1 1	61	17	В	163	998	16	1	1045	0	0	0	1,009	1054203	1
SR58 EB Off Ramp to Ming Ave On Ramp	4,401	4,332	98%	27	1 1	62	16	В	190	1976	32	1	963	0	0	0	2,414	2323609 1867980	i
Ming Ave On Ramp to SR 58 On Ramp	3,246	3,260	100%	25	1	63	13	В	215	1415	22	1 1	815	0	0	0	2,292	661635	i
SR 58 On Ramp to California Off Ramp	3,951	3,915	99%	7	l °	62	16	В	222	501	8	0	979	0	0	0	676	1	
California Off Ramp to California Ave Loop On Ramp	4,891	4,936	101%	38	2	61	19	С	260	3191	52	3	1234	0	0	0	3,410	4207656	1
California Ave Loop On Ramp to California Ave Direct On Ramp	4,261	4,305	101%	16	1	63	17	В	276	1215	19	1	1076	0	0	0	1,491	1604689	1
California Ave Direct On Ramp to Rosedale Hwy Off Ramp	5,166	4,956	96%	°	1 1	60	21	C	285	737	12	1	1239	0	0	0	785	972615	1
Rosedale Hwy Off Ramp to Buck Owens/Sillect Ave Off Ramp	5,826	5,384	92%	32	2	60	21	C	317	2833	48	3	1196	0	0		2,800	3350044 1420125	
Buck Owens Blvd/Sillect Ave Off Ramp to Buck Owens Blvd/Sillect Ave On Ramp	4,066	3,787	93%	16	0	63	15	В	333	1076	17	0	947	0	0	0	1,500	1870385	1
Buck Owens Blvd/Sillect Ave On Ramp to Airport Dr Off Ramp	3,701	3,410	92%	24	1	63	13	В	357	1417	22	1	853	0	0	l ° l	2,194	3092625	1
Airport Dr Off Ramp to SR99 NB north end of the network	4,416	4,124	93%	34	2	61	17	B	391	2343	39	2	1031	0	0		3,000	2644529	1
SR-99 SB Mainline	3,051	2,839	93%	40	1	63	11	В	431	2004	32	1	710	0	0	0	3,726	2044329	L-ů
SR99 SB north end of the network to Airport Dr On Ramp	2.550	2.507	4000/														4.400	4010529	12
Nirport Dr On Ramp to Rosedale Hwy Off Ramp	3,550	3,567	100%	48	1 1	64	14	В	48	3042	48	1 1	892	0	. 0		4,498	1	1
Rosedale Hwy Off Ramp to Rosedale Hwy Loop On Ramp	5,314	5,280	99%	32	3	60	21	С	80	2824	47	4	1173	0	0	°	2,800	3285333	1
Rosedale Hwy Loop On Ramp to Rosedale Hwy Direct On Ramp	4,604	4,585	100%	25	1	62	18	С	105	1972	32	1 1	1146	0	0	°	2,271	2603134 1184800	1
Rosedale Hwy Direct On Ramp to California Ave Off Ramp	5,938	5,924	100%	11	2	50	26	С	116	897	18	4	1481	0	0	l ° l	800	5609600	1
california Ave Off Ramp to California Ave On Ramp	7,044	7,012	100%	40	6	55	31	D	155	4272	77	11	1753	0	0	l ° l	3,200	1732890	1
california Ave On Ramp to SR58 EB Off Ramp	5,649	5,640	100%	14	1 1	62	23	С	169	1312	21	1	1410	0	0	l ° l	1,229	3930309	1
R58 EB Off Ramp to Ming Ave Off Ramp	6,570	6,462	98%	29	3	57	27	D	198	2989	52	6	1615	0	0	°	2,433	3266556	1
ling Ave Off Ramp to SR58 WB On Ramp	5,195 4,075	5,102	98%	28	1	62	21	C	226	2475	40	2	1276	0	0	l ° l	2,561	2016527	1
R58 WB On Ramp to Ming Ave On Ramp	6,130	4,009	98%	22	1	63	16	В	248	1527	24	1 1	1002	0	0	°	2,012	6325085	i
ling Ave On Ramp to White Ln Off Ramp	6,780	6,037	98%	52	2	62	18	C	300	5392	87	4	1341	0	0	0	4,715	9029426	1
/hite Ln Off Ramp to White Ln Loop On Ramp	4,765	6,685 4,678	99%	63	6	59	27	D	363	6898	117	11	1671	0	0	0	5,403 1,770	1840013	1
/hite Ln Loop On Ramp to White Ln Direct On Ramp	5,275	5,140	97%	19	'	63	19	С	382	1568	25	1 1	1040	0	0	1	894	1148790	1
/hite Ln Direct On Ramp to SR99 SB south end of the network	5,755	5,140 5,449	95%	10 52	0	62	21	С	392	870	14	1 1	1285	0	0	0	4,777	6506871	1
VSP EB Mainline	0,755	5,448	85%	52	2	62	22	С	444	4926	79	3	1362	0	0	0	4,111	000071	20
/SP west end of the network to Allen Rd off ramp	895	972	079/	02									420				7 690	3353502	10
lien Rd Off Ramp to Alien Rd On Ramp	810	872 815	97%	83	3	61	7	A .	83	1232	20	1 1	436	0	0	0	7,689 3,006	816630	1
lien Rd On Ramp to Calloway Dr Off Ramp	2,091		101%	32	0	64	4	A .	115	464	7	l °	272	0	0	"	5,338	1	1 .
alloway Dr Off Ramp to Calloway Dr Loop On Ramp		1,982	95%	58	2	63	10	A .	173	2007	32	1 1	661	0	0	1		3526995	
alloway Dr Loop On Ramp to Calloway Dr Direct On Ramp	1,615	1,516	94%	24	0	64	8	A -	197	656	10	0	505	0	0	0	2,288	1155821	1
alloway Dr Direct On Ramp to Coffee Dr Off Ramp	2,331 3,305	2,161	93%	11	1	61	12	В	208	409	7	0	720	0	0	0	1,000	720333 4610891	1
offee Dr Off Ramp to Truxtun Ave/Mohawk St Off Ramp	2,710	3,163	96%	48	2	62	16	В	256	2631	42	2	1054	0	l °	0	4,373 5,275	3924169	1
uxtun Ave Off Ramp to Coffee Dr On Ramps	950	2,604	96%	57	1	63	11	A .	313	2599	41	1 1	744	0	0	0	2,945	1308484	1
offee Dr On Ramps to SR99 SB & Ming Ave C-D Off Ramp	2,600	889	94%	31	°	64	7	A .	345	496	8	°	444	0	0	0		8424663	
R99 SB Off Ramp(and C-D Ming Ave) to H St Off Ramp	1,180	2,543	98%	109	4	62	13	В	453	4793	77	3	848	0	°	0	9,938	1237558	1
St Off Ramp to SR 99 NB&SB On Ramp	890	1,180 865	100% 97%	23	°	63	9	A .	476	470	'	l °	590	0		0	2,098 2,802	1211515	1
Rep NB&SB On Ramp to Chester Ave On Ramp	3,010		- 1	30	°	64	7	A .	506	459	7	°	432	0	1 %	0	l	1	1
rester Ave On Ramp to Union Ave Off Ramp		2,906	97%	47	4	60	10	A	553	2270	38	3	830	0	l °	0	4,076	3383662	l I
	3,999	3,836	96%	27	1	61	16	В	580	1762	29	1	1096	0	0	0	2,419	2650994	- 1
ion Ave Off Ramp to Union Ave Loop On Ramp	3,219	3,079	96%	17	1	63	16	В	597	894	14	0	1026	0	0	0	1,533	1573369	ı
ion Ave Loop On Ramp to Union Ave Direct On Ramp	3,780	3,569	94%	8	0	61	19	C	605	499	8	0	1190	0	0	0	739	879164	1
ion Ave Direct On Ramp to Cottonwood Rd Off Ramp	4,195	4,016	96%	31	1	62	22	С	636	2134	35	2	1339	0	0	0	2,800	3747956	- 1
ttorwood Rd Off Ramp to Cottorwood Rd On Ramp	3,755	3,598	96%	28	1	63	19	С	664	1740	28	1 1	1199	1 0	1 0	0	2,553	3061898	9 إد

Year 2018 Build - Alt. A- CORSIM ORIGIN-DESTINATION (O.D.) TABLE

SR-99 Traffic Operations - White Ln. to Airport Dr.

PEAK	

SR-99 NB			l																	Exit Loc	etion													
			Name		White Lr	n Off		Ming Av	e Off	8	SR-58 W	B off	1	SR-58 E	B Off	С	alifornia /	Ave Off		sedale H		Buck	Owens	Blvd Off	A	irport Dr	Off		SR-99 NB			 	T	
Entry Location			Node #		298			303			304	_		306	6	1	151			96			128	-		98			164					
ame	Node #	Volume		Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol%	New Volume	Volume	Vol %	New Volume	Volum	Vol %	New Volume	Volume	Voi %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume			I	
R-99 NB	163	5070		680	13	4390	623	12	3767	532	10	3235	645	13	2590	551	11	2039	735	14	1304	169	3	1135	435	9	700	700	. 14	0			I	
/hite Ln Loop On	533	1630			Х	1630	82	5	1549	219	13	1330	265	16	1065	226	14	838	302	19	536	70	4	467	179	11	288	288	18	0				
hite Ln Dia On	299	705			X	705	35	.5	670	95	13	575	115	16	460	98	14	363	131	19	232	30	4	202	77	. 11	125	124	18	0		I		
ing Ave On	187	800			Х	800		X	800		X	800		Х	800	40	5	760	274	34	486	63	8	423	162	20	261	261	33	0		Ī		
R-58 WB On	310	1100			Х	1100		X	1100		х	1100		X	1100	55	5	1045	377	34	668	87	8	582	223	20	359	359	33	0	1 1			
alifornia Ave Loop On	132	860			Х	860		X	860		×	860		Х	860		Х	860	43	5	817	106	12	711	272	32	439	439	51	0			Ι	
alifornia Ave On	130	370_			_ X	370		×	370		X	370		Х	370		X	370	19	5	352	46	12	306	117	32	189	189	51	0				T
uck-Owens Blvd On	97	400			X	400		×	400		Х	400		Х	400		Х	400		Х	400		Χ.	400	40	10	360	360	90	0				
				680			740			845			1025			970			1880			570			1505			2719			-	 <u></u>		

AM	PEAK
7 4171	

SR-99 SB			l																																	
			<u></u>																	Exit Loc																
	·		Name	Ro	sedale l	lwy Off	c	alifornia /		s	R-58 E	3 Off	1 1	Ming Av			White Lr			SR-99					1						1					
Entry Location			Node #		102		-	105			313		<u> </u>	314			322			95											-				_	_
lame	Node #		_			New Volume	Volum		New Volume						New Volume		Vol.%	New Volume			New Volum	e Volume	e Vol %	6 New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New V
R-99 SB	100	3210		596	19	2614	741	23	1873	370	12	1502	335	10	1167	353	11	815	B14	25	0				1								↓ '			
irport Dr On	101	1280		64	5	1216	345	27	871	172	13	699	156	12	543	164	13	379	379	30	0														\vdash	
osedale Hwy Loop On	103	945			Х	945	47	5	898	178	19	720	161	17	560	169	18	390	390	41	0										<u> </u>					
osedale Hwy Dia On	104	735			Х	735	37	5	698	138	19	560	125	17	435	131	18	304	304	41	0					1										1
alifornia Ave On	137	465			Х	465		X	465	47	10	419	93	20	325	98	21	227	227	49	-0		T								-					
/estside Pkwy EB/SR-58 WB On	555	1585			Х	1585		X	1585		X	1585		Х	1585	479	30	1106	1106	70	0		T	1												
ling Ave On	318	515			Х	515		X	515		×	515		х	515	26	5	489	489	95	0			T	T	\Box										
/hite Ln Loop On	323	175			Х	175		X	175		×	175		х	175		X	175	175	100	0		T	1												
Vhite Ln Dia On	324	370			Х	370	1111111	X	370		X	370		×	370		X	370	370	100	0		\top													\equiv
																															1					
				660		-"	1170			905			870			1420			4254									A SECTION								
																									_											
heck				660			1170)		905			870			1420			4254			0)		0			0			0			0		

Westside Parkway/SR-58 Traffic Operations - West Beltway to Cottonwood

AM PEAK

WSP/SR-58 EB																				Exit Loc	ation														
			Name		Allen Ro	Off	7	Calloway	Dr Off		Coffee R	Off	Mohawi	St/Trux	dun Ave Of	SR-9	9 SB/Min	ng Ave Off		H St C		1	Jnion Av	ne Off	Cott	onwood	Rd Off		SR-58 EB		1				
Entry Location			Node #		574			581			589			596			613			617			375			385			169						
ne	Node #	/olume		Volume	_Vol %	New Volume	Volume	e Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol % New \
stside Pkwy EB	568	1015		60	6	955	440	43	516	132	13	383	277	27	106	52	5	54	12	1	42	11	1	31	5	0	26	26	3	. 0					
n Rd On	576	1710			X	1710	86	5	1625	418	24	1207	874	51	333	163	10	170	37	2	133	36	2	96	15	1	82	82	5	0	لــــــا				
lloway Dr Loop On	583	740			Х	740		X	740	37	5	703	509	69	194	95	13	99	22	3	77	21	3	56	9	1	48	48	6	0	لـــــــــا				
lloway Dr Dia On	584	1060			X	1060		X	1060	53	5	1007	729	69	278	136	13	142	31	3	111	30	3	80	12	1	68	68	.6	0					
fee Rd Loop/Dia On	601	1400			Х	1400		Х	1400		Х	1400		х	1400	685	49	715	158	-11	558	152	11	406	61	4	344	344	25	0					
-99 NB&SB On	369	1565			Х	1565		X	1565		X	1565		х	1565		х	1565		х	1565	427	27	1138	172	11	966	966	62	0					
ester Ave On	372	750			X	750		Х	750		Х	750	III S	х	750		X	750		Х	750	38	5	713	108	14	605	605	81	0					
ion Ave Loop On	376	320			Х	320		Х	320		х	320		х	320		X	320		х	320		X	320	16	5	304	304	95	0					
ion Ave Dia On	377	345			Х	345		X	345		X	345		х	345		X	345		X	345		X	345	17	5	328	328	95	0					
ttonwood Rd	386	300			х	300		X	300		X	300		x	300		X	300		X	300	the state of	X	300		X	300	300	100	0					
							1	1																											
			8	60			525			640			2390			1130			260			715			415	5		3071			and the second				
ck				60			525	5		640			2390			1130			260			715			415			3071			0			0	
				0			()		0			0			0			0			0			0			0			0			0	

AM PEAK

WSP/SR-58 WE	3																			Exit Loca	ation					_									
			Name	C	ottonwo	od Rd	В	rundage	Ln Off	С	hester A	ve Off	s	R-99 N	3 Off		SR-99 S	3 Off		Coffee Ro	Off	Call	loway Dr	r Dia Off	Callo	way Dr L	oop Off		Allen Rd O	off	Wes	tside Pkw	y WB		
Entry Location			Node #		404			390)		395			399			10			27			61			62			69			77			
ame		Volume		Volume	Vol%	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	8 Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volum	Volume	Vol % New
R-58 WB	162	3475		255	7 .	3220	657	19	2563	759	22	1804	570	16	1233	531	15	702	457	13	245	61	2	184	91	3	93	76	2	17	17	0	0		
ottonwood/MLK On	387	260			X	260	13	5	247	73	28	174	_ 55	21	119	51	20	68	44	17	24	6	2	18	9	3	9	7	3 -	2	2	1	0		
rundage Ln On	391	385			Х	385		X	385	114	30	271	86	22	185	80	21	105	69	18	37	9	2	28	14	4	14	11	3	2	2	1	0		
nion Ave On	392	565		4.1	Χ_	565		X	565	28	5	537	170	30	367	158	28	209	136	24	73	18	_ 3	55	27	5	28	23	4	5	5	1	0		
St on	397	695			X	695		X	695		Х	695	220	32	475	205	29	271	176	25	94	24	3	71	35	5	36	29	4	6	6	1	0		
R-99 NB On	15	1210			X	1210		X	1210		Х	1210		х	1210		X	1210	788	65	422	106	9	316	156	13	160	132	11	28	28	2	0		
ohawk St Loop /Dia On & Truxtun On	32	1620			X	1620		X	1620		Х	1620		X	1620		Х	1620		Х	1620	406	25	1214	600	37	614	505	31	109	109	7	0		
offee Rd Loop On	54	130			X	130		X	130		Х	130		х	130		X	130		Х	130	7	5	124	7	5	117	96	74	21	21	16	0		
offee Rd Dia On	56	255			X	255		Х	255		Х	255		х	255		Х	255		х	255	13	. 5	242	13	5	230	189	74	41	41	16	0		
alloway Dr On	64	320			X	320		X	320		х	320		x	320		Х	320		Х	320		X	320		Х	320	16	5	304	304	95	0		
llen Rd On	71	120			Х	120		X	120		х	120		Х	120		X	120		х	120		Х	120		X	120		X	120	120	100	0		
			<u> </u>	255		l	670			975			1100			1025			1670			650			950			1085	L		656				

SR-99 Traffic Operations - White Ln. to Airport Dr.

P	M	P	E/	٩ŀ	(

	SR-99 NB																				Exit Loca	tion														
				Name		White Lr	Off	T	Ming Av	e Off	SI	R-58 W	/B off		SR-58 E	B Off	Ca	lifornia	Ave Off		sedale H		Buc	k Owens	s Blvd Off	A	Airport Di	Off		SR-99 NE	3					
	Entry Location			Node #		298		1	303		1	304			306	6		151		l	96	-		128	3		98			164						-
ame		Node #	Volume		Volume	Vol %	New Volume	Volum	e Vol %	New Volume	Volume	Vol%	New Volume	Volume		New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume					
R-99 NB		163	4665		690	15	3975	731	16	3245	515	11	2730	717	15	2013	340	7	1673	661	14	1013	91	2	922	322	7	600	600	13	0				\rightarrow	\rightarrow
hite Ln Loop On		533	1485			X	1485	74	5	1411	224	15	1187	312	21	875	148	- 10	728	287	19	440	40	3	401	140	9	261	261	18	00		\vdash			
hite Ln Dia On		299	605			Х	605	30	5	575	91	15	484	127	21	357	60	10	296	117	19	179	16	3	163	57	9	106	106	18	. 0		\vdash			-
ing Ave On		187	705			Х	705		X	705		x	705		×	705	35	- 5	670	264	38	405	36	5	369	129	18	240	240	- 34	0					\rightarrow
R-58 WB On		310	940			X	940		X	940		X	940		X	940	47	5	893	353	38	540	49	5	492	172	18	320	320	34	0					-
alifornia Ave Loop O	n	132	905			Х	905		X	905		х	905		×	905		X	905	45	5	860	77	9	783	274	30	509	509	56	0					
alifornia Ave Dia On		130	660			Х	660		X	660		X	660		X	660		×	660	33	5	627	56	9	571	200	30	371	371	56	0			\rightarrow		
uck-Owens Blvd On		. 97	715			Х	715		X	715		x	715		X	715		Х	715		x	715		Х	715	72	10	644	644	90	0		—			
								I								1													ļ.,,,,,,,							
					690			835			830			1155			630			1760			365			1365			3051					191		
heck					690			83	5		830			1155			630	1 1		1760			365			1365	5		3051			0			0	
					0			00.	n		030			1100			030			1700			000			0)		0			0			0	

SR-99 SB																																			
																				Exit Loc	ation														
		of the same of the	Name	•	osedale l	-	0	alifornia /			SR-58 E	3 Off		Ming Av	e Off		White L			SR-99		1									l			1	
Entry Location			Node #		102		1	105		↓	313		<u> </u>	314			322			95		 	T	T		1./-1.0/		No.l.	Vol %	New Volume	Volume	Vol.96	New Volume	Volume	Vol %
me	Node #		-			New Volume			New Volume	_			Volume	Vol %	New Volume	_		New Volume			New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	VOI %	New Volume	Volume	V0176	New Youth	VOIGITIE	V 01 70 1
R-99 SB	100	3550	_	622	18	2928	809	23	2119	481	14	1638	353	10	1285	415	12	869	869	24	0	₩	—	-							_	\vdash			++
port Dr On	101	1765		88	5	1677	464	26	1213	276	16	938	202	11	736	238	13	498	498	28	0		₩									\vdash		-	+-+
sedale Hwy Loop On	103	1335			X	1335	67	5	1268	288	22	980	211	16	769	249	19	520	520	39	0					\sqcup						<u> </u>			++
sedale Hwy Dia On	104	1105			X	1105	55	5	1050	238	22	811	175	16	636	206	. 19	431	431	.39	0					\Box									\longrightarrow
lifornia Ave On	137	920			х	920		Х	920	92	10	828	179	19	649	210	23	439	439	48	0				L										++
estside Pkwy EB/SR-58 WB On	555	2055			Х	2055		X	2055		X	2055		X	2055	665	32	1390	1390	68	0														+
ng Ave On	318	650			X	650		X	650		X	650		X	650	33	5	618	618	95	0		\Box												\perp
nite Ln Loop On	323	510			X	510		X	510	1	X	510		X	510		X	510	510	100	0														\longrightarrow
nite Ln Dia On	324	480			X	480		X	480		x	480		X	480		Х	480	480	100	0														\longrightarrow
																	- 1					I													لحسلر
				710			1395			1375			1120			2015			5755			574,575	5,		THE ST										

Westside Parkway/SR-58 Traffic Operations - West Beltway to Cottonwood

PM PFAK

WSP/SR-58 EB			1																	Exit Loc	ation								-						
			Name		Allen Ro	d Off	Т	Calloway	Dr Off	1 0	offee R	ld Off	Mohaw	k St/Tru	dun Ave Of	SR-9	9 SB/Mir	ng Ave Off		H St (U	nion Ave	Off	Cotte	onwood	Rd Off		SR-58 EB						
Entry Location			Node #	<u> </u>	574	Į.	1	581			589			596		1	613		1	617			375			385			169						
ame	Node #	Volume		Volume	Vol %	New Volume	Volum	ne Vol %	New Volume	Volume	Vol%	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol %	New Volume	Volume	Vol % Ne									
estside Pkwy EB	568	895		85	9	810	411	46	399	126	14	273	177	20	96	52	6	43	11	1	33	8	1	25	3	0	22	22	2	0		<u> </u>			-
en Rd On	576	1280			X	1280	64	5	1216	384	30	832	540	42	292	159	12	132	33	3	100	24	2	76	9	1	66	66	5	0					\leftarrow
lloway Dr Loop On	583	715			Х	715		X	715	36	5	679	441	62	238	130	18	108	27	4	82	20	3	62	8	1	54	54	8	0					\vdash
loway Dr Dia On	584	975			X	975		X	975	49	5	926	602	62	325	177	18	147	36	4	111	27	3	84	10	1	74	74	. 8	. 0					\vdash
ffee Rd Loop/Dia On	601	1650			X	1650		X	1650		X	1650		X	1650	901	55	749	184	11	565	137	8	428	52	3	376	376	23	0					\vdash
-99 NB&SB On		2120			X	2120		X	2120		X	2120		X	2120		х	2120		X	2120	515	24	1605	195	9	1410	1410	67	0					\vdash
ester Ave On	372				X	990		X	990		X	990		X	990		X	990		Х	990	50	5	941	114	12	826	826	83	0					
ion Ave Loop On	376	560			x	560		X	560		X	560		X	560		X	560		X	560		X	560	28	5	532	532	95	0		L'			
ion Ave Dia On	377	415			х	415		x	415		X	415		X	415		X	415		X	415		X	415	21	5	394	394	95	0					\vdash
ttonwood Rd	386	390			X	390		X	390		X	390		X	390		X	390		X	390		x	390		Х	390	390	100	0					\perp
ionino de Tra			1				1	+ ^-			_^			1-^-			1			1															
			-	85			475	8		595			1760	_		1420		-	290			780			440			4145						\$100 MARK	

WSP/SR-58 WB																																				
																				Exit Loc					T				Allen Rd O		10/00	stside Pkw	w WP			
			Name	C	ottonwo		B	rundage		C	hester A		1 1	SR-99 N		s	R-99 S	B Off	۱ ۹	Coffee R	d Off	Call	•	r Dia Off	Callov	way Dr L	.oop Off		69	п	l wes	77	vy vvb	1		
Entry Location			Node #		404		-	390		<u> </u>	395		-	390		-	10			27		-	61			62			T Vol %	T	Volume	T 1/2/19/	Taran Value	ne Volume	Vol 9/	News
		Volume		Volume	Vol%	New Volume		_	New Volume	_	_			_	New Volume			New Volume	_	-		_	_		Volume	Vol %		Volume	Vol %	New Volume	Volume 46	VOI %	New Volum	ne volume	VOI 76	New v
R-58 WB		3790		260	7	3530	880	23	2651	676	18	1974	454	12	1521	603	16	917	545	14	372	82	2	290	116	3	174	129	3	46	46		 	+	+	├─
ottonwood/MLK On	387				X	410	21	5	390	99	24	290	67	16	223	89	22	135	80	20	55	12	3	43	17	4	. 26	19	5	7	7	2		+	+	┼─
rundage Ln On	391				X	345		x	345	88	26	257	59	17_	198	79	23	119	71	.21	48	11	3	38	15	4	23	17	5	6	6	1 2	0	+	+	┼─
nion Ave On	392	730			Х	730	1000	X	730	37	5	694	159	22	534	212	29	322	192	26	131	29	4	102	41	6	61	45	6	16	16	2	0	-	+	₩
St on	397	875			X	875		Х	875		Х	875	201	23	674	267	31	406	242	28	165	36	4	129	51	6	77	57	7	20	20	2	0		+	₩
R-99 NB On	15	1220			X	1220		Х	1220		X	1220		X	1220		X	1220	725	59	495	109	9	386	154	13	232	171	14	61	61	5	0		+	—
lohawk St Loop /Dia On & Truxtun On	32	2599			X	2599		X	2599		Х	2599		X	2599		X	2599		Х	2599	572	22	2027	808	31	1219	899	35	320	321	12	-1			—
offee Rd Loop On	54	270			X	270		Х	270		X	270		X	270		X	270		Х	270	14	5	257	14	5	243	179	66	64	64	24	0			ـــــ
offee Rd Dia On	56	415			X	415		X	415		X	415		X	415		x	415		X	415	21	5	394	21	5	374	275	66	98	98	24	0			
alloway Dr On	64	485			X	485		x	485		X	485		X	485		×	485		X	485	200	Х	485		Х	485	24	5	461	462	95	-1			\perp
llen Rd On	71	65			Х	65		Х	65		Х	65		Х	65		_X	65		X	65	0.00	Х	65		Х	65		Х	65	65	100	0	 	+	₩
				260		<u> </u>	900			900			940		<u> </u>	1250	_		1855			885			1235			1815	<u> </u>		1166	<u></u>		29495		

CORSIM OUPUT DATA

	•	,		

2018 ALTERNATIVE A AM Peak

			•		·		
•	•						
					•		

CUMULATIVE FRESIM STATISTICS AT TIME 17 0 0

LINK STATISTICS

VEH-MIN/
SECONDS/VEHICLE VEH-MILE

						_	,										
LINK	VEHIC IN			CURR CONT	AVG CONT	VEH- MILES	VEH- MIN	TOTAL TIME	MOVE :	DELAY	M/T T	OTAL D		VOLUME VPHPL	DENSITY VPMPL	SPEED MILE/HR	
(153, 96)	6002	5997	1044	32	24.3	1477.6	1459.0	14.6	13.8	0.7	0.95	0.99	0.05	1000.2	16.5	60.76	FRWY
(563, 98)	3986	3990	2513	14	19.0	1133.5	1139.0	17.1	15.9	1.2	0.93	1.00	0.07	798.0	13.4	59.71	FRWY
(154, 101)	3210	3201	491	33	27.0	1724.5	1619.4	30.3	29.8	0.5	0.98	0.94	0.02	641.5	10.0	63.90	FRWY
(103, 104)	4842	4833	1582	25	12.6	732.5	756.4	9.4	8.4	1.0	0.90	1.03	0.11	859.5	14.8	58.10	FRWY
(158, 105)	5555	5552	771	31	26.7	1575.2	1601.9	17.3	15.8	1.5	0.91	1.02	0.09	1108.9	18.8	59.00	FRWY
(128, 97)	3614	3619	453	17	23.8	1502.5	1428.4	23.7	23.1	. 0.6	0.97	0.95	0.02	723.2	11.5	63.11	FRWY
(156, 102)	4507	4509	934	11	17.9	1109.7	1076.9	14.3	13.7	0.6	0.96	0.97	0.04	825.2	13.3	61.83	FRWY
(109,7001)	1863	1859	0	4	1.1	60.3	68.7	2.2	2.1	. 0.1	0.96	1.14	0.04	930.6	17.7	52.67	RAMP
(102, 103)	3859	3854	575	34	26.4	1661.1	1583.7	24.6	23.9	0.8	0.97	0.95	0.03	772.4	12.3	62.93	FRWY
(160,7002)	650	650	0	0	0.5	26.3	28.9	2.7	2.7	0.0	0.99	1.10	0.01	325.0	5.9	54.62	RAMP
(7003, 106)	985	985	415	0	2.4	85.6	146.4	8.6	6.7	1.9	0.78	1.71	0.37	513.4	14.6	35.06	RAMP
(106, 103)	985	988	154	0	3.1	114.7	186.2	11.3	7.7	3.7	0.68	1.62	0.53	792.5	21.5	36.94	RAMP
(7004, 107)	735	736	77	0	0.9	37.9	52.3	4.0	3.1	. 0.8	0.79	1.38	0.29	395.0	9.1	43.39	RAMP
(107, 104)	736	738	405	0	1.8	69.0	105.7	8.6	6.1	. 2.5	0.71	1.53	0.44	458.5	11.7	39.18	RAMP
(110, 109)	1865	1863	48	2	1.2	65.7	74.3	2.4	2.3	0.1	0.97	1.13	0.04	932.2	17.6	53.06	RAMP
(96, 110)	1864	1865	42	1	0.9	47.3	53.5	1.7	1.7	0.1	0.97	1.13	0.04	932.3	17.6	53.08	RAMP

(127, 97)	373	373 23	9 0	1.2	41.9	71.1	11.4	7.4	4.0	0.65	1.70	0.60	319.2	9.0	35.37	RAMP
(96, 128)	4133	4128 117	1 13	18.8	1173.2	1127.8	16.4	15.9	0.5	0.97	0.96	0.03	825.9	13.2	62.41	FRWY
(128, 129)	514	516	1 1	1.7	88.2	101.2	11.8	11.3	0.5	0.96	1.15	0.05	511.8	9.8	52.32	RAMP
(132, 130)	5741	5741 116	2 12	14.3	853.6	859.7	9.0	8.3	0.7	0.92	1.01	0.08	1030.2	17.3	59.58	FRWY
(131, 130)	263	262	0 1	0.2	11.3	13.5	3.1	2.9	0.2	0.93	1.19	0.09	262.2	5.2	50.40	RAMP
(151, 132)	5040	5025 49	9 33	23.0	1422.0	1378.0	16.4	15.7	0.7	0.96	0.97	0.04	1007.2	16.3	61.92	FRWY
(105, 137)	4356	4357 73	6 18	16.2	1014.3	973.1	13.4	12.9	0.5	0.96	0.96	0.03	871.5	13.9	62.54	FRWY
(98, 138)	1412	1412	8 5	2.6	137.4	158.8	6.8	6.4	0.4	0.95	1.16	0.06	1373.8	26.5	51.90	RAMP
(138, 139)	1412	1412 12	1 0	1.0	53.5	60.7	2.6	2.5	0.1	0.96	1.13	0.04	706.0	13.4	52.86	RAMP
(141, 140)	1303	1303 39	0 0	3.1	104.4	183.2	8.4	5.2	3.2	0.62	1.76	0.66	651.5	19.1	34.18	RAMP
(140, 101)	1303	1302	0 1	4.0	184.3	239.3	11.0	9.3	1.8	0.84	1.30	0.21	1302.8	28.2	46.21	RAMP
(105, 143)	1196	1198	0 0	1.4	70.3	81.6	4.1	3.8	0.3	0.94	1.16	0.07	1196.9	23.2	51.64	RAMP
(7005, 127)	373	373 1	.3 0	0.3	8.6	17.1	2.3	1.6	0.8	0.67	1.99	0.65	220.3	7.3	30.10	RAMP
(129,7006)	516	515	0 1	0.6	23.0	34.0	4.0	3.4	0.6	0.85	1.47	0.21	257.6	6.3	40.68	RAMP
(147, 148)	443	442	0 1	0.7	34.8	44.1	6.0	5.6	0.3	0.94	1.27	0.07	442.2	9.3	47.32	RAMP
(148, 137)	442	442	0 0	0.5	25.6	30.1	4.1	3.8	0.3	0.93	1.18	0.09	442.0	8.7	51.04	RAMP
(163, 149)	5069	5054 181	.1 54	47.9	3038.3	2874.9	33.8	33.1	0.8	0.98	0.95	0.02	1019.2	16.1	63.41	FRWY
(311, 150)	6096	6094 57	8 18	23.0	1377.1	1377.3	13.5	12.5	1.0	0.93	1.00	0.07	1220.0	20.3	59.99	FRWY
(152, 153)	6005	6002 51	.3 6	3.9	227.4	233.9	2.3	2.1	0.2	0.90	1.03	0.10	1091.3	18.7	58.33	FRWY
(130, 152)	6003	6005 473	9 22	24.7	1478.5	1483.8	14.8	13.7	1.1	0.92	1.00	0.08	1123.3	18.8	59.79	FRWY
(100, 154)	3210	3210 24	3 15	15.9	1020.4	951.2	17.6	17.4	0.2	0.99	0.93	0.01	649.5	10.1	64.37	FRWY
(101, 155)	4503	4503 193	8 14	18.5	1109.3	1108.6	14.8	13.7	1.1	0.93	1.00	0.07	842.8	14.0	60.04	FRWY

(155, 156)	4503	4507	917	1	2.7	170.6	164.5	2.2	2.1	0.1	0.96	0.96	0.04	901.0	14.5	62.23	FRWY
(104, 157)	5571	5558	3136	29	27.2	1582.0	1632.8	17.6	15.8	1.8	0.90	1.03	0.11	1044.1	18.0	58.13	FRWY
(157, 158)	5558	5555	215	7	3.6	210.5	214.9	2.3	2.1	0.2	0.91	1.02	0.10	1111.6	18.9	58.79	FRWY
(137, 159)	4799	4802	1572	11	14.2	848.2	849.7	10.6	9.8	0.8	0.92	1.00	0.08	867.1	14.5	59.89	FRWY
(150, 151)	6094	6085	259	13	13.8	828.0	830.9	8.2	7.6	0.6	0.93	1.00	0.07	1217.8	20.4	59.79	FRWY
(325, 95)	4031	4022	795	37	39.8	2498.9	2386.5	35.6	34.5	1.1	0.97	0.96	0.03	805.3	12.8	62.82	FRWY
(102, 160)	650	650	7	0	0.9	51.7	56.9	5.2	5.2	0.0	0.99	1.10	0.01	325.0	6.0	54.56	RAMP
(98, 99)	2578	2571	302	22	17.4	1094.5	1041.2	24.3	23.6	0.6	0.97	0.95	0.02	515.1	8.2	63.07	FRWY
(99, 164)	2571	2569	193	11	11.4	721.2	681.8	15.9	15.6	0.3	0.98	0.95	0.02	513.9	8.1	63.47	FRWY
(295, 200)	2432	2431	462	6	5.7	269.4	343.9	8.5	8.4	0.1	0.98	1.28	0.02	967.8	20.6	47.01	FRWY
(203, 201)	2436	2434	33	3	1.4	84.6	81.0	1.8	1.7	0.1	0.96	0.96	0.03	1354.3	21.6	62.66	FRWY
(200, 199)	2184	2183	93	5	4.1	180.2	246.3	6.8	6.6	0.2	0.98	1.37	0.03	1091.3	24.9	43.90	FRWY
(179, 178)	1316	1314	53	4	2.3	124.6	139.2	6.3	6.2	0.1	0.98	1.12	0.02	658.1	12.3	53.71	FRWY
(180, 179)	1313	1316	180	0	4.6	249.0	277.4	12.7	12.4	0.2	0.98	1.11	0.02	536.5	10.0	53.86	FRWY
(181, 180)	1224	1221	37	3	2.1	115.0	127.8	6.3	6.2	0.1	0.98	1.11	0.02	611.0	11.3	54.00	FRWY
(199, 198)	2183	2182	155	7	5.2	226.8	311.9	8.6	8.3	0.3	0.97	1.38	0.04	1092.5	25.0	43.62	FRWY
(198, 197)	2435	2437	562	8	10.9	559.5	654.7	16.1	15.0	1.1	0.93	1.17	0.08	1027.8	20.0	51.27	FRWY
(197, 196)	2884	2882	747	14	15.8	818.9	949.0	19.8	18.6	1.1	0.94	1.16	0.07	1253.2	24.2	51.77	FRWY
(196, 195)	2882	2883	510	28	27.1	1410.3	1624.9	33.8	32.1	1.7	0.95	1.15	0.06	1442.5	27.7	52.07	FRWY
(182, 181)	1218	1224	139	5	7.3	395.8	439.5	21.6	21.2	0.4	0.98	1.11	0.02	611.4	11.3	54.04	FRWY
(183, 182)	1919	1919	196	11	10.2	545.5	611.9	19.1	18.6	0.5	0.97	1.12	0.03	960.0	17.9	53.49	FRWY
(184, 183)	1919	1919	485	12	12.9	704.0	776.8	24.1	23.8	0.3	0.99	1.10	0.01	968.5	17.8	54.38	FRWY
(205, 204)	450	448	0	2	0.4	15.7	21.8	2.9	2.8	0.1	0.96	1.39	0.06	449.2	10.4	43.01	RAMP

(204, 197)	448	447	0	2	0.6	26.1	36.2	4.9	4.7	0.2	0.97	1.39	0.05	447.6	10.3	43.29	RAMP
(182, 193)	701	702	94	1	1.4	78.1	82.1	7.0	6.2	0.9	0.88	1.05	0.13	470.8	8.2	57.07	RAMP
(193, 194)	702	700	42	2	0.8	50.6	50.2	4.3	4.0	0.3	0.93	0.99	0.07	336.8	5.6	60.47	RAMP
(208, 209)	92	92	0	0	0.2	7.9	9.9	6.5	6.2	0.2	0.97	1.25	0.04	92.0	1.9	47.91	RAMP
(207, 198)	253	253	0	0	0.4	16.0	22.4	5.3	5.1	0.2	0.95	1.40	0.06	253.0	5.9	42.79	RAMP
(206, 207)	252	253	0	0	0.2	7.2	11.7	2.8	2.6	0.2	0.92	1.64	0.13	252.0	6.9	36.61	RAMP
(200, 210)	247	247	0	0	0.3	12.8	17.4	4.2	4.2	0.1	0.98	1.36	0.02	247.0	5.6	44.03	RAMP
(210, 211)	247	247	0	0	0.2	10.1	14.9	3.6	3.6	0.0	1.00	1.47	0.00	247.0	6.1	40.73	RAMP
(178, 202)	1314	1313	10	2	0.7	38.3	42.2	1.9	1.6	0.3	0.84	1.10	0.18	657.0	12.0	54.54	FRWY
(139,7009)	1412	1411	0	2	0.8	44.4	50.4	2.1	2.1	0.1	0.96	1.14	0.04	705.6	13.4	52.84	RAMP
(7010, 141)	1305	1303	377	2	2.4	111.8	146.6	6.5	5.4	1.1	0.83	1.31	0.22	680.2	14.9	45.77	RAMP
(211,7011)	247	246	0	1	0.3	11.1	19.7	4.8	4.6	0.2	0.97	1.77	0.06	247.0	7.3	33.90	RAMP
(7012, 206)	252	252	0	0	0.2	6.3	11.4	2.3	2.2	0.1	0.95	1.81	0.10	294.5	8.9	33.19	RAMP
(7014, 205)	450	450	0	1	0.6	22.7	33.1	4.1	3.8	0.3	0.92	1.46	0.12	483.9	11.8	41.16	RAMP
(194,7015)	700	699	0	1	0.4	22.5	23.9	2.0	1.8	0.3	0.87	1.06	0.14	233.3	4.1	56.56	RAMP
(201, 295)	2434	2432	33	8	6.0	343.4	361.8	8.9	8.9	0.1	0.99	1.05	0.01	1216.7	21.4	56.94	FRWY
(149, 298)	5054	5060	394	20	23.0	1438.0	1379.2	16.3	15.8	0.6	0.96	0.96	0.03	1012.4	16.2	62.56	FRWY
(533, 299)	6121	6124	2398	4	13.2	643.5	793.0	7.8	6.0	1.8	0.77	1.23	0.28	1053.5	21.6	48.68	FRWY
(299, 300)	6815	6808	1997	42	34.2	1934.0	2054.1	18.1	15.8	2.3	0.87	1.06	0.13	1284.5	22.7	56.49	FRWY
(300, 301)	6808	6805	1093	57	54.6	3345.3	3274.8	28.9	27.3	1.6	0.95	0.98	0.05	1361.3	22.2	61.29	FRWY
(301, 302)	6805	6813	3973	28	26.4	1611.0	1582.2	13.9	13.1	0.8	0.94	0.98	0.06	1224.8	20.0	61.09	FRWY
(302, 303)	6813	6812	6199	32	31.7	1934.8	1903.4	16.8	15.8	0.9	0.94	0.98	0.05	972.9	16.0	60.99	FRWY

(303, 304)	6055	6052 1983	16	18.8 1157.2	1127.9	11.2	10.7	0.5	0.96	0.97	0.04	1009.3	16.4	61.56	FRWY
(304, 305)	5251	5243 1651	14	15.0 908.1	898.5	10.3	9.6	0.7	0.94	0.99	0.06	1023.7	16.9	60.64	FRWY
(305, 306)	5243	5253 868	18	24.0 1491.7	1442.5	16.5	15.9	0.6	0.96	0.97	0.03	875.1	14.1	62.04	FRWY
(306, 307)	4177	4173 533	23	23.7 1485.3	1419.2	20.4	19.8	0.6	0.97	0.96	0.03	834.8	13.3	62.80	FRWY
(187, 310)	5025	5027 1197	8	10.9 643.4	655.1	7.8	7.1	0.7	0.91	1.02	0.09	887.0	15.1	58.93	FRWY
(310, 311)	6083	6096 3464	25	29.5 1730.6	1770.9	17.4	15.8	1.6	0.91	1.02	0.10	1114.3	19.0	58.63	FRWY
(159, 312)	4802	4805 169	6	8.4 515.9	505.1	6.3	6.0	0.3	0.94	0.98	0.05	960.8	15.7	61.28	FRWY
(312, 313)	4805	4804 241	12	13.8 848.9	828.4	10.3	9.9	0.5	0.96	0.98	0.04	960.8	15.6	61.49	FRWY
(248, 314)	3877	3870 287	21	17.7 1100.7	1064.4	16.5	15.9	0.6	0.96	0.97	0.04	774.9	12.5	62.04	FRWY
(314, 315)	2980	2980 149	6	6.5 410.3	389.8	7.8	7.6	0.2	0.97	0.95	0.02	595.9	9.4	63.15	FRWY
(555, 316)	4554	4539 1581	41	30.4 1906.8	1825.8	24.1	23.3	0.8	0.97	0.96	0.03	658.4	10.5	62.66	FRWY
(316, 317)	4539	4528 1250	24	13.6 858.6	816.6	10.8	10.5	0.3	0.97	0.95	0.03	755.5	12.0	63.08	FRWY
(317, 318)	4528	4523 539	14	20.6 1286.2	1237.7	16.4	15.8	0.6	0.96	0.96	0.04	848.9	13.6	62.35	FRWY
(318, 319)	5068	5084 1161	17	23.7 1441.6	1422.5	16.8	15.8	1.0	0.94	0.99	0.06	957.4	15.7	60.81	FRWY
(319, 320)	5084	5088 245	2	11.3 707.9	680.7	8.0	7.7	0.3	0.96	0.96	0.04	1017.0	16.3	62.40	FRWY
(320, 321)	5088	5082 2501	28	26.3 1606.4	1575.6	18.6	17.5	1.1	0.94	0.98	0.06	1017.0	16.6	61.18	FRWY
(321, 322)	5082	5077 1019	23	23.5 1443.5	1412.7	16.7	15.9	0.8	0.96	0.98	0.04	881.1	14.4	61.31	FRWY
(322, 323)	3664	3654 367	17	19.5 1227.3	1170.2	19.2	18.6	0.6	0.97	0.95	0.03	732.2	11.6	62.93	FRWY
(323, 324)	3834	3827 408	17	10.4 648.1	622.2	9.8	9.4	0.4	0.96	0.96	0.03	695.5	11.1	62.50	FRWY
(324, 325)	4039	4031 639	24	18.3 1147.4	1099.5	16.3	15.8	0.6	0.97	0.96	0.03	762.0	12.2	62.61	FRWY
(7023, 147)	443	443 0	0	0.5 17.1	27.1	3.3	2.8	0.5	0.84	1.58	0.25	487.8	12.9	37.88	RAMP
(143,7025)	1198	1199 0	0	0.8 34.5	46.3	2.3	2.0	0.3	0.87	1.34	0.18	1198.3	26.8	44.70	RAMP
(144, 131)	263	263 0	0	0.2 7.3	9.0	2.1	2.0	0.1	0.98	1.23	0.03	263.0	5.4	48.59	RAMP

(7022, 144)	265	263	0	2	0.2	9.3	12.7	2.6	2.3	0.3	0.89	1.35	0.14	292.1	6.6	44.28	RAMP
(347, 348)	932	933	41	0	0.7	38.5	44.8	2.9	2.8	0.0	0.99	1.16	0.01	466.5	9.0	51.60	RAMP
(348, 349)	933	935	63	0	1.2	59.9	73.5	4.7	4.6	0.1	0.98	1.23	0.03	466.8	9.5	48.94	RAMP
(560, 370)	2487	2489	503	4	3.7	235.6	220.8	5.3	5.3	0.1	0.99	0.94	0.01	414.6	6.5	64.02	FRWY
(370, 371)	2489	2494	770	8	8.4	520.6	502.5	12.1	11.6	0.5	0.96	0.97	0.04	421.9	6.8	62.16	FRWY
(371, 372)	2494	2492	853	13	11.2	695.3	671.1	16.2	15.5	0.7	0.96	0.97	0.04	532.7	8.6	62.16	FRWY
(372, 373)	3248	3248	1586	5	9.3	565.2	560.4	10.4	9.7	0.7	0.93	0.99	0.07	649.5	10.7	60.51	FRWY
(373, 374)	3248	3250	149	3	5.7	357.6	342.8	6.3	6.1	0.2	0.97	0.96	0.03	649.9	10.4	62.58	FRWY
(374, 375)	3250	3251	223	3	9.1	565.6	547.4	10.1	9.8	0.3	0.97	0.97	0.03	649.9	10.5	61.99	FRWY
(375, 376)	2530	2523	227	17	11.6	733.7	696.8	16.5	16.1	0.4	0.97	0.95	0.02	631.8	10.0	63.18	FRWY
(376, 377)	2812	2811	482	5	6.3	393.4	379.7	8.1	7.8	0.3	0.96	0.97	0.04	609.9	9.8	62.17	FRWY
(377, 378)	3164	3168	1090	11	12.6	779.4	758.6	14.4	13.7	0.7	0.95	0.97	0.05	728.4	11.8	61.64	FRWY
(381, 382)	997	996	22	1	1.0	41.3	59.3	3.6	3.5	0.0	0.99	1.43	0.01	498.2	11.9	41.83	RAMP
(378, 384)	3168	3168	43	2	1.9	120.0	114.8	2.2	2.1	0.1	0.97	0.96	0.03	792.0	12.6	62.71	FRWY
(384, 385)	3168	3174	211	10	12.5	780.6	747.7	14.2	13.7	0.4	0.97	0.96	0.03	792.6	12.7	62.64	FRWY
(385, 386)	2770	2774	380	11	21.1	1338.6	1267.2	27.5	26.8	0.6	0.98	0.95	0.02	692.1	10.9	63.38	FRWY
(402, 403)	1056	1057	479	1	3.2	145.7	193.3	11.0	9.8	1.2	0.89	1.33	0.14	528.2	11.7	45.22	RAMP
(401, 381)	997	997	15	1	0.8	39.1	46.5	2.8	2.8	0.0	1.00	1.19	0.01	498.7	9.9	50.45	RAMP
(395, 396)	2722	2723	199	5	9.5	595.6	569.9	12.6	12.2	0.4	0.97	0.96	0.03	680.7	10.9	62.70	FRWY
(394, 395)	3709	3712	117	6	6.4	393.4	386.7	6.3	6.0	0.2	0.96	0.98	0.04	741.9	12.2	61.05	FRWY
(393, 394)	3710	3709	320	13	10.6	660.5	635.2	10.3	9.9	0.4	0.96	0.96	0.04	742.0	11.9	62.40	FRWY
(392, 393)	3711	3710	1027	4	6.5	393.5	389.6	6.3	5.9	0.4	0.93	0.99	0.06	742.0	12.2	60.60	FRWY

(391, 392)	3130	3125	1594	14	10.4	640.2	622.9	12.0	11.4	0.6	0.95	0.97	0.05	707.5	11.5	61.67	FRWY
(390, 391)	2769	2771	291	9	13.0	817.7	781.5	16.9	16.4	0.5	0.97	0.96	0.03	692.8	11.0	62.78	FRWY
(389, 390)	3464	3465	310	13	15.9	983.8	954.0	16.5	15.9	0.6	0.96	0.97	0.04	865.8	14.0	61.88	FRWY
(388, 389)	3468	3464	114	7	5.2	322.4	309.7	5.4	5.2	0.2	0.96	0.96	0.03	866.7	13.9	62.46	FRWY
(387, 388)	3463	3468	1397	11	15.8	984.8	948.9	16.4	15.8	0.6	0.96	0.96	0.04	806.2	12.9	62.27	FRWY
(166, 404)	3470	3473	162	9	7.8	493.3	470.8	8.1	7.9	0.2	0.98	0.95	0.02	868.2	13.8	62.87	FRWY
(404, 387)	3222	3221	355	17	15.7	990.0	942.6	17.6	17.1	0.5	0.97	0.95	0.03	805.6	12.8	63.01	FRWY
(306, 405)	1076	1077	72	2	1.9	100.6	112.4	6.3	6.1	0.1	0.98	1.12	0.03	538.5	10.0	53.66	RAMP
(558, 406)	1077	1079	61	1	1.5	67.3	89.7	5.0	4.9	0.1	0.98	1.33	0.03	467.8	10.4	45.06	FRWY
(351, 408)	936	938	229	1	1.3	56.2	79.8	5.1	4.8	0.3	0.94	1.42	0.09	468.3	11.1	42.28	RAMP
(408, 409)	938	937	103	3	2.7	110.8	160.5	10.3	9.4	0.8	0.92	1.45	0.12	633.3	15.3	41.44	RAMP
(410, 405)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY
(413, 409)	1080	1073	93	8	3.5	155.6	211.5	11.8	11.6	0.2	0.98	1.36	0.02	537.8	12.2	44.15	FRWY
(349, 350)	935	935	116	2	4.2	205.8	250.7	16.1	15.8	0.2	0.98	1.22	0.02	467.5	9.5	49.25	RAMP
(350, 351)	935	936	73	0	3.5	155.1	207.1	13.3	13.1	0.2	0.99	1.33	0.02	467.6	10.4	44.95	RAMP
(559, 407)	2008	2013	733	12	12.0	584.1	722.0	21.5	20.9	0.6	0.97	1.24	0.04	670.6	13.8	48.55	FRWY
(407, 411)	399	400	0	0	0.6	31.1	38.0	5.7	5.6	0.1	0.98	1.22	0.02	399.5	8.1	49.15	FRWY
(406, 413)	1079	1080	75	5	2.0	87.1	118.8	6.6	6.5	0.1	0.98	1.36	0.03	539.9	12.3	44.01	FRWY
(161,7031)	686	685	0	1	0.9	40.5	51.3	4.5	4.2	0.2	0.95	1.27	0.07	342.7	7.2	47.40	FRWY
(7032, 435)	755	755	0	1	0.8	36.3	49.2	3.6	3.2	0.4	0.88	1.36	0.16	814.8	18.4	44.24	RAMP
(435, 436)	755	756	0	0	0.7	31.6	39.5	3.1	3.0	0.1	0.96	1.25	0.05	755.3	15.7	48.02	RAMP
(436, 372)	756	756	0	0	0.8	41.5	49.7	3.9	3.6	0.3	0.91	1.20	0.11	756.0	15.1	50.14	RAMP
(395, 437)	990	992	46	0	1.9	100.9	112.0	6.8	6.7	0.1	0.98	1.11	0.02	495.2	9.2	54.08	RAMP

(437,7033)	992	989	0	3	1.5	73.2	89.5	5.4	5.2	0.2	0.96	1.22	0.05	495.5	10.1	49.06	RAMP
(7034, 440)	667	667	0	0	0.7	29.0	39.2	3.2	2.9	0.4	0.89	1.35	0.15	725.9	16.3	44.42	RAMP
(440, 441)	667	667	0	0	0.5	23.9	29.5	2.7	2.6	0.1	0.97	1.24	0.04	667.0	13.7	48.52	RAMP
(7035, 443)	289	290	0	1	0.3	11.6	20.5	3.9	2.9	1.0	0.75	1.77	0.44	317.4	9.4	33.89	RAMP
(443, 444)	290	292	0	0	0.3	11.5	15.4	3.2	2.8	0.3	0.90	1.34	0.14	291.0	6.5	44.76	RAMP
(444, 376)	292	289	0	5	0.7	38.9	44.4	9.1	8.8	0.4	0.96	1.14	0.05	291.0	5.5	52.63	RAMP
(375, 442)	721	720	14	1	0.9	49.5	55.1	4.6	4.5	0.1	0.98	1.11	0.02	360.3	6.7	53.91	RAMP
(442,7036)	720	720	0	1	0.7	34.1	40.8	3.4	3.3	0.1	0.97	1.20	0.04	359.9	7.2	50.13	RAMP
(7037, 454)	350	350	0	0	0.4	16.5	21.9	3.5	3.1	0.3	0.90	1.33	0.13	378.6	8.4	45.17	RAMP
(454, 455)	350	351	0	0	0.3	16.6	20.3	3.5	3.4	0.1	0.98	1.22	0.02	350.1	7.1	49.21	RAMP
(455, 377)	351	353	0	0	0.5	25.4	29.2	5.0	4.7	0.3	0.95	1.15	0.06	351.5	6.7	52.21	RAMP
(390, 458)	696	695	0	5	1.7	90.7	103.6	8.9	8.6	0.4	0.96	1.14	0.04	696.1	13.2	52.54	RAMP
(456, 457)	359	359	0	0	0.2	10.9	14.4	2.4	2.2	0.2	0.91	1.32	0.12	359.0	7.9	45.44	RAMP
(457, 391)	359	359	0	0	0.2	9.9	12.3	2.1	1.8	0.2	0.89	1.24	0.14	359.0	7.4	48.55	RAMP
(7038, 456)	359	359	0	0	0.2	9.3	14.2	2.1	1.6	0.4	0.79	1.52	0.32	414.8	10.5	39.37	RAMP
(458,7039)	695	693	0	2	0.6	27.7	34.3	3.0	2.8	0.2	0.94	1.24	0.07	693.3	14.3	48.54	RAMP
(7040, 466)	587	586	0	1	0.6	26.5	36.3	3.4	3.0	0.4	0.88	1.37	0.17	637.1	14.5	43.87	RAMP
(466, 467)	586	585	0	2	0.5	24.3	30.1	3.1	3.0	0.1	0.96	1.24	0.04	585.3	12.1	48.37	RAMP
(467, 392)	585	586	0	1	0.6	32.9	38.9	4.0	3.7	0.3	0.92	1.18	0.09	585.7	11.5	50.86	RAMP
(309,7043)	1451	1452	0	3	2.3	108.9	135.7	5.6	5.4	0.2	0.97	1.25	0.04	726.3	15.1	48.17	FRWY
(7044, 483)	548	545	0	4	0.9	42.4	55.9	5.9	5.3	0.5	0.91	1.32	0.12	572.8	12.6	45.54	RAMP
(484, 318)	545	545	0	1	0.7	36.9	43.5	4.8	4.4	0.4	0.92	1.18	0.09	544.9	10.7	50.96	RAMP

(483, 484)	545	545	0	0	0.5	26.7	33.0	3.6	3.5	0.1	0.97	1.23	0.04	545.0	11.2	48.61	RAMP
(303, 487)	757	757	0	0	0.8	42.7	48.6	3.8	3.7	0.1	0.96	1.14	0.04	757.0	14.3	52.78	RAMP
(487, 488)	757	757	0	. 0	1.5	71.3	87.2	6.9	6.7	0.2	0.97	1.22	0.04	757.0	15.4	49.00	RAMP
(488,7046)	757	756	0	1	0.9	41.8	53.3	4.2	4.0	0.2	0.95	1.28	0.07	756.0	16.1	47.05	RAMP
(489, 490)	1219	1218	95	1	2.0	68.3	121.4	6.0	4.1	1.9	0.68	1.78	0.57	910.4	27.0	33.74	RAMP
(7047, 489)	1220	1219	589	1	1.6	53.5	94.3	4.3	2.9	1.3	0.68	1.76	0.56	663.3	19.5	34.06	RAMP
(7045, 531)	694	692	126	2	0.9	33.3	56.8	4.6	2.5	2.1	0.54	1.70	0.78	374.1	10.6	35.20	RAMP
(531, 532)	692	692	4	0	0.6	27.3	36.0	3.1	2.2	0.9	0.70	1.32	0.39	467.3	10.3	45.47	RAMP
(532, 299)	692	691	0	1	0.5	27.2	31.5	2.7	2.2	0.5	0.80	1.16	0.23	691.2	13.3	51.92	RAMP
(322, 522)	1413	1412	18	2	1.2	63.4	70.1	3.0	2.9	0.0	0.99	1.11	0.02	705.8	13.0	54.21	RAMP
(7049, 523)	180	180	0	0	0.2	6.8	10.7	3.3	3.1	0.2	0.94	1.58	0.09	198.3	5.2	37.95	RAMP
(523, 524)	180	181	0	0	0.3	14.2	18.8	6.2	5.6	0.6	0.90	1.32	0.13	180.6	4.0	45.31	RAMP
(524, 323)	181	180	0	3	0.3	13.7	15.7	5.2	4.9	0.3	0.95	1.14	0.06	181.5	3.5	52.42	RAMP
(298, 533)	4402	4397	640	30	23.6	1473.1	1415.5	19.3	18.6	0.7	0.96	0.96	0.04	879.9	14.1	62.44	FRWY
(7050, 529)	1724	1724	758	0	2.2	63.9	130.2	4.1	3.0	1.1	0.74	2.04	0.53	953.3	32.4	29.46	RAMP
(529, 530)	1724	1724	117	0	1.8	53.2	108.9	3.8	2.2	1.6	0.59	2.05	0.84	959.1	32.7	29.32	RAMP
(530, 533)	1724	1724	0	0	3.9	162.9	236.4	8.2	6.2	2.0	0.75	1.45	0.36	1724.0	41.7	41.36	RAMP
(7051, 525)	212	212	0	0	0.2	9.6	12.5	3.3	3.0	0.3	0.91	1.31	0.11	230.4	5.0	45.74	RAMP
(525, 526)	212	212	0	0	0.3	16.0	19.4	5.5	5.4	0.1	0.99	1.22	0.02	212.0	4.3	49.36	RAMP
(526, 324)	212	212	0	0	0.4	21.0	23.7	6.7	6.5	0.3	0.96	1.13	0.04	212.0	4.0	53.04	RAMP
(298, 534)	658	659	0	2	1.0	60.8	59.3	5.4	5.1	0.3	0.94	0.98	0.05	659.1	10.7	61.50	RAMP
(534,7052)	659	659	0	1	0.6	33.3	34.8	3.2	2.8	0.4	0.88	1.05	0.12	658.9	11.5	57.39	RAMP
(313, 347)	934	932	40	2	1.4	72.1	81.3	5.2	5.1	0.2	0.97	1.13	0.04	737.4	13.9	53.20	RAMP

(522,	7048)	1412	1412	0	1	1.3	66.3	77.6	3.3	3.2	0.1	0.98	1.17	0.02	705.9	13.8	51.30	RAMP
(405,	558)	1077	1077	7	0	0.8	42.6	49.3	2.7	2.7	0.0	0.99	1.16	0.01	359.0	6.9	51.90	FRWY
(409,	559)	2010	2008	175	2	2.9	125.2	171.3	5.1	5.0	0.1	0.98	1.37	0.03	669.8	15.3	43.86	FRWY
(369,	560)	2484	2487	233	6	7.6	470.9	456.5	11.0	10.5	0.5	0.95	0.97	0.04	414.4	6.7	61.89	FRWY
((97,	563)	3992	3986	769	18	18.2	1133.4	1090.4	16.4	15.8	0.6	0.96	0.96	0.04	752.7	12.1	62.36	FRWY
((10,	11)	1331	1330	39	3	2.3	148.8	140.5	6.3	6.2	0.1	0.98	0.94	0.02	443.2	7.0	63.54	FRWY
((11,	12)	1330	1334	46	3	2.3	145.1	137.0	6.2	6.1	0.1	0.98	0.94	0.02	444.1	7.0	63.53	FRWY
((12,	13)	1334	1333	15	1	1.3	83.8	79.2	3.6	3.5	0.1	0.98	0.94	0.02	444.5	7.0	63.55	FRWY
((13,	14)	1333	1332	22	2	1.3	84.4	79.7	3.6	3.5	0.1	0.98	0.94	0.02	444.5	7.0	63.50	FRWY
((14,	15)	1332	1331	22	1	1.4	86.5	81.7	3.7	3.6	0.1	0.98	0.95	0.02	443.7	7.0	63.48	FRWY
(15,	16)	2507	2510	381	5	7.9	474.9	471.2	11.3	10.5	0.7	0.93	0.99	0.07	626.9	10.4	60.47	FRWY
((16,	17)	2510	2511	74	3	3.8	237.8	226.4	5.4	5.3	0.1	0.97	0.95	0.02	627.9	10.0	63.05	FRWY
(17,	18)	2511	2511	152	5	7.5	475.0	451.8	10.8	10.5	0.3	0.97	0.95	0.02	627.6	10.0	63.08	FRWY
((18,	19)	2511	2508	143	8	6.7	424.9	404.0	9.7	9.4	0.2	0.98	0.95	0.02	627.4	9.9	63.11	FRWY
((19,	20)	2508	2508	131	3	5.9	370.4	352.5	8.4	8.2	0.2	0.97	0.95	0.02	626.9	9.9	63.05	FRWY
((20,	21)	2508	2512	135	2	5.9	373.6	355.8	8.5	8.3	0.2	0.97	0.95	0.03	627.4	10.0	63.00	FRWY
(21,	22)	2512	2512	92	4	4.2	263.1	250.4	6.0	5.8	0.2	0.97	0.95	0.02	627.9	10.0	63.04	FRWY
((22,	23)	2512	2512	197	8	8.9	561.7	534.2	12.8	12.4	0.3	0.97	0.95	0.02	627.8	10.0	63.08	FRWY
(24,	25)	2508	2499	313	13	6.0	372.3	359.8	8.6	8.3	0.4	0.96	0.97	0.04	626.1	10.1	62.08	FRWY
(25,	26)	2499	2498	80	4	3.8	236.5	226.3	5.4	5.3	0.2	0.97	0.96	0.03	624.5	10.0	62.73	FRWY
(26,	27)	2498	2502	105	10	7.8	473.1	469.2	11.3	10.9	0.4	0.97	0.99	0.03	624.5	10.3	60.49	FRWY
(190,	255)	767	766	44	1	2.3	145.1	136.3	10.7	10.5	0.2	0.98	0.94	0.02	383.1	6.0	63.87	FRWY

(25	5,	257)	1202	1207	568	1	3.0	182.5	179.3	8.9	8.4	0.5	0.94	0.98	0.06	469.9	7.7	61.07	FRWY
(25	7,	280)	1207	1208	43	1	1.8	114.3	108.7	5.4	5.3	0.1	0.97	0.95	0.03	603.5	9.6	63.08	FRWY
(28	Ο,	282)	1578	1586	503	3	7.2	449.9	432.6	16.4	15.8	0.6	0.96	0.96	0.04	625.1	10.0	62.39	FRWY
(28	2,	32)	1586	1586	91	0	3.6	226.2	215.3	8.1	7.9	0.2	0.97	0.95	0.03	793.0	12.6	63.03	RAMP
(3	2,	33)	2500	2497	133	7	5.6	354.8	335.3	8.1	7.9	0.2	0.98	0.94	0.02	499.6	7.9	63.50	FRWY
(3	З,	34)	2497	2490	134	9	5.6	354.5	334.3	8.0	7.9	0.1	0.98	0.94	0.02	499.1	7.8	63.61	FRWY
(3	4,	35)	2490	2491	100	3	5.6	357.1	336.5	8.1	8.0	0.1	0.98	0.94	0.02	498.2	7.8	63.68	FRWY
(3	5,	36)	2491	2494	101	3	5.8	372.4	350.7	8.4	8.3	0.1	0.98	0.94	0.02	498.4	7.8	63.70	FRWY
(3	6,	37)	2494	2496	130	2	6.4	410.9	386.9	9.3	9.1	0.2	0.98	0.94	0.02	499.3	7.8	63.72	FRWY
(3	7,	54)	2496	2490	148	13	7.4	470.4	442.8	10.7	10.5	0.2	0.98	0.94	0.02	498.7	7.8	63.74	FRWY
(5	4,	55)	2601	2604	219	4	5.1	320.4	303.6	7.0	6.8	0.2	0.98	0.95	0.02	457.2	7.2	63.32	FRWY
(5	5,	56)	2604	2603	80	2	3.9	246.5	232.6	5.4	5.3	0.1	0.98	0.94	0.02	520.7	8.2	63.59	FRWY
(5	6,	57)	2812	2815	425	6	8.4	532.8	506.6	10.8	10.5	0.3	0.97	0.95	0.02	516.2	8.2	63.10	FRWY
(5	7,	58)	2815	2817	71	2	4.2	266.6	251.6	5.4	5.3	0.1	0.98	0.94	0.02	563.1	8.9	63.58	FRWY
(5	8,	59)	2817	2818	731	3	4.9	309.5	291.9	6.2	6.1	0.1	0.98	0.94	0.02	563.6	8.9	63.62	FRWY
(5	9,	60)	2818	2809	385	14	7.1	449.1	426.9	9.1	8.9	0.2	0.97	0.95	0.02	562.6	8.9	63.13	FRWY
(6	0,	61)	2809	2812	1881	7	12.9	798.7	776.0	16.6	15.9	0.7	0.96	0.97	0.04	562.3	9.1	61.76	FRWY
(6	1,	62)	2168	2166	49	4	6.7	410.4	400.6	11.1	10.7	0.3	0.97	0.98	0.03	433.3	7.1	61.46	FRWY
(6	2,	63)	1207	1207	75	0	4.0	253.5	237.5	11.8	11.7	0.1	0.99	0.94	0.01	301.7	4.7	64.04	FRWY
(6	3,	64)	1207	1209	78	3	4.1	263.2	246.4	12.2	12.1	0.1	0.99	0.94	0.01	302.3	4.7	64.07	FRWY
(6	4,	65)	1530	1531	467	6	4.7	289.6	279.8	11.0	10.5	0.4	0.96	0.97	0.04	343.7	5.5	62.10	FRWY
(6	5,	66)	1531	1534	46	0	2.3	145.1	137.0	5.4	5.3	0.1	0.98	0.94	0.02	383.0	6.0	63.56	FRWY
(6	6,	67)	1534	1532	821	13	4.3	272.0	256.2	10.0	9.9	0.2	0.98	0.94	0.02	382.8	6.0	63.69	FRWY

(67	, 68)	1532	1534	116	2	6.1	377.5	365.1	14.3	13.7	0.6	0.96	0.97	0.04	383.3	6.2	62.04	FRWY
(68	, 69)	1534	1536	406	3	7.1	436.0	423.7	16.6	16.2	0.4	0.98	0.97	0.02	315.3	5.1	61.73	FRWY
(69	, 70)	542	540	25	2	2.7	173.9	162.2	18.0	17.8	0.1	0.99	0.93	0.01	135.5	2.1	64.36	FRWY
(70	, 71)	540	540	8	1	1.2	79.6	74.0	8.2	8.2	0.0	0.99	0.93	0.00	135.0	2.1	64.52	FRWY
(71	, 72)	668	670	182	5	3.0	190.0	178.6	16.0	15.8	0.2	0.98	0.94	0.01	155.5	2.4	63.82	FRWY
(72	, 73)	670	668	306	3	4.4	280.3	261.1	23.4	23.3	0.2	0.99	0.93	0.01	167.0	2.6	64.42	FRWY
(73	, 74)	668	671	79	3	3.0	190.3	178.3	16.0	15.8	0.2	0.99	0.94	0.01	182.7	2.9	64.06	FRWY
(74	, 75)	671	666	54	6	4.1	265.4	248.0	22.3	22.1	0.2	0.99	0.93	0.01	222.5	3.5	64.20	FRWY
(75	, 76)	666	669	8	0	1.0	66.5	62.2	5.6	5.5	0.1	0.99	0.94	0.01	222.5	3.5	64.16	FRWY
(76	, 77)	669	670	5	1	0.6	40.7	38.1	3.4	3.4	0.0	0.99	0.93	0.01	223.2	3.5	64.19	FRWY
(568	, 569)	1057	1057	19	0	0.7	40.0	41.1	2.3	2.1	0.3	0.89	1.03	0.11	352.3	6.0	58.39	FRWY
(569	, 570)	1057	1055	53	3	3.9	247.8	236.6	13.4	12.9	0.5	0.96	0.95	0.04	351.9	5.6	62.84	FRWY
(570	, 571)	1055	1052	28	4	2.6	164.4	155.1	8.8	8.6	0.2	0.97	0.94	0.03	351.2	5.5	63.62	FRWY
(571	, 572)	1052	1048	103	16	4.7	299.1	282.0	16.1	15.6	0.4	0.97	0.94	0.03	287.1	4.5	63.63	FRWY
(572	, 573)	1048	1047	232	1	6.8	435.6	407.9	23.4	22.9	0.5	0.98	0.94	0.02	262.0	4.1	64.08	FRWY
(573	, 574)	1047	1048	73	1	4.6	297.5	278.1	15.9	15.7	0.3	0.98	0.93	0.01	261.8	4.1	64.17	FRWY
(574	, 575)	986	987	61	4	3.7	236.7	220.6	13.4	13.2	0.2	0.99	0.93	0.01	246.8	3.8	64.38	FRWY
(575	, 576)	987	987	72	5	5.1	325.7	303.4	18.4	18.2	0.3	0.99	0.93	0.01	247.1	3.8	64.40	FRWY
(576	, 577)	2719	2717	2400	14	13.0	772.5	780.7	17.2	15.7	1.5	0.91	1.01	0.09	632.3	10.7	59.37	FRWY
(577	, 578)	2717	2718	175	4	10.3	656.7	620.9	13.7	13.4	0.4	0.97	0.95	0.02	679.3	10.7	63.46	FRWY
(578	, 579)	2718	2719	876	9	8.7	546.9	524.7	11.6	11.1	0.5	0.96	0.96	0.04	679.8	10.9	62.53	FRWY
(579	, 580)	2719	2715	104	4	4.1	257.2	245.6	5.4	5.2	0.2	0.96	0.95	0.03	679.1	10.8	62.84	FRWY

(580, 581)	2715	2717	170	5	8.2	514.1	493.5	10.9	10.6	0.4	0.97	0.96	0.03	678.6	10.9	62.50	FRWY
(581, 582)	2168	2166	132	11	6.7	429.0	403.8	11.2	11.0	0.2	0.98	0.94	0.02	541.8	8.5	63.73	FRWY
(582, 583)	2166	2164	163	17	8.0	509.7	479.6	13.3	13.0	0.3	0.98	0.94	0.02	541.3	8.5	63.77	FRWY
(583, 584)	2928	2925	1176	9	9.1	554.2	547.4	11.2	10.5	0.7	0.93	0.99	0.06	657.6	10.8	60.74	FRWY
(584, 585)	3984	4003	2481	20	19.4	1133.7	1165.2	17.5	15.8	1.7	0.90	1.03	0.10	880.3	15.1	58.38	FRWY
(585, 586)	4003	4008	229	3	8.9	544.8	534.0	8.0	7.5	0.5	0.94	0.98	0.06	1001.6	16.4	61.22	FRWY
(586, 587)	4008	4011	118	5	8.0	497.4	478.1	7.2	6.9	0.3	0.96	0.96	0.04	1002.4	16.1	62.43	FRWY
(587, 588)	4011	4016	99	2	6.1	380.1	364.9	5.5	5.2	0.2	0.96	0.96	0.04	1003.6	16.1	62.51	FRWY
(588, 589)	4016	4020	224	6	12.3	760.7	737.1	11.0	10.5	0.5	0.96	0.97	0.04	1004.2	16.2	61.92	FRWY
(589, 590)	3422	3424	188	4	8.4	527.5	502.6	8.8	8.5	0.3	0.97	0.95	0.03	826.4	13.1	62.97	FRWY
(590, 591)	3424	3419	218	9	6.3	398.0	377.1	6.6	6.4	0.2	0.97	0.95	0.02	684.6	10.8	63.33	FRWY
(591, 592)	3419	3410	184	9	7.0	441.7	417.3	7.3	7.2	0.2	0.98	0.94	0.02	683.0	10.8	63.51	FRWY
(592, 593)	3410	3396	2936	19	10.2	645.2	611.6	10.8	10.5	0.3	0.97	0.95	0.03	681.4	10.8	63.30	FRWY
(593, 594)	3396	3395	419	9	5.2	321.5	314.8	5.6	5.2	0.3	0.94	0.98	0.06	679.1	11.1	61.28	FRWY
(594, 595)	3395	3387	268	15	10.3	642.4	615.6	10.9	10.5	0.4	0.96	0.96	0.04	678.4	10.8	62.61	FRWY
(595, 596)	3387	3399	20	3	7.2	426.7	432.8	7.7	7.3	0.3	0.96	1.01	0.04	678.6	11.5	59.16	FRWY
(596, 597)	966	972	40	1	2.0	130.4	122.4	7.6	7.5	0.1	0.98	0.94	0.02	322.9	5.1	63.92	FRWY
(597, 598)	972	971	35	4	2.4	151.4	142.1	8.8	8.6	0.1	0.98	0.94	0.01	323.8	5.1	63.92	FRWY
(598, 599)	971	971	28	1	1.2	79.4	74.6	4.6	4.5	0.1	0.98	0.94	0.02	323.5	5.1	63.91	FRWY
(600, 601)	970	970	24	2	1.7	108.7	102.1	6.3	6.2	0.1	0.98	0.94	0.01	323.3	5.1	63.93	FRWY
(601, 602)	2319	2323	1073	2	5.6	329.8	338.3	8.7	7.9	0.8	0.90	1.03	0.10	504.8	8.6	58.50	FRWY
(602, 603)	2323	2320	109	11	5.3	329.4	315.5	8.2	7.9	0.3	0.97	0.96	0.03	579.8	9.3	62.64	FRWY
(603, 604)	2320	2323	58	6	4.4	282.3	266.8	6.9	6.7	0.1	0.98	0.94	0.02	580.5	9.1	63.50	FRWY

(604,	605)	2323	2321	105	9	5.0	319.5	302.7	7.8	7.6	0.2	0.98	0.95	0.02	580.2	9.2	63.34	FRWY
(605,	606)	2321	2313	108	10	6.6	417.8	395.7	10.2	10.0	0.2	0.98	0.95	0.02	579.3	9.1	63.35	FRWY
(606,	607)	2313	2316	104	2	5.2	331.4	314.3	8.1	7.9	0.2	0.98	0.95	0.02	578.6	9.1	63.26	FRWY
(607,	608)	2316	2308	104	9	4.6	288.2	273.3	7.1	6.9	0.2	0.97	0.95	0.02	578.1	9.1	63.25	FRWY
(608,	609)	2308	2304	112	5	5.6	356.2	338.0	8.8	8.6	0.2	0.98	0.95	0.02	576.3	9.1	63.24	FRWY
(609,	610)	2304	2301	123	7	6.4	404.1	383.4	10.0	9.7	0.2	0.98	0.95	0.02	575.5	9.1	63.24	FRWY
(610,	611)	2301	2304	827	2	4.9	311.4	296.2	7.7	7.5	0.2	0.97	0.95	0.03	575.7	9.1	63.08	FRWY
(611,	612)	2304	2303	261	2	5.2	325.4	315.0	8.2	7.8	0.4	0.96	0.97	0.04	575.8	9.3	61.99	FRWY
(612,	613)	2303	2303	316	6	10.6	654.5	636.2	16.6	16.0	0.5	0.97	0.97	0.03	576.0	9.3	61.72	FRWY
(613,	614)	1162	1163	23	0	1.1	68.4	65.4	3.4	3.3	0.1	0.97	0.96	0.03	387.3	6.2	62.78	FRWY
(614,	615)	1163	1163	15	0	1.0	63.2	59.7	3.1	3.0	0.1	0.98	0.95	0.02	387.7	6.1	63.48	FRWY
(615,	616)	1163	1162	13	1	1.7	110.1	103.4	5.3	5.3	0.1	0.98	0.94	0.02	387.4	6.1	63.85	FRWY
(616,	617)	1162	1161	38	3	3.5	220.1	210.3	10.9	10.6	0.2	0.98	0.96	0.02	387.4	6.2	62.80	FRWY
(617,	618)	874	872	35	2	2.6	164.4	153.9	10.6	10.5	0.1	0.99	0.94	0.01	291.1	4.5	64.09	FRWY
(618,	619)	872	868	34	4	2.3	147.9	138.3	9.5	9.5	0.1	0.99	0.94	0.01	289.9	4.5	64.16	FRWY
(619,	620)	868	868	12	. 1	1.1	68.7	64.2	4.4	4.4	0.0	0.99	0.93	0.01	289.3	4.5	64.20	FRWY
(599,	600)	971	970	13	1	1.1	71.2	66.8	4.1	4.1	0.1	0.98	0.94	0.01	323.6	5.1	63.92	FRWY
(77,7	053)	670	670	0	0	0.4	23.6	22.1	2.0	2.0	0.0	0.99	0.93	0.01	223.3	3.5	64.20	FRWY
(7054,	568)	1057	1057	42	0	0.9	50.1	56.9	3.0	2.4	0.6	0.81	1.14	0.22	381.7	7.2	52.83	FRWY
(396,	397)	2723	2725	1196	20	18.8	1178.3	1126.1	24.8	24.0	0.8	0.97	0.96	0.03	681.0	10.8	62.78	FRWY
(397,	398)	3392	3393	888	4	7.4	450.0	441.4	7.8	7.4	0.4	0.94	0.98	0.05	678.8	11.1	61.17	FRWY
(398,	564)	3393	3392	202	4	8.2	513.9	490.6	8.7	8.4	0.3	0.97	0.95	0.03	678.3	10.8	62.85	FRWY

(620,	369)	868	869	11	2	1.3	81.1	75.8	5.2	5.2	0.0	0.99	0.93	0.01	289.9	4.5	64.17	FRWY
(617,	114)	287	286	0	1	0.6	35.4	38.9	8.1	8.0	0.1	0.99	1.10	0.01	286.7	5.3	54.51	RAMP
(114,	115)	286	285	0	1	0.9	45.5	54.7	11.5	11.3	0.2	0.98	1.20	0.02	285.8	5.7	49.97	RAMP
(117,	416)	284	284	0	0	0.7	34.4	42.2	8.9	8.7	0.2	0.98	1.23	0.03	284.0	5.8	48.97	RAMP
(399,	402)	1053	1056	102	3	6.1	329.2	365.0	20.8	20.5	0.3	0.99	1.11	0.01	527.4	9.7	54.11	RAMP
(625,	132)	718	716	0	4	0.6	28.0	38.2	3.2	2.6	0.6	0.80	1.37	0.27	717.2	16.3	43.91	RAMP
(626,	627)	772	772	15	0	1.0	61.3	58.1	4.5	4.4	0.1	0.97	0.95	0.03	386.0	6.1	63.31	FRWY
(627,	190)	772	767	6	5	0.7	46.6	43.7	3.4	3.4	0.1	0.98	0.94	0.02	384.3	6.0	63.94	FRWY
(629,	255)	434	436	0	0	0.6	27.9	35.3	4.9	4.2	0.7	0.86	1.27	0.17	435.2	9.2	47.31	RAMP
(628,	629)	436	434	0	2	0.7	28.5	42.9	5.9	5.3	0.7	0.89	1.50	0.17	434.7	10.9	39.88	RAMP
(631,	280)	372	370	0	2	0.7	34.9	40.6	6.6	6.2	0.4	0.94	1.16	0.06	371.0	7.2	51.67	RAMP
(630,	631)	370	372	0	0	0.6	30.1	37.3	6.0	5.9	0.1	0.98	1.24	0.03	371.3	7.7	48.44	RAMP
(632,	633)	1590	1589	73	1	3.7	196.0	221.3	8.3	8.1	0.2	0.97	1.13	0.03	795.0	15.0	53.16	RAMP
(635,	54)	111	111	0	0	0.3	13.2	15.6	8.4	7.8	0.6	0.93	1.18	0.09	111.0	2.2	50.93	RAMP
(634,	635)	111	111	0	0	0.2	9.8	14.2	7.7	7.1	0.6	0.92	1.44	0.11	111.0	2.7	41.59	RAMP
(637,	56)	206	209	0	0	0.5	25.3	28.1	8.2	8.0	0.1	0.98	1.11	0.02	206.8	3.8	54.04	RAMP
(636,	637)	206	206	0	1	0.3	17.5	19.6	5.7	5.6	0.1	0.97	1.12	0.03	206.0	3.8	53.61	RAMP
(61,	638)	644	646	0	0	1.0	54.7	61.7	5.7	5.6	0.2	0.97	1.13	0.03	645.1	12.1	53.26	RAMP
(638,	639)	646	645	53	1	0.8	41.3	46.8	4.4	4.2	0.2	0.97	1.13	0.04	378.7	7.2	52.93	RAMP
(62,	640)	959	959	0	0	1.4	73.6	83.5	5.2	5.0	0.2	0.96	1.14	0.04	959.0	18.2	52.83	RAMP
(640,	641)	959	959	66	0	0.8	40.0	45.5	2.8	2.7	0.1	0.96	1.14	0.05	620.5	11.8	52.68	RAMP
(643,	64)	323	321	0	2	0.7	35.6	40.9	7.6	7.3	0.3	0.95	1.15	0.05	321.7	6.2	52.21	RAMP
(642,	643)	326	323	26	3	0.6	29.3	36.3	6.7	5.9	0.8	0.88	1.24	0.14	228.4	4.7	48.37	RAMP

(69,	644)	994	994	22	0	1.2	66.1	73.6	4.4	4.4	0.1	0.98	1.11	0.02	497.0	9.2	53.89	RAMP
(644,	645)	994	993	7	1	0.9	46.6	54.5	3.3	3.3	0.0	0.99	1.17	0.01	382.4	7.5	51.32	RAMP
(647,	71)	127	128	0	0	0.3	17.0	20.2	9.5	8.7	0.8	0.92	1.19	0.09	127.6	2.5	50.55	RAMP
(646,	647)	126	127	0	1	0.3	12.0	17.4	8.3	7.6	0.7	0.92	1.46	0.12	125.9	3.1	41.20	RAMP
(574,	660)	62	62	0	0	0.0	2.6	2.9	2.8	2.7	0.1	0.98	1.10	0.02	62.0	1.1	54.72	RAMP
(660,	661)	62	61	0	1	0.0	2.4	2.8	2.8	2.7	0.1	0.97	1.16	0.03	61.2	1.2	51.91	RAMP
(663,	576)	1729	1732	78	3	4.1	163.5	248.3	8.6	6.2	2.4	0.72	1.52	0.43	1441.3	36.5	39.52	RAMP
(662,	663)	1724	1729	258	0	3.2	109.2	192.9	6.7	4.5	2.2	0.68	1.77	0.57	863.5	25.4	33.98	RAMP
(581,	664)	549	548	0	1	1.1	60.2	66.8	7.3	7.1	0.2	0.98	1.11	0.03	548.9	10.1	54.10	RAMP
(664,	665)	548	549	0	0	0.4	23.4	26.2	2.9	2.8	0.1	0.96	1.12	0.04	548.5	10.3	53.43	RAMP
(667,	583)	770	764	0	6	2.7	125.2	160.6	12.6	10.7	1.9	0.85	1.28	0.19	765.8	16.4	46.77	RAMP
(666,	667)	771	770	0	1	0.9	31.1	54.7	4.3	4.1	0.1	0.97	1.76	0.05	770.4	22.6	34.11	RAMP
(669,	584)	1063	1059	26	6	2.5	117.3	148.1	8.4	7.3	1.1	0.87	1.26	0.17	905.5	19.1	47.52	RAMP
(668,	669)	1063	1063	97	0	1.4	64.0	83.2	4.7	3.9	0.7	0.84	1.30	0.21	531.5	11.5	46.19	RAMP
(589,	670)	598	597	0	1	0.5	25.8	29.2	2.9	2.8	0.1	0.97	1.13	0.04	597.5	11.3	53.01	RAMP
(670,	671)	597	597	0	0	0.5	24.5	27.8	2.8	2.7	0.1	0.97	1.13	0.04	597.0	11.3	53.05	RAMP
(672,	673)	820	821	0	0	1.5	68.7	87.6	6.4	6.0	0.4	0.94	1.28	0.08	820.9	17.4	47.05	FRWY
(674,	675)	539	537	0	4	0.6	30.9	35.4	3.9	3.8	0.2	0.96	1.15	0.05	538.1	10.3	52.40	RAMP
(676,	677)	2427	2435	736	12	13.2	690.7	789.2	19.5	18.7	0.8	0.96	1.14	0.05	985.7	18.8	52.52	FRWY
(677,	680)	1197	1202	118	2	5.6	304.2	338.7	17.0	16.6	0.3	0.98	1.11	0.02	599.3	11.1	53.90	FRWY
(677,	678)	1238	1239	27	1	1.8	88.5	107.5	5.2	5.1	0.1	0.99	1.22	0.02	619.5	12.6	49.36	RAMP
(678,	679)	1239	1240	26	0	2.0	96.3	117.6	5.7	5.6	0.1	0.98	1.22	0.02	619.9	12.6	49.11	RAMP

(680, 681)	1202	1202	46	4	3.1	164.9	183.2	9.1	9.0	0.2	0.98	1.11	0.02	601.3	11.1	54.00	FRWY
(681, 682)	1202	1198	62	4	3.2	170.5	189.4	9.5	9.3	0.2	0.98	1.11	0.02	461.6	8.5	54.00	FRWY
(684, 685)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	RAMP
(686, 111)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY
(685, 681)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	RAMP
(682, 683)	1198	1197	36	1	3.1	170.1	188.9	9.5	9.3	0.2	0.98	1.11	0.02	598.7	11.1	54.03	FRWY
(687, 688)	1189	1185	49	5	2.3	104.4	138.9	7.0	6.9	0.1	0.98	1.33	0.03	594.1	13.2	45.09	FRWY
(688,7027)	1185	1183	0	2	1.5	59.4	90.0	4.6	4.5	0.0	0.99	1.51	0.01	591.7	14.9	39.61	FRWY
(7056, 626)	771	772	46	0	1.1	64.6	67.4	5.0	4.4	0.6	0.88	1.04	0.12	403.1	7.0	57.45	FRWY
(679,7058)	1240	1241	0	0	1.1	53.3	66.1	3.2	3.1	0.1	0.97	1.24	0.04	620.2	12.8	48.43	RAMP
(7059, 684)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	RAMP
(7060, 628)	438	436	0	2	0.6	19.2	33.9	4.3	4.2	0.1	0.97	1.76	0.05	474.6	13.9	34.08	RAMP
(7061, 630)	373	370	0	3	0.5	24.4	31.6	4.8	4.5	0.3	0.93	1.29	0.09	392.8	8.5	46.37	RAMP
(7062, 674)	539	539	0	0	0.4	18.8	23.5	2.4	2.1	0.3	0.88	1.25	0.15	599.1	12.4	48.15	RAMP
(7063, 672)	819	820	0	0	1.8	73.2	106.5	7.5	6.8	0.6	0.91	1.45	0.12	853.6	20.7	41.28	FRWY
(671,7064)	597	598	0	0	0.4	20.6	23.7	2.4	2.3	0.1	0.95	1.15	0.06	597.5	11.5	52.14	RAMP
(633,7065)	1589	1587	0	2	1.9	99.8	112.8	4.3	4.1	0.1	0.97	1.13	0.03	794.0	15.0	53.10	RAMP
(7066, 634)	111	111	0	0	0.1	4.8	8.3	4.1	4.0	0.1	0.98	1.73	0.03	121.5	3.5	34.75	RAMP
(7067, 636)	205	206	0	1	0.3	15.5	18.6	5.2	4.7	0.5	0.91	1.20	0.11	215.9	4.3	50.08	RAMP
(665,7068)	549	549	0	0	0.4	21.3	24.6	2.7	2.5	0.2	0.93	1.16	0.08	549.0	10.6	51.91	RAMP
(7069, 666)	774	771	0	3	8.0	28.5	47.9	3.4	3.3	0.1	0.98	1.68	0.03	854.3	24.0	35.67	RAMP
(7070, 668)	1068	1063	463	5	1.3	67.0	79.6	4.2	3.9	0.3	0.92	1.19	0.10	564.8	11.2	50.47	RAMP
(639,7071)	645	645	0	0	0.4	20.2	23.7	2.2	2.1	0.2	0.93	1.18	0.08	322.5	6.3	51.00	RAMP

(7072, 642)	327	326	113	1	0.2	10.7	13.7	2.2	1.9	0.3	0.86	1.27	0.18	183.0	3.9	47.16	RAMP
(641,7073)	959	960	0	0	0.6	31.6	37.5	2.3	2.3	0.0	1.00	1.19	0.00	479.9	9.5	50.58	RAMP
(661,7074)	61	61	0	0	0.0	2.2	2.8	2.7	2.5	0.2	0.94	1.26	0.08	61.0	1.3	47.52	RAMP
(7075, 662)	1720	1724	587	1	2.2	99.7	131.4	4.3	3.9	0.4	0.91	1.32	0.12	916.9	20.1	45.52	RAMP
(645,7076)	993	993	0	0	0.9	44.4	55.3	3.3	3.2	0.1	0.97	1.25	0.04	331.0	6.9	48.13	RAMP
(7077, 646)	126	126	0	0	0.1	4.3	7.4	3.2	3.1	0.1	0.97	1.75	0.05	140.6	4.1	34.33	RAMP
(7084, 857)	236	236	0	0	0.2	9.2	11.1	2.6	2.3	0.2	0.91	1.20	0.11	258.7	5.2	49.97	RAMP
(857, 858)	236	236	0	0	0.3	13.9	15.6	4.0	3.9	0.1	0.97	1.12	0.03	236.0	4.4	53.75	RAMP
(859,7085)	321	321	0	0	0.6	29.4	33.1	6.2	6.0	0.2	0.97	1.13	0.03	321.0	6.0	53.33	RAMP
(7086, 860)	17	17	0	0	0.0	1.6	1.7	5.9	5.8	0.0	0.99	1.11	0.01	17.7	0.3	54.09	RAMP
(860, 861)	17	17	0	0	0.0	1.5	1.6	5.7	5.7	0.0	1.00	1.10	0.00	17.0	0.3	54.30	RAMP
(866,7087)	56	56	0	0	0.1	3.2	3.5	3.8	3.7	0.0	0.99	1.08	0.01	56.0	1.0	55.38	RAMP
(873,7088)	58	58	0	0	0.1	6.1	6.6	6.9	6.9	0.0	1.00	1.09	0.00	58.0	1.1	55.04	RAMP
(7089, 874)	92	92	0	0	0.1	5.4	6.2	3.8	3.6	0.2	0.95	1.15	0.06	98.2	1.9	52.04	RAMP
(874, 875)	92	92	0	0	0.1	5.1	5.7	3.7	3.6	0.1	0.99	1.11	0.02	92.0	1.7	54.01	RAMP
(876,7090)	161	161	0	0	0.3	14.4	16.0	6.0	5.9	0.1	0.99	1.11	0.01	161.0	3.0	54.01	RAMP
(7091, 877)	56	56	0	0	0.1	3.3	5.0	5.1	3.7	1.4	0.72	1.51	0.42	59.7	1.5	39.65	RAMP
(877, 878)	56	56	0	0	0.1	3.7	4.3	4.6	4.3	0.3	0.94	1.16	0.07	56.0	1.1	51.63	RAMP
(879, 880)	1999	1998	105	8	7.8	502.2	468.5	13.9	13.7	0.1	0.99	0.93	0.01	1013.6	15.8	64.31	FRWY
(880, 881)	1998	1999	181	13	11.1	705.1	663.5	19.9	19.5	0.4	0.98	0.94	0.02	999.8	15.7	63.77	FRWY
(881, 882)	1999	1999	217	10	9.1	575.3	546.1	16.4	16.0	0.4	0.97	0.95	0.03	998.6	15.8	63.21	FRWY
(882, 883)	1999	2000	190	8	9.0	567.3	541.1	16.3	15.8	0.5	0.97	0.95	0.03	998.4	15.9	62.90	FRWY

(883,	884)	1942	1938	144	7	7.0	441.2	421.4	13.0	12.6	0.4	0.97	0.96	0.03	969.9	15.4	62.82	FRWY
(883,	873)	58	58	0	0	0.1	6.6	7.2	7.4	7.4	0.0	1.00	1.09	0.00	58.0	1.1	55.16	RAMP
(884,	885)	1938	1939	136	4	6.5	406.8	389.7	12.1	11.6	0.4	0.96	0.96	0.03	969.4	15.5	62.64	FRWY
(885,	886)	1939	1942	189	6	8.1	504.5	483.7	14.9	14.4	0.5	0.96	0.96	0.03	972.1	15.5	62.57	FRWY
(886,	887)	2033	2033	310	10	9.3	577.7	556.1	16.4	15.8	0.7	0.96	0.96	0.04	884.1	14.2	62.33	FRWY
(887,	888)	2033	2037	192	8	9.5	594.6	571.7	16.9	16.2	0.7	0.96	0.96	0.04	1017.4	16.3	62.40	FRWY
(875,	886)	92	91	0	1	0.1	7.4	8.1	5.3	5.3	0.0	0.99	1.10	0.01	91.3	1.7	54.50	RAMP
(888,	889)	2037	2032	208	14	10.4	645.0	621.4	18.3	17.6	0.7	0.96	0.96	0.04	1016.6	16.3	62.28	FRWY
(889,	890)	2032	2035	133	6	6.8	425.6	410.7	12.1	11.6	0.5	0.96	0.96	0.04	1015.8	16.3	62.18	FRWY
(890,	891)	2035	2028	252	15	10.8	669.2	646.4	19.1	18.3	0.8	0.96	0.97	0.04	1014.7	16.3	62.12	FRWY
(891,	892)	2028	2032	170	6	8.1	503.2	485.2	14.3	13.7	0.6	0.96	0.96	0.04	1014.8	16.3	62.22	FRWY
(892,	893)	2032	2033	383	16	19.0	1179.6	1137.4	33.6	32.2	1.4	0.96	0.96	0.04	1016.0	16.3	62.22	FRWY
(893,	894)	2033	2015	496	37	22.3	1388.0	1339.2	39.6	38.0	1.7	0.96	0.96	0.04	1013.6	16.3	62.18	FRWY
(894,	895)	2015	2026	276	6	13.6	847.4	816.5	24.2	23.2	1.0	0.96	0.96	0.04	1010.4	16.2	62.27	FRWY
(895,	896)	2026	2024	439	28	21.3	1324.9	1279.5	37.9	36.2	1.6	0.96	0.97	0.04	1013.5	16.3	62.13	FRWY
(896,	897)	2024	2032	497	17	22.8	1416.2	1369.0	40.6	38.8	1.8	0.96	0.97	0.04	1011.5	16.3	62.07	FRWY
(897,	898)	2032	2025	259	14	12.6	783.7	757.6	22.4	21.4	1.0	0.96	0.97	0.04	1014.2	16.3	62.07	FRWY
(898,	899)	2025	2019	190	13	9.3	575.2	557.5	16.5	15.8	0.8	0.95	0.97	0.04	1012.4	16.4	61.90	FRWY
(899,	900)	1963	1974	188	7	9.9	614.2	594.5	18.1	17.3	0.8	0.95	0.97	0.04	984.6	15.9	61.99	FRWY
(899,	866)	56	56	0	0	0.1	6.6	7.1	7.6	7.6	0.0	0.99	1.08	0.01	56.0	1.0	55.51	RAMP
(900,	901)	1974	1974	264	9	11.7	723.9	701.7	21.3	20.3	1.0	0.95	0.97	0.05	987.7	16.0	61.90	FRWY
(901,	902)	2206	2206	485	5	10.4	626.5	621.4	16.9	15.8	1.2	0.93	0.99	0.07	958.8	15.8	60.49	FRWY
(902,	903)	2206	2195	177	11	10.2	629.4	610.8	16.7	15.9	0.8	0.95	0.97	0.05	1099.7	17.8	61.83	FRWY

(858,	901)	236	232	0	4	0.7	35.3	39.5	10.1	9.9	0.3	0.97	1.12	0.03	233.8	4.4	53.63	RAMP
(903,	904)	2195	2190	209	19	11.6	717.8	697.6	19.1	18.2	0.9	0.95	0.97	0.05	1094.7	17.7	61.74	FRWY
(904,	905)	2190	2183	176	11	9.0	555.0	540.0	14.8	14.1	0.7	0.95	0.97	0.05	1094.2	17.7	61.66	FRWY
(906,	907)	2502	2499	154	13	10.1	648.7	609.0	14.4	14.2	0.2	0.98	0.94	0.02	1267.7	19.8	63.92	FRWY
(907,	908)	2499	2499	412	15	15.3	964.8	915.9	22.0	21.4	0.6	0.97	0.95	0.03	1249.1	19.8	63.20	FRWY
(908,	909)	2499	2493	256	17	11.4	709.1	684.4	16.5	15.8	0.6	0.96	0.97	0.04	1248.0	20.1	62.17	FRWY
(909,	910)	2172	2176	178	3	8.7	545.3	523.2	14.4	13.9	0.5	0.96	0.96	0.04	1087.3	17.4	62.54	FRWY
(909,	859)	321	321	0	0	0.9	46.3	51.4	9.6	9.5	0.1	0.99	1.11	0.02	321.0	5.9	54.07	RAMP
(910,	911)	2176	2176	208	14	10.5	657.1	631.0	17.4	16.7	0.7	0.96	0.96	0.04	1088.9	17.4	62.48	FRWY
(911,	912)	2176	2182	192	6	9.7	603.6	581.8	16.0	15.4	0.7	0.96	0.96	0.04	1089.3	17.5	62.25	FRWY
(861,	912)	17	17	0	0	0.0	1.6	1.8	6.3	6.3	0.0	1.00	1.10	0.00	17.0	0.3	54.44	RAMP
(912,	913)	2199	2195	229	10	10.1	624.0	603.2	16.5	15.8	0.7	0.96	0.97	0.04	955.0	15.4	62.07	FRWY
(913,	914)	2195	2195	222	10	10.5	653.6	632.4	17.3	16.5	0.8	0.96	0.97	0.04	1097.6	17.7	62.01	FRWY
(914,	915)	2195	2188	425	27	20.8	1285.4	1245.5	34.1	32.5	1.6	0.95	0.97	0.04	1095.7	17.7	61.92	FRWY
(915,	916)	2188	2190	396	22	21.0	1295.6	1259.1	34.5	32.8	1.7	0.95	0.97	0.05	1095.6	17.7	61.74	FRWY
(916,	917)	2190	2198	397	7	19.1	1178.7	1145.8	31.3	29.8	1.5	0.95	0.97	0.05	1096.8	17.8	61.72	FRWY
(917,	918)	2198	2203	303	14	15.0	922.7	898.4	24.6	23.3	1.2	0.95	0.97	0.05	1097.3	17.8	61.62	FRWY
(918,	919)	2203	2207	369	16	19.4	1195.8	1164.8	31.6	30.0	1.6	0.95	0.97	0.05	1104.2	17.9	61.60	FRWY
(919,	920)	2207	2198	373	23	20.1	1236.7	1205.9	32.9	31.2	1.7	0.95	0.98	0.05	1100.8	17.9	61.54	FRWY
(920,	921)	2198	2192	227	16	12.2	753.4	734.5	20.1	19.1	1.0	0.95	0.97	0.05	1097.0	17.8	61.54	FRWY
(921,	922)	2192	2192	243	7	11.6	717.6	698.6	19.1	18.2	1.0	0.95	0.97	0.05	1096.9	17.8	61.63	FRWY
(922,	923)	2192	2191	232	19	11.7	721.9	702.9	19.2	18.3	1.0	0.95	0.97	0.05	1095.9	17.8	61.62	FRWY

(923,	924)	2191	2186	292	16	13.2	810.9	789.5	21.6	20.5	1.1	0.95	0.97	0.05	1095.6	17.8	61.62	FRWY
(924,	925)	2186	2173	272	17	12.4	761.0	744.8	20.5	19.4	1,1	0.95	0.98	0.05	1089.6	17.8	61.31	FRWY
(925,	926)	2013	2025	255	1	13.2	816.2	792.6	23.6	22.4	1.1	0.95	0.97	0.05	1009.3	16.3	61.79	FRWY
(925,	876)	160	161	0	0	0.5	24.5	27.1	10.1	10.0	0.1	0.99	1.11	0.01	160.6	3.0	54.16	RAMP
(926,	927)	2025	2022	186	12	9.7	601.2	583.4	17.3	16.5	0.8	0.95	0.97	0.05	1010.9	16.3	61.83	FRWY
(878,	927)	56	56	0	0	0.1	3.1	3.5	3.7	3.7	0.1	0.99	1.11	0.02	56.0	1.0	54.08	RAMP
(927,	928)	2078	2074	240	12	9.6	590.4	575.9	16.6	15.8	0.9	0.95	0.98	0.05	903.6	14.7	61.51	FRWY
(928,	929)	2074	2079	153	6	8.9	548.7	534.6	15.4	14.7	0.8	0.95	0.97	0.05	1038.3	16.9	61.58	FRWY
(929,	930)	2079	2070	220	17	11.0	676.6	659.2	19.1	18.1	1.0	0.95	0.97	0.05	1036.1	16.8	61.58	FRWY
(930,	931)	2070	2064	161	10	7.3	450.2	437.7	12.7	12.1	0.6	0.95	0.97	0.05	1033.5	16.7	61.72	FRWY
(683,	687)	1197	1189	26	8	2.1	107.7	128.8	6.5	6.4	0.1	0.98	1.20	0.02	597.1	11.9	50.14	FRWY
(407,	369)	1614	1615	109	2	2.2	112.5	129.7	4.8	4.6	0.3	0.94	1.15	0.06	538.2	10.3	52.04	RAMP
(411,	416)	400	400	0	0	0.4	20.8	25.2	3.8	3.7	0.0	0.99	1.21	0.02	400.0	8.1	49.43	FRWY
(115,	117)	285	284	0	1	1.1	53.9	65.8	13.9	13.6	0.3	0.98	1.22	0.03	284.5	5.8	49.10	RAMP
(382,	383)	996	995	20	1	1.1	37.5	67.1	4.0	3.8	0.2	0.94	1.79	0.11	497.5	14.8	33.53	RAMP
(412,	414)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY
(281,	937)	1575	1574	51	1	1.2	59.9	74.5	2.8	2.7	0.1	0.97	1.24	0.04	524.8	10.9	48.26	FRWY
(383,	414)	995	997	65	2	2.4	96.7	146.9	8.8	7.8	1.1	0.88	1.52	0.18	504.3	12.8	39.48	RAMP
(314,	553)	890	893	0	0	1.9	101.8	115.8	7.8	7.5	0.3	0.96	1.14	0.04	891.1	16.9	52.72	RAMP
(553,	933)	893	894	0	2	2.6	123.3	153.2	10.3	9.9	0.4	0.96	1.24	0.05	893.1	18.5	48.29	RAMP
(933,	934)	894	893	0	2	2.5	118.6	150.5	10.1	9.6	0.5	0.95	1.27	0.06	894.4	18.9	47.28	RAMP
(935,	936)	1461	1456	105	7	3.9	187.1	232.0	9.5	9.3	0.3	0.97	1.24	0.03	729.7	15.1	48.40	FRWY
(934,	935)	1462	1461	155	1	2.1	98.8	124.1	5.1	4.9	0.2	0.96	1.26	0.05	730.9	15.3	47.77	FRWY

(936, 30	09)	1456	1451	64	5	3.1	151.8	187.8	7.8	7.6	0.2	0.97	1.24	0.03	726.0	15.0	48.49	FRWY
(414, 4	15)	997	996	0	1	1.2	51.9	74.1	4.5	4.2	0.3	0.94	1.43	0.09	498.4	11.8	42.06	FRWY
(937, 5	55)	1573	1571	85	3	2.0	102.7	120.4	4.6	4.3	0.3	0.93	1.17	0.08	786.0	15.4	51.20	RAMP
(111, 6	76)	2430	2427	642	6	5.7	303.7	343.0	8.5	8.2	0.3	0.96	1.13	0.04	808.7	15.2	53.12	FRWY
(416, 1	61)	684	686	63	1	1.5	72.2	88.2	7.7	7.6	0.1	0.98	1.22	0.02	342.3	7.0	49.13	FRWY
(162, 1	(65)	3471	3471	477	10	9.5	604.6	571.1	9.7	9.5	0.2	0.98	0.94	0.02	885.7	13.9	63.51	FRWY
(165, 1	L66)	3471	3470	105	9	7.7	492.9	463.7	8.0	7.9	0.1	0.98	0.94	0.01	867.6	13.6	63.79	FRWY
(386, 1	L67)	3099	3099	480	6	7.1	440.1	423.0	8.2	7.9	0.3	0.96	0.96	0.04	673.6	10.8	62.42	FRWY
(167, 1	L68)	3099	3106	144	2	7.0	440.6	419.6	8.1	7.9	0.2	0.97	0.95	0.03	775.5	12.3	63.00	FRWY
(168, 1	.69)	3106	3103	139	9	7.5	472.9	449.3	8.7	8.4	0.2	0.97	0.95	0.03	776.3	12.3	63.14	FRWY
(404, 1	.70)	251	251	0	0	0.2	13.6	15.0	3.6	3.5	0.0	0.99	1.10	0.01	251.0	4.6	54.58	RAMP
(7018, 1	L71)	242	242	0	0	0.2	9.3	12.7	2.9	2.5	0.3	0.88	1.36	0.16	266.1	6.0	44.03	RAMP
(171, 1	72)	242	243	0	0	0.2	8.5	10.4	2.6	2.5	0.1	0.97	1.23	0.03	242.7	5.0	48.93	RAMP
(172, 3	87)	243	242	0	1	0.2	9.1	10.8	2.7	2.5	0.2	0.92	1.18	0.09	242.6	4.8	50.73	RAMP
(7020, 1	L7 4)	326	326	0	0	0.3	14.7	19.2	3.3	3.0	0.3	0.92	1.31	0.11	353.6	7.7	45.81	RAMP
(174, 1	L75)	326	326	0	0	0.3	14.9	18.1	3.3	3.3	0.0	0.99	1.21	0.02	326.0	6.6	49.48	RAMP
(175, 3	86)	326	325	0	1	0.3	17.7	20.4	3.8	3.5	0.2	0.94	1.15	0.06	325.9	6.3	51.98	RAMP
(385, 1	L73)	404	404	0	0	0.4	19.7	22.0	3.3	3.2	0.1	0.97	1.12	0.03	404.0	7.5	53.67	RAMP
(173,70	19)	404	404	0	0	0.4	18.4	21.7	3.2	3.2	0.1	0.98	1.18	0.03	404.0	7.9	50.97	RAMP
(170,70	17)	251	251	0	0	0.3	13.3	15.5	3.7	3.7	0.0	0.99	1.16	0.01	251.0	4.9	51.65	RAMP
(151, 3	344)	1045	1041	13	4	2.3	120.1	138.2	8.0	7.5	0.4	0.94	1.15	0.06	1029.4	19.7	52.13	RAMP
(344,70	26)	1041	1040	0	1	0.9	41.2	52.7	3.0	2.8	0.3	0.91	1.28	0.11	520.5	11.1	46.94	RAMP

(7007, 20	08)	92	92	0	0	0.1	3.2	5.0	2.9	2.6	0.4	0.87	1.54	0.19	102.1	2.6	38.97	RAMP
(209, 18	80)	92	92	0	0	0.1	4.9	5.7	3.7	3.5	0.2	0.94	1.17	0.07	92.0	1.8	51.47	RAMP
(315, 5	55)	2980	2983	197	8	11.4	725.4	686.8	13.8	13.5	0.3	0.98	0.95	0.02	596.2	9.4	63.38	FRWY
(313, 2	48)	3870	3877	1363	17	12.5	778.0	748.9	11.6	11.2	0.4	0.96	0.96	0.04	774.3	12.4	62.33	FRWY
(258, 2	(59)	1219	1220	0	0	1.6	73.7	98.1	4.8	4.4	0.5	0.90	1.33	0.13	928.1	20.6	45.04	FRWY
(259, 2	(60)	2024	2025	416	2	5.2	275.7	314.3	9.3	8.9	0.4	0.96	1.14	0.05	674.9	12.8	52.63	FRWY
(260, 2	(61)	2025	2034	11	4	4.9	261.8	294.7	8.7	8.5	0.2	0.97	1.13	0.03	676.5	12.7	53.30	FRWY
(261, 2	(62)	860	855	0	9	3.9	202.5	235.0	16.4	15.5	0.9	0.94	1.16	0.07	858.7	16.6	51.71	FRWY
(262, 2	(63)	855	856	0	3	1.6	82.6	96.6	6.8	6.3	0.4	0.94	1.17	0.07	856.9	16.7	51.33	FRWY
(263, 2	(64)	856	855	0	4	1.8	90.9	106.7	7.5	7.0	0.5	0.93	1.17	0.08	855.9	16.7	51.14	FRWY
(7008, 6	25)	719	718	0	1	0.8	25.8	46.6	3.5	1.8	1.7	0.51	1.81	0.88	796.3	24.0	33.19	RAMP
(403, 3	10)	1057	1056	70	2	1.6	67.2	93.6	5.3	4.2	1.1	0.78	1.39	0.30	814.3	18.9	43.09	RAMP
(307, 1	.87)	4173	4170	116	6	5.2	326.3	312.6	4.5	4.3	0.2	0.97	0.96	0.03	834.3	13.3	62.62	FRWY
(264, 1	.87)	855	855	0	0	0.9	47.1	55.8	3.9	3.6	0.3	0.92	1.18	0.09	855.0	16.9	50.71	RAMP
(261, 1	.89)	1174	1176	64	2	2.5	134.3	149.8	7.7	7.5	0.1	0.98	1.12	0.02	587.1	10.9	53.78	RAMP
(189, 2	(65)	1176	1175	44	3	2.7	132.2	159.2	8.1	8.0	0.1	0.98	1.20	0.02	587.7	11.8	49.83	RAMP
(265, 2	(66)	1175	1176	33	3	2.1	95.2	126.5	6.5	6.4	0.1	0.98	1.33	0.02	587.1	13.0	45.16	RAMP
(266, 2	(67)	1176	1176	55	3	2.8	123.7	168.5	8.6	8.5	0.1	0.98	1.36	0.02	587.4	13.3	44.04	RAMP
(267, 2	(68)	1176	1176	49	3	2.6	115.9	158.1	8.1	7.9	0.1	0.98	1.36	0.03	588.2	13.4	43.97	RAMP
(268, 2	(69)	1176	1176	545	2	4.3	200.2	256.2	13.1	12.3	0.8	0.94	1.28	0.08	587.8	12.5	46.88	RAMP
(441, 3	97)	667	667	0	0	0.6	32.3	38.5	3.5	3.2	0.3	0.92	1.19	0.10	667.0	13.2	50.43	RAMP
(564, 3	99)	3392	3384	1407	11	7.4	449.2	443.3	7.8	7.6	0.3	0.96	0.99	0.04	677.7	11.1	60.80	FRWY
(399, 4	00)	2331	2328	51	6	3.0	186.7	180.4	4.6	4.5	0.2	0.96	0.97	0.04	582.5	9.4	62.09	FRWY

(269,	15)	1176	1176	131	1	1.8	78.6	106.0	5.4	4.4	1.0	0.81	1.35	0.25	635.6	14.3	44.49	RAMP
(10,	401)	996	997	48	2	2.5	130.4	150.1	9.0	8.6	0.4	0.95	1.15	0.06	880.5	16.9	52.14	RAMP
(400,	10)	2328	2327	101	12	10.7	661.1	641.4	16.5	16.0	0.5	0.97	0.97	0.03	581.8	9.4	61.85	FRWY
(270,	7)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY
(613,	7)	1141	1141	41	0	0.9	46.2	51.9	2.7	2.7	0.1	0.97	1.12	0.03	570.5	10.7	53.48	RAMP
(7,	8)	1141	1141	286	0	0.9	47.3	52.9	2.8	2.7	0.1	0.98	1.12	0.02	380.3	7.1	53.72	FRWY
(8,	9)	1141	1143	30	2	0.9	46.0	52.7	2.8	2.7	0.1	0.97	1.14	0.03	462.0	8.8	52.41	FRWY
(9,	273)	568	569	0	0	0.5	26.7	31.7	3.3	3.3	0.1	0.98	1.19	0.03	568.7	11.3	50.54	FRWY
(273,	274)	569	568	18	1	0.6	26.5	35.0	3.7	3.6	0.1	0.98	1.32	0.03	408.9	9.0	45.38	FRWY
(9,	271)	575	576	11	0	0.6	30.8	37.5	3.9	3.8	0.1	0.98	1.22	0.02	288.0	5.9	49.22	RAMP
(271,	272)	576	578	6	0	0.6	27.2	34.8	3.6	3.6	0.0	0.99	1.28	0.01	288.5	6.2	46.91	RAMP
(415,	276)	996	997	0	1	1.0	43.3	61.9	3.7	3.5	0.2	0.94	1.43	0.09	694.3	16.5	41.96	FRWY
(272,	276)	578	581	8	0	1.3	58.7	79.0	8.2	8.1	0.1	0.99	1.35	0.01	290.0	6.5	44.57	RAMP
(276,	281)	1578	1575	492	4	1.9	86.9	113.0	4.3	4.0	0.3	0.92	1.30	0.10	525.5	11.4	46.12	FRWY
(937,	277)	1	1	0	0	0.0	0.0	0.1	6.5	2.3	4.2	0.35	2.34	1.52	1.0	0.0	25.64	FRWY
(264,	279)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY
(274,	275)	568	569	27	1	0.9	37.1	51.3	5.4	5.2	0.2	0.97	1.38	0.05	284.4	6.6	43.34	FRWY
(275,	934)	569	569	39	4	2.2	101.3	129.2	13.6	12.9	0.8	0.94	1.27	0.07	371.0	7.9	47.06	FRWY
(490,	258)	1218	1219	0	1	1.2	49.4	70.5	3.5	2.9	0.5	0.84	1.43	0.22	609.3	14.5	42.03	FRWY
(304,	259)	801	804	23	2	2.0	110.9	122.5	9.2	9.1	0.1	0.99	1.10	0.01	400.6	7.4	54.31	RAMP
(278,	490)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY
(27,	28)	910	911	27	0	1.3	81.1	76.7	5.1	4.9	0.1	0.98	0.95	0.02	303.7	4.8	63.44	FRWY

(28,	29)	911	912	9	3	1.1	69.9	65.6	4.3	4.3	0.1	0.99	0.94	0.01	303.7	4.7	63.95	FRWY
(29,	30)	912	912	17	0	1.2	79.1	74.1	4.9	4.8	0.1	0.99	0.94	0.01	304.0	4.7	64.04	FRWY
(30,	31)	912	911	13	1	1.2	77.2	72.4	4.8	4.7	0.1	0.99	0.94	0.01	303.9	4.7	64.01	FRWY
(23,	24)	2512	2508	849	8	4.8	301.3	287.1	6.9	6.7	0.2	0.97	0.95	0.03	627.2	10.0	62.95	FRWY
(31,	32)	911	914	7	0	1.0	62.8	58.9	3.9	3.8	0.0	0.99	0.94	0.01	303.9	4.7	63.97	FRWY
(283,	632)	1594	1590	64	6	3.9	210.2	236.8	8.9	8.7	0.2	0.97	1.13	0.03	796.1	14.9	53.25	RAMP
(284,	283)	1598	1594	87	5	4.3	227.9	256.6	9.6	9.4	0.3	0.97	1.13	0.03	797.9	15.0	53.30	RAMP
(285,	284)	1595	1598	53	1	3.0	161.6	181.7	6.8	6.6	0.2	0.97	1.12	0.03	798.8	15.0	53.36	RAMP
(286,	285)	1588	1595	79	0	5.2	276.2	309.7	11.7	11.4	0.3	0.98	1.12	0.03	796.0	14.9	53.50	RAMP
(27,	286)	1592	1588	103	6	4.0	215.9	242.6	9.2	8.9	0.2	0.97	1.12	0.03	794.8	14.9	53.38	RAMP
(596,	111)	2433	2430	187	8	5.5	289.1	329.2	8.1	7.8	0.4	0.96	1.14	0.05	1215.4	23.1	52.69	RAMP
(673,	675)	821	817	0	4	1.2	62.7	73.5	5.4	5.0	0.4	0.93	1.17	0.09	818.8	16.0	51.11	FRWY
(675,	287)	1354	1355	175	1	3.6	192.4	216.9	9.6	9.3	0.3	0.97	1.13	0.03	677. 4	12.7	53.24	FRWY
(287,	289)	1355	1353	73	2	3.6	192.3	215.8	9.6	9.3	0.2	0.97	1.12	0.03	676.9	12.7	53.48	FRWY
(289,	294)	1353	1350	97	4	4.8	257.7	289.6	12.9	12.5	0.4	0.97	1.12	0.03	675.6	12.7	53.39	FRWY
(294,	296)	1350	1349	93	3	4.4	232.1	261.1	11.6	11.3	0.3	0.97	1.12	0.03	674.1	12.6	53.34	FRWY
(296,	297)	1349	1346	75	4	6.5	347.3	391.1	17.4	16.9	0.5	0.97	1.13	0.03	673.1	12.6	53.27	FRWY
(297,	601)	1346	1349	94	0	3.6	193.3	219.0	9.7	9.4	0.3	0.97	1.13	0.04	674.0	12.7	52.96	RAMP
(282,	346)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY
(297,	352)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY

NETWORK STATISTICS

VEHICLE-MILES = 188080.8, VEHICLE-MINUTES = 188422.4, MOVING/TOTAL TRIP TIME = 0.953,

AVERAGE CONTENT = 3140.4, CURRENT CONTENT = 3108.0, SPEED(MPH) = 59.89,

TOTAL DELAY (VEH-MIN) = 8891.47, TRAVEL TIME (MIN)/VEH-MILE = 1.00, DELAY TIME (MIN)/ VEH-MILE = 0.05

LINK STATISTICS BY LANE

(SOME STATISTICS APPLY TO HOV LANES ONLY)

SEC./VEHICLE SEC./PERSON

			VE:	HICLES	CURR	VOLUME	voi	UME OF	TOTAL 1	MOVE	DELAY	Y TOT	AL MOVE	DELA	Y SPEI	ED	
1	LINK		LANE	TYPE	IN	OUT C	CONT	VEH/HR	VIOLATO	RS T	TIME	TIME	TIME	TIME	TIME	TIME	MILES/HR
(153,	96)	1	sov			4	767.	0		14.6	13.5	1.0	11.3	10.5	0.8	60.87
(153,	96)	2	SOV			9	1793.	4		14.9	14.1	0.8	11.6	10.9	0.7	7 59.38
(153,	96)	3	sov			9	1206.	5		13.9	13.5	0.4	10.7	10.4	0.3	63.74
(153,	96)	4	sov			ϵ	728.	2		13.7	13.4	0.3	10.6	10.3	0.3	64.57
(153,	96)	5	HOV	C	0	(0.	0 (0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(153,	96)	9	sov			4	1506.	2		15.2	14.3	0.8	11.7	11.1	0.0	58.49
,		001	-				,	1746	-		17.9	16.1	1.8	13.8	12.4	1.4	57.26
-	563,	98)						1746.				16.1			12.4	1.	
	563,						2		_		17.5			13.6			
•	563,						_	792.			16.0	15.6		12.4	12.0		
•	563,							533.			15.6	15.3		12.0	11.8	0.3	
(563,	98)	5	HOV	() 0	(0.	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(154,	101)	1	sov				493.	3		29.3	29.0	0.4	22.9	22.6	0.	66.00
•	154,			sov			9	934.	4		30.7	30.1	0.5	23.8	23.4	0.4	4 63.10
•	154,	•					1:	854.	1		29.9	29.5	0.4	23.2	22.9	0.	64.65
	154,						8	925.	7		30.7	30.2	0.6	23.7	23.2	0.	62.95
•	154,	-		HOV	(0	(0.	0	0.0	0.0	0.0	0.0	0.0	0.0	0.	0.00
(103,	104)	1	sov			12	1673.	1		10.4	8.4	2.0	8.0	6.5		
(103,	104)	2	sov			1	3 1346.	2		9.0	8.4	0.6	6.9	6.5	0.	4 60.94
(103,	104)	3	sov				989.	1		8.5	8.3	0.2	6.6	6.4		
(103,	104)	4	sov			:	L 729.	4		8.7	8.5	0.2	6.7	6.5	0.	2 62.85
į	103,	104)	5	HOV	(0	(0.	0	0.0	0.0	0.0	0.0	0.0	0.0	0.	0.00
-	103,			sov			(96.	0		12.7	10.6	2.2	9.8	8.2	1.	7 42.82

(158, 105)	1	sov			14	2510.0		18.6	16.0	2.6	14.4	12.4	2.0	54.88
(158, 105)	2	sov			6	1430.8		16.6	15.8	0.9	12.9	12.2	0.7	61.47
(158, 105)	3	sov			6	972.0		15.9	15.5	0.4	12.3	12.0	0.3	64.38
(158, 105)	4	sov			5	631.9		16.0	15.7	0.3	12.3	12.1	0.2	64.08
(158, 105)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(128, 97)	1	sov			1	628.8		23.0	22.5	0.5	17.8	17.4	0.4	64.99
(128, 97)	2	sov			6	1162.0		24.9	24.0	0.8	19.3	18.7	0.6	60.16
(128, 97)	3	sov			4	1084.4		23.3	22.8	0.5	18.0	17.6	0.4	64.18
(128, 97)	4	sov			6	740.6		23.0	22.5	0.5	17.7	17.3	0.4	64.94
(128, 97)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(156, 102)	1	sov			5	1645.4		14.8	13.8	1.0	11.4	10.7	0.8	60.05
(156, 102)	2	sov			1	1131.8		14.1	13.6	0.5	10.9	10.5	0.4	62.81
(156, 102)	3	sov			2	861.2		13.8	13.5	0.3	10.7	10.4	0.2	64.23
(156, 102)	4	sov			2	701.6		14.1	13.8	0.3	10.9	10.6	0.2	62.70
(156, 102)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(156, 102)	9	sov			1	167.0		15.3	14.6	0.7	11.8	11.3	0.5	58.02
(109,7001)	1	sov			2	1291.7		2.3	2.2	0.1	1.7	1.7	0.1	51.51
(109,7001)	2	sov			2	569.5		2.1	2.1	0.0	1.6	1.6	0.0	55.51
(102, 103)	1	sov			11	1068.7		25.1	24.0	1.1	19.5	18.6	0.9	61.69
(102, 103)	2	sov			10	1164.9		24.5	23.8	0.8	19.0	18.4	0.6	63.12
(102, 103)	3	sov			9	916.3		24.1	23.6	0.5	18.6	18.3	0.4	64.30
(102, 103)	4	sov			4	712.2		24.7	24.1	0.6	19.0	18.5	0.4	62.81
(102, 103)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(160,7002)	1	sov			0	342.0		2.7	2.7	0.0	2.1	2.1	0.0	54.75
(160,7002)	2	sov			0	308.0		2.7	2.7	0.0	2.1	2.0	0.0	54.49
(7003, 106)	1	sov			0	466.8		9.0	6.6	2.4	6.9	5.1	1.9	33.33
(7003, 106)	2	sov			0	560.0		8.2	6.4	1.8	6.3	4.9	1.4	36.65
(106, 103)	1	sov			0	798.6		10.6	7.8	2.8	8.2	6.0	2.2	39.60
(106, 103)	2	sov			0	182.7		15.0	8.6	6.4	11.5	6.6	4.9	28.00
(7004, 107)	1	sov		'	0	414.7		4.2	3.0	1.2	3.2	2.3	1.0	41.05
(7004, 107)	2	sov			0	375.3		3.7	3.1	0.6	2.9	2.4	0.5	46.30
,,														
(107, 104)	1	sov			0	445.7		8.7	6.3	2.4	6.7	4.9	1.8	38.89
(107, 104)	2	sov			0	290.2		8.5	6.2	2.3	6.6	4.8	1.8	39.57
. ,														/
(110, 109)	1	sov			1	1317.8		2.4	2.4	0.1	1.9	1.8	0.1	52.00
•														

(110,	109)	2	sov			1	546.5		2.3	2.2	0.1	1.8	1.7	0.0	55.79
,	110)		sov			1	1359.3		1.8	1.7	0.1	1.4	1.3	0.0	52.13
	110)	1				0	505.2		1.6	1.6	0.0	1.3	1.2	0.0	55.82
(96,	110)	2	sov			U	505.2		1.6	1.6	0.0	1.3	1.2	0.0	33.62
(127,	97)	1	sov			0	332.0		10.6	7.7	2.9	8.2	5.9	2.3	38.14
(127,	97)	2	sov			0	39.3		18.9	7.9	11.1	14.6	6.1	8.5	21.35
(96	, 128)	1	sov			1	937.2		16.6	15.9	0.7	12.8	12.3	0.5	61.70
(96	, 128)	2	sov			6	1379.6		17.0	16.3	0.7	13.2	12.6	0.5	60.20
(96	, 128)	3	sov			4	1110.4		15.9	15.5	0.3	12.2	12.0	0.3	64.45
(96	, 128)	4	sov			2	702.6		15.8	15.4	0.3	12.1	11.9	0.3	64.87
(96	, 128)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(128	, 129)	1	sov			1	491.2		11.8	11.3	0.4	9.1	8.7	0.3	52.51
(128	, 129)	2	sov			0	23.4		12.7	10.7	2.0	9.8	8.2	1.6	48.59
(132	, 130)	1	sov			6	1825.5		9.6	8.3	1.3	7.4	6.4	1.0	55.70
(132	, 130)	2	sov			4	1628.7		8.9	8.4	0.5	6.9	6.5	0.4	60.42
(132	, 130)	3	sov			0	1301.8		8.5	8.2	0.3	6.5	6.3	0.2	63.32
(132	, 130)	4	sov			2	915.8		8.4	8.1	0.3	6.5	6.2	0.2	63.51
(132	, 130)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(132	, 130)	9	sov			0	69.7		12.8	9.8	3.0	9.9	7.6	2.3	41.86
(131	, 130)	1	sov			1	262.2		3.1	2.9	0.2	2.4	2.2	0.1	50.40
(151	, 132)	1	sov			6	1312.2		16.9	15.8	1.1	13.0	12.2	0.8	60.29
	, 132)	2	sov			11	1575.6		16.6	15.9	0.7	12.9	12.3	0.5	61.26
	, 132)	3	sov			10	1267.8		16.0	15.6	0.4	12.4	12.0	0.3	63.45
-	, 132)	4	sov			6	880.2		16.0	15.4	0.6	12.3	11.9	0.4	63.47
-	, 132)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(105	, 137)	1	sov			5	1188.0		13.9	13.2	0.8	10.8	10.2	0.6	60.14
-	, 137)	2	sov			7	1433.3		13.5	13.0	0.5	10.4	10.0	0.4	62.27
	, 137)	3	sov			4	1054.2		13.0	12.7	0.2	10.0	9.8	0.2	64.70
	, 137)	4	sov			2	682.2		13.0	12.8	0.2	10.0	9.8	0.2	64.29
	, 137)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(98	, 138)	1	sov			5	1411.1		6.8	6.4	0.3	5.2	4.9	0.3	51.90
(98	, 138)	2	sov			0	0.1		7.2	-4.2	11.4	5.5	-3.2	8.7	48.92
(138	, 139)	1	sov			0	1334.4		2.6	2.5	0.1	2.0	1.9	0.1	52.90
(138	, 139)	2	sov			0	77.6		2.6	2.3	0.3	2.0	1.8	0.3	52.25
(141	, 140)	1	sov			0	209.3		11.5	5.9	5.6	8.9	4.6	4.4	25.03

(141, 140)	2	sov			0	1084.2		7.9	5.2	2.7	6.1	4.0	2.1	36.43
					_						٥	7.2	1.3	46.36
(140, 101)	1	sov			1	1248.2		11.0	9.3	1.7	8.5			
(140, 101)	2	sov			0	54.6		11.8	11.8	0.0	9.1	9.1	0.0	43.17
(105, 143)	1	sov			0	1196.9		4.1	3.8	0.3	3.2	3.0	0.2	51.64
(7005, 127)	1	sov			0	285.4		2.5	1.3	1.2	1.9	1.0	0.9	28.03
(7005, 127)	2	sov			0	155.1		2.0	1.4	0.6	1.6	1.1	0.5	34.83
(1000) ==1,	_	201			·	133.1		2.0		0.0			0.5	31.00
(129,7006)	1	sov			0	1.0		5.0	3.8	1.2	3.8	2.9	0.9	32.45
(129,7006)	2	sov			1	514.2		4.0	3.4	0.5	3.0	2.6	0.4	40.70
(147, 148)	1	sov			1	442.2		6.0	5.6	0.3	4.6	4.4	0.3	47.32
(148, 137)	1	sov			0	442.0		4.1	3.8	0.2	3.2	3.0	0.2	51.04
(163, 149)	1	sov			10	1080.8		33.6	32.8	0.8	26.1	25.5	0.6	63.95
(163, 149)	2	sov			15	1403.4		34.0	33.2	0.8	26.4	25.7	0.7	63.05
(163, 149)	3	sov			14	1255.9		33.5	32.8	0.7	26.0	25.4	0.5	64.08
(163, 149)	4	sov			15	1356.2		34.2	33.4	0.8	26.3	25.7	0.6	62.76
(163, 149)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(103, 143)	3	1101	Ū	Ū	Ū	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(311, 150)	1	sov			9	2568.1		14.2	12.6	1.7	11.0	9.7	1.3	57.15
(311, 150)	2	sov			6	1520.1		13.4	12.7	0.7	10.4	9.9	0.5	60.73
(311, 150)	3	sov			2	1184.7		12.8	12.5	0.4	9.9	9.6	0.3	63.32
(311, 150)	4	sov			1	827.3		12.8	12.4	0.4	9.8	9.5	0.3	63.61
(311, 150)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(152, 153)	1	sov			2	785.4		2.5	2.3	0.3	2.0	1.8	0.2	54.10
(152, 153)	2	sov			2	1890.9		2.4	2.1	0.3	1.9	1.6	0.2	56.87
(152, 153)	3	sov			1	1052.6		2.2	2.0	0.1	1.7	1.6	0.1	62.44
(152, 153)	4	HOV	0	684	0	493.2	493.2	2.1	2.1	0.1	1.6	1.6	0.0	64.15
(152, 153)	9	sov			1	1780.1		2.3	2.1	0.2	1.8	1.6	0.2	58.18
(132, 133,		501			-	1,00.1		2.5		0.2	2.0			55125
(130, 152)	1	sov			8	1830.9		15.4	13.7	1.7	11.9	10.6	1.3	57.49
(130, 152)	2	sov			9	2021.5		15.1	13.8	1.3	11.7	10.7	1.0	58.56
(130, 152)	3	sov			3	1290.0		14.0	13.5	0.5	10.8	10.4	0.4	63.14
(130, 152)	4	sov			2	845.9		13.9	13.5	0.5	10.7	10.4	0.4	63.70
(130, 152)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(130, 152)	9	sov			0	16.8		19.1	10.9	8.2	14.8	8.4	6.4	46.30
(100, 154)	1	sov			3	439.9		17.1	17.0	0.1	13.4	13.3	0.1	66.08
(100, 154)	2	sov			4	1030.7		17.7	17.5	0.2	13.7	13.6	0.2	63.80
(100, 154)	3	sov			4	761.8		17.5	17.3	0.1	13.6	13.4	0.1	64.75

(100,	154)	4	sov			4	1015.2		17.7	17.5	0.2	13.6	13.5	0.1	63.94
(100,	-	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(101,	155)	1	sov			3	1508.8		15.7	13.6	2.1	12.1	10.5	1.6	56.54
(101,	155)	2	sov			6	1097.9		14.4	13.7	0.7	11.2	10.6	0.5	61.64
(101,	155)	3	sov			3	957.1		13.8	13.5	0.3	10.7	10.4	0.2	64.19
(101,	155)	4	sov			2	878.4		14.2	13.8	0.4	10.9	10.7	0.3	62.38
(101,	155)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(101,	155)	9	sov			0	60.0		22.9	17.3	5.6	17.7	13.4	4.3	38.63
/ 155	156	_													
(155,		1	sov			1	1587.6		2.2	2.1	0.2	1.7	1.6	0.1	60.72
(155, (155,		2 3	SOV			0	1221.5		2.2	2.1	0.1	1.7	1.6	0.1	62.82
(155,	-	4	SOV			0	952.3		2.1	2.1	0.1	1.6	1.6	0.0	63.95
(155,	-	5	HOV	0		0	743.6		2.2	2.1	0.1	1.7	1.6	0.0	62.39
(155,	130)	5	ноч	U	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(104,	157)	1	sov			16	2070.3		19.2	15.9	3.4	14.9	12.3	2.6	53.16
(104,	157)	2	sov			7	1604.1		16.9	15.8	1.1	13.1	12.2	0.9	60.48
(104,	157)	3	sov			3	1091.1		16.1	15.5	0.5	12.4	12.0	0.4	63.64
(104,	157)	4	sov			3	751.9		16.2	15.8	0.4	12.5	12.2	0.3	62.98
(104,	157)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(104,	157)	9	sov			0	50.9		24.8	20.6	4.3	19.2	15.9	3.3	41.16
(157,	-	1	sov			5	2637.3		2.5	2.1	0.4	1.9	1.6	0.3	54.92
(157,		2	sov			1	1394.1		2.2	2.1	0.1	1.7	1.6	0.1	61.55
(157,	158)	3	sov			1	909.2		2.1	2.1	0.1	1.6	1.6	0.0	64.14
(157,		4	sov			0	617.3		2.1	2.1	0.0	1.6	1.6	0.0	63.65
(157,	158)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(137,	150)	1	sov			5	2017.8		11.3	9.9	1.4	8.7	7.6	1.1	56.33
(137,	-	2	SOV			4	1241.3		10.3	9.9	0.5	8.0	7.6	0.4	61.56
(137,	-	3	SOV			2	916.4		9.8	9.6	0.3	7.6	7.4	0.4	64.60
(137,		4	sov			0	580.2		9.8	9.7	0.2	7.6	7.4	0.2	64.63
(137,	-	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(137,	-	9	SOV			0	44.6		14.2	11.1	3.1	11.0	8.6	2.4	44.68
(137,	133,	,	504			Ū	11.0		14.2		3.1	11.0	0.0	2.4	11.00
(150,	151)	1	sov			7	2440.2		8.7	7.7	1.0	6.7	6.0	0.8	56.44
(150,	151)	2	sov			2	1576.4		8.1	7.6	0.4	6.2	5.9	0.3	60.74
(150,	151)	3	sov			3	1228.6		7.7	7.5	0.2	6.0	5.8	0.2	63.39
(150,	151)	4	sov			1	844.1		7.7	7.4	0.3	5.9	5.7	0.2	63.60
(150,	151)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(325,	95)	1	sov			9	1104.1		36.9	35.2	1.7	28.5	27.2	1.3	60.61
(325,	95)	2	sov			11	1119.5		36.1	35.1	1.0	27.9	27.1	0.8	61.83
(325,	95)	3	sov			9	1040.4		34.6	33.9	0.7	26.8	26.2	0.5	64.49

(325,	95)	4	sov			8	746.1		34.1	33.3	0.8	26.2	25.6	0.6	65.51
	325,	95)	5	HOV	16	17	0	16.3	16.3	33.6	33.6	0.0	26.1	26.1	0.0	66.47
-		-														
(102,	160)	1	sov			0	339.8		5.2	5.2	0.0	4.1	4.0	0.0	54.67
(102,	160)	2	sov			0	310.2		5.3	5.2	0.1	4.1	4.0	0.1	54.45
(98,	99)	1	sov			5	543.0		24.3	23.5	0.8	18.8	18.2	0.6	62.88
(98,	99)	2	SOV			7	784.5		25.2	24.3	0.9	19.6	18.9	0.7	60.72
(99)	3	sov			4	718.6		23.8	23.5	0.3	18.4	18.1	0.3	64.17
(-	99)	4	SOV			6	529.2		23.4	23.0	0.4	18.0	17.7	0.3	65.52
(98,	99)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
-	99,	-	1	sov			4	554.7		15.8	15.5	0.3	12.2	12.0	0.2	63.94
_	-	164)	2	sov			1	752.9		16.5	16.1	0.4	12.8	12.5	0.3	61.20
-	99,	-	3	sov			3	710.8		15.8	15.5	0.2	12.1	12.0	0.2	64.13
•		164)	4	sov			3	551.2		15.4	15.2	0.3	11.9	11.7	0.2	65.45
(99,	164)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	295,		1	sov			4	1138.7		8.4	8.3	0.1	6.5	6.4	0.1	47.31
	295,	-	2	SOV			2	1160.3		8.5	8.4	0.1	6.6	6.5	0.1	46.99
(295,	200)	9	sov			0	132.9		8.9	8.7	0.2	6.9	6.7	0.2	44.73
,			_				_									
-	203,	-	1	sov			2	1329.9		1.8	1.7	0.1	1.4	1.3	0.1	62.71
(203,	201)	2	sov			1	1378.7		1.8	1.7	0.1	1.4	1.3	0.0	62.62
,	200	100\		sov			•	1041 1								
	200, 200,		1				2	1041.1		6.8	6.6	0.2	5.2	5.1	0.1	44.00
'	200,	199)	2	sov			3	1141.6	,	6.8	6.6	0.2	5.2	5.1	0.1	43.81
,	179,	1791	1	sov			2	662.0		6.4	6.1	0.2	4.9	4 7		F2 6F
	179,		2	SOV			2	654.3		6.3	6.1	0.2	4.9	4.7 4.7	0.2	53.65
`	119,	1707	2	501			2	034.3		0.3	0.1	0.2	4.9	4.7	0.2	53.77
(180,	179)	1	sov			0	657.0		12.7	12.4	0.3	9.8	9.6	0.2	53.75
	180,		2	sov			0	653.1		12.6	12.4	0.2	9.8	9.6	0.2	53.75
	180,		9	sov			0	4.4		12.5	12.4	0.2	9.7	9.5	0.1	54.35
`	100,	1,5,		501			Ū			12.5	12.1	0.2	3.1	9.5	0.1	34.33
(181,	180)	1	sov			2	568.4		6.3	6.2	0.1	4.8	4.8	0.1	53.94
	181,	-	2	sov			1	653.7		6.3	6.2	0.1	4.8	4.8	0.1	54.05
`	,		_				_				٠. ـ	***				31.03
(199,	198)	1	sov			3	1035.5		8.5	8.2	0.4	6.6	6.3	0.3	43.75
	199,		2	sov			4	1149.5		8.6	8.3	0.3	6.6	6.4	0.3	43.51
		- *					_					- • -			- • -	
(198,	197)	1	sov			2	1225.1		16.1	15.1	1.1	12.5	11.7	0.8	51.21
(198,	197)	2	sov			6	1202.1		16.1	15.1	0.9	12.4	11.7	0.7	51.41
(198,	197)	9	sov			0	10.1		18.6	17.7	0.9	14.4	13.6	0.7	44.39

(197, 196) 2 SOV 8 1311.9 19.5 18.6 0.9 15.0 14.4 0.7 52.51 (197, 196) 9 SOV 0 19.1 24.3 20.8 35.5 18.9 16.2 2.7 42.03 (196, 195) 1 SOV 14 1480.7 34.0 32.2 1.8 26.3 24.9 1.4 51.80 (182, 181) 1 SOV 2 552.6 21.6 21.2 0.4 16.7 16.4 0.3 53.83 (183, 182) 1 SOV 7 1246.9 19.3 18.6 0.7 14.9 14.4 0.5 53.03 (183, 182) 1 SOV 7 1246.9 19.3 18.6 0.7 14.9 14.4 0.5 53.03 (184, 183) 1 SOV 7 1059.7 18.8 <th>(197,</th> <th>196)</th> <th>1</th> <th>sov</th> <th> </th> <th>6</th> <th>1551.6</th> <th> 19.9</th> <th>18.7</th> <th>1.3</th> <th>15.4</th> <th>14.4</th> <th>1.0</th> <th>51.31</th>	(197,	196)	1	sov	 	6	1551.6	 19.9	18.7	1.3	15.4	14.4	1.0	51.31
(196, 195) 1 SOV 14 1494.3 34.0 32.2 1.8 26.3 24.9 1.4 51.80 (196, 195) 2 SOV 14 1400.7 33.6 32.0 1.6 26.0 24.7 1.3 52.37 (182, 181) 1 SOV 2 552.6 21.6 21.2 0.4 16.7 16.4 0.3 53.83 (182, 181) 2 SOV 3 670.3 21.5 21.2 0.3 16.6 16.4 0.2 54.22 (183, 182) 1 SOV 4 673.2 18.8 18.5 0.3 14.5 14.3 0.2 54.33 (184, 183) 1 SOV 7 1059.7 24.1 23.9 0.3 18.7 18.4 0.2 54.82 (205, 204) 1 SOV 5 877.3 24.0 23.7 0.2 18.5 18.3 0.2 54.62 (205, 204) 1 SOV 2 447.6 4.9 4.7 0.1 3.7 3.6 0.1 43.29 (182, 193) 2 SOV 1 355.3 6.7 6.2 0.6 5.2 4.8 0.4 59.65 (193, 194) 3 SOV 1 355.3 6.7 6.2 0.6 5.2 4.8 0.4 59.65 (193, 194) 3 SOV 2 552.6 4.9 4.3 3.7 0.6 3.4 2.9 0.5 60.01 (193, 194) 3 SOV 1 355.3 6.7 6.2 0.6 5.2 4.8 0.4 59.65 (193, 194) 3 SOV 1 0.2 552.0 4.9 4.7 0.6 3.4 2.9 0.5 60.01 (193, 194) 3 SOV 1 0.2 552.0 4.9 4.9 0.8 4.1 3.7 0.6 3.1 53.9 (206, 207) 1 SOV 0 252.0 4.9 4.3 3.7 0.6 3.4 2.9 0.5 60.01 (193, 194) 3 SOV 1 365.3 6.7 6.2 0.6 5.2 4.8 0.4 59.65 (193, 194) 3 SOV 1 365.3 6.7 6.2 0.6 5.2 4.8 0.4 59.65 (193, 194) 3 SOV 1 365.3 6.7 6.2 0.6 5.2 4.8 0.4 59.65 (193, 194) 3 SOV 1 365.3 6.7 6.2 0.6 5.2 4.8 0.4 59.65 (193, 194) 3 SOV 1 365.3 6.7 6.2 0.6 5.2 4.8 0.4 59.65 (193, 194) 3 SOV 1 365.3 6.7 6.2 0.6 5.2 4.8 0.4 59.65 (193, 194) 3 SOV 1 365.3 6.7 6.2 0.6 5.2 4.8 0.4 59.65 (193, 194) 3 SOV 1 365.3 6.7 6.2 0.6 5.2 4.8 0.4 59.65 (193, 194) 3 SOV 1 365.3 6.7 6.2 0.6 5.2 4.8 0.4 59.65 (193, 194) 3 SOV 1 365.3 6.7 6.2 0.6 5.2 4.8 0.4 59.65 (193, 194) 3 SOV 1 365.3 6.7 6.2 0.6 5.2 0.2 5.0 4.8 0.2 47.91 (206, 207) 1 SOV 1 365.3 6.7 6.2 0.2 5.0 4.8 0.2 47.91 (207, 198) 1 SOV 1 365.3 6.7 6.2 0.6 5.2 0.2 5.0 4.8 0.2 47.91 (207, 198) 1 SOV 1 365.0 1 3.9 1.7 0.2 1.5 1.3 0.2 54.49 (178, 202) 2 SOV			2	sov	 	8	1311.9	 19.5	18.6	0.9	15.0	14.4	0.7	52.51
(196, 195) 2 Sov -14 1400.7 33.6 32.0 1.6 26.0 24.7 1.3 52.37 (182, 181) 1 Sov 2 552.6 21.6 21.2 0.4 16.7 16.4 0.3 53.83 (183, 182) 1 Sov -7 146.9 19.3 18.6 0.7 14.9 14.4 0.5 53.05 (183, 182) 2 Sov -7 1059.7 24.1 23.9 0.3 18.5 13.3 14.5 14.3 0.2 54.18 (184, 183) 1 Sov 7 1059.7 24.1 23.9 0.3 18.7 18.4 0.2 54.18 (184, 183) 1 Sov 5877.3 24.1 23.9 0.3 18.7 18.4 0.2 54.18 (184, 183) 1 Sov 2 449.2 2.9 2.	(197,	196)	9	sov	 	0	19.1	 24.3	20.8	3.5	18.9	16.2	2.7	42.03
(196, 195) 2 SOV 14 1400.7 33.6 32.0 1.6 26.0 24.7 1.3 52.37 (182, 181) 1 SOV 2 552.6 21.5 21.2 0.4 16.7 16.4 0.2 54.22 (183, 182) 1 SOV -7 1246.9 19.3 18.6 0.7 14.9 14.4 0.5 53.05 (183, 182) 2 SOV -7 1246.9 19.3 18.6 0.7 14.9 14.4 0.5 53.05 53.05 53.05 18.3 18.2 20.0 14.9 14.4 0.5 53.05 54.33 (184, 183) 1 SOV 7 1059.7 24.1 23.9 0.3 18.7 18.4 0.2 54.18 (184, 183) 1 SOV 2 449.2 2.9 2.8 0.1 2.3 2.2 0.1 43.01 <td>(196.</td> <td>195)</td> <td>1</td> <td>sov</td> <td> </td> <td>14</td> <td>1484.3</td> <td> 34.0</td> <td>32.2</td> <td>1.8</td> <td>26.3</td> <td>24.9</td> <td>1.4</td> <td>51.80</td>	(196.	195)	1	sov	 	14	1484.3	 34.0	32.2	1.8	26.3	24.9	1.4	51.80
(182, 181) 1 SOV 2 552.6 21.6 21.2 0.4 16.7 16.4 0.3 53.83 (182, 181) 2 SOV 3 670.3 21.5 21.2 0.3 16.6 16.4 0.2 54.22 (183, 182) 1 SOV 7 1246.9 19.3 18.6 0.7 14.9 14.4 0.5 53.05 (183, 182) 2 SOV 4 673.2 18.8 18.5 0.3 14.5 14.3 0.2 54.33 (184, 183) 1 SOV 7 1059.7 24.1 23.9 0.3 18.7 18.4 0.2 54.33 (184, 183) 2 SOV 5 877.3 24.0 23.7 0.2 18.5 18.3 0.2 54.62 (205, 204) 1 SOV 2 449.2 2.9 2.8 0.1 2.3 2.2 0.1 43.01 (204, 197) 1 SOV 0 336.1 7.4 6.3 1.0 5.7 4.9 0.8 54.51 (182, 193) 2 SOV 1 365.3 6.7 6.2 0.6 5.2 4.8 0.4 59.65 (193, 194) 1 SOV 0 118.0 4.9 4.7 0.1 3.7 3.6 0.1 43.29 (193, 194) 2 SOV 0 128.0 4.9 0.8 4.1 3.7 0.6 3.4 2.9 0.5 60.01 (193, 194) 3 SOV 0 92.0 6.5 6.2 0.6 5.2 4.8 0.4 59.65 (193, 194) 3 SOV 0 92.0 6.5 6.2 0.6 5.2 4.8 0.2 47.91 (207, 198) 1 SOV 0 92.0 6.5 6.2 0.2 2.2 2.0 0.2 36.61 (200, 210) 1 SOV 0 253.0 5.3 5.1 0.2 4.1 4.0 0.1 42.79 (206, 207) 1 SOV 0 252.0 5.3 5.1 0.2 4.1 4.0 0.1 42.79 (206, 207) 1 SOV 0 247.0 5.3 5.1 0.2 4.1 4.0 0.1 42.79 (206, 207) 1 SOV 0 247.0 2.8 2.6 0.2 2.2 2.0 0.2 36.61 (200, 210) 1 SOV 0 247.0 3.6 3.6 3.6 0.0 2.8 2.8 0.0 40.73 (178, 202) 2 SOV 1 670.8 1.9 1.7 0.2 1.5 1.3 0.2 54.49 (178, 202) 2 SOV 0 247.0 2.8 2.6 0.2 2.2 2.0 0.2 36.61 (200, 210) 1 SOV 0 247.0 2.8 2.6 0.2 2.2 2.0 0.2 36.61 (200, 210) 1 SOV 0 247.0 2.8 2.6 0.2 2.2 2.0 0.2 36.61 (207, 211) 1 SOV 0 247.0 2.8 2.6 0.2 2.2 2.0 0.2 36.61 (207, 211) 1 SOV 0 247.0 2.8 2.6 0.2 2.2 2.0 0.2 36.61 (207, 211) 1 SOV 0 247.0 2.8 2.6 0.2 2.2 2.0 0.2 36.61 (207, 211) 1 SOV 0 247.0 2.8 2.6 0.2 2.2 2.0 0.2 36.61 (207, 211) 1 SOV 0 247.0 2.8 2.6 0.6 5.4 1.2 5.1 4.1 0.9 44.90 (139,7009) 2 SOV 1 698.3 6.6 6 5.4 1.2 5.1 4.1 0.9 44.90				-	 			 33.6		1.6	26.0	24.7	1.3	52.37
(182, 181) 2 SOV 3 670,3 21.5 21.2 0.3 16.6 16.4 0.2 54.22 (183, 182) 1 SOV 7 1246.9 19.3 18.6 0.7 14.9 14.4 0.5 53.05 (184, 183) 1 SOV 7 1059.7 24.1 23.9 0.3 18.7 18.4 0.2 54.18 (184, 183) 1 SOV 5 877.3 24.0 23.7 0.2 18.5 18.3 0.2 54.62 (205, 204) 1 SOV 2 449.2 2.9 2.8 0.1 2.3 2.2 0.1 43.01 (204, 197) 1 SOV 2 447.6 4.9 4.7 0.1 3.7 3.6 0.1 43.29 (182, 193) 1 SOV 0 336.1 <	(150,	155,	-	501			1100.7	33.0	32.0	1.0	20.0	2117	1.5	32.37
(183, 182) 1 SOV 4 673.2 19.3 18.6 0.7 14.9 14.4 0.5 53.05 (183, 182) 2 SOV 4 673.2 18.8 18.5 0.3 14.5 14.3 0.2 54.33 (184, 183) 1 SOV 5 877.3 24.1 23.9 0.3 18.7 18.4 0.2 54.18 (184, 183) 2 SOV 5 877.3 24.0 23.7 0.2 18.5 18.3 0.2 54.62 (205, 204) 1 SOV 2 449.2 2.9 2.8 0.1 2.3 2.2 0.1 43.01 (204, 197) 1 SOV 2 447.6 4.9 4.7 0.1 3.7 3.6 0.1 43.29 (182, 193) 2 SOV 1 365.3 6.7 6.2 0.6 5.2 4.8 0.4 59.65 (193, 194) 1 SOV 0 118.0 4.3 3.7 0.6 3.4 2.9 0.5 60.01 (193, 194) 2 SOV 2 582.8 4.3 4.0 0.3 3.3 3.1 0.2 60.57 (193, 194) 3 SOV 0 0.2 4.9 0.8 4.1 3.7 0.6 3.1 53.39 (208, 209) 1 SOV 0 92.0 6.5 6.2 0.2 5.0 4.8 0.2 47.91 (207, 198) 1 SOV 0 253.0 5.3 5.1 0.2 4.1 4.0 0.1 42.79 (206, 207) 1 SOV 0 247.0 4.2 4.2 0.1 3.3 3.2 0.0 44.03 (210, 211) 1 SOV 0 247.0 4.2 4.2 0.1 3.3 3.2 0.0 44.03 (210, 211) 1 SOV 0 247.0 4.2 4.2 0.1 3.3 3.2 0.0 44.03 (178, 202) 1 SOV 0 1643.2 1.9 1.7 0.2 1.5 1.3 0.2 54.49 (178, 202) 2 SOV 1 698.3 1.9 1.7 0.2 1.5 1.3 0.2 54.49 (179, 202) 2 SOV 1 666 5.4 1.2 5.1 4.1 0.9 44.90 (139,7009) 2 SOV 1 698.3 6.6 5.4 1.2 5.1 4.1 0.9 44.90 (139,7009) 2 SOV 1 698.3 6.6 6.5 6.5 0.1 1.5 5.0 0.1 1.6 1.5 0.1 55.07 (100, 141) 1 SOV 1 698.3 6.6 6.5 5.4 1.2 5.1 4.1 0.9 44.90		-			 	_		 21.6						
(183, 182) 2 SOV -4 673.2 18.8 10.5 0.3 14.5 14.3 0.2 54.33 (184, 183) 1 SOV 5 877.3 24.1 23.9 0.3 18.7 18.4 0.2 54.62 (205, 204) 1 SOV 2 449.2 2.9 2.8 0.1 2.3 2.2 0.1 43.01 (204, 197) 1 SOV 2 447.6 4.9 4.7 0.1 3.7 3.6 0.1 43.29 (182, 193) 1 SOV 0 336.1 7.4 6.3 1.0 5.7 4.9 0.8 54.51 (182, 193) 1 SOV 0 336.1 7.4 6.3 1.0 5.7 4.9 0.8 54.51 (182, 193) 1 SOV 0 136.3 6.7 6.2 0.6 5.2	(182,	181)	2	sov	 	3	670.3	 21.5	21.2	0.3	16.6	16.4	0.2	54.22
(183, 182)	(183,	182)	1	sov	 	7	1246.9	 19.3	18.6	0.7	14.9	14.4	0.5	53.05
(184, 183) 2 SOV 5 877.3 24.0 23.7 0.2 18.5 18.3 0.2 54.62 (205, 204) 1 SOV 2 449.2 2.9 2.8 0.1 2.3 2.2 0.1 43.01 (204, 197) 1 SOV 2 447.6 4.9 4.7 0.1 3.7 3.6 0.1 43.29 (182, 193) 1 SOV 0 336.1 7.4 6.3 1.0 5.7 4.9 0.8 54.51 (182, 193) 2 SOV 1 365.3 6.7 6.2 0.6 5.2 4.8 0.4 59.65 (193, 194) 1 SOV 2 582.8 4.3 3.0 0.6 3.4 2.9 0.5 60.01 (193, 194) 3 SOV 2 582.8 <t< td=""><td>(183,</td><td>182)</td><td>2</td><td>sov</td><td> </td><td>4</td><td>673.2</td><td> 18.8</td><td>18.5</td><td></td><td></td><td></td><td></td><td>54.33</td></t<>	(183,	182)	2	sov	 	4	673.2	 18.8	18.5					54.33
(184, 183) 2 SOV 5 877.3 24.0 23.7 0.2 18.5 18.3 0.2 54.62 (205, 204) 1 SOV 2 449.2 2.9 2.8 0.1 2.3 2.2 0.1 43.01 (204, 197) 1 SOV 2 447.6 4.9 4.7 0.1 3.7 3.6 0.1 43.29 (182, 193) 1 SOV 0 336.1 7.4 6.3 1.0 5.7 4.9 0.8 54.51 (182, 193) 2 SOV 1 365.3 6.7 6.2 0.6 5.2 4.8 0.4 59.65 (193, 194) 1 SOV 2 582.8 4.3 3.0 0.6 3.4 2.9 0.5 60.01 (193, 194) 3 SOV 2 582.8 <t< td=""><td></td><td></td><td>_</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			_			_								
(205, 204) 1 SOV 2 449.2 2.9 2.8 0.1 2.3 2.2 0.1 43.01 (204, 197) 1 SOV 2 447.6 4.9 4.7 0.1 3.7 3.6 0.1 43.29 (182, 193) 1 SOV 1 365.3 6.7 6.2 0.6 5.2 4.8 0.4 59.65 (193, 194) 1 SOV 0 118.0 4.3 3.7 0.6 3.4 2.9 0.5 60.01 (193, 194) 2 SOV 2 582.8 4.3 4.0 0.3 3.3 3.1 0.2 60.57 (193, 194) 3 SOV 0 0.2 4.9 0.8 4.1 3.7 0.6 3.1 53.39 (208, 209) 1 SOV 0 92.0 6.5 6.2 0.2 5.0 4.8 0.2 47.91 (207, 198) 1 SOV 0 253.0 5.3 5.1 0.2 4.1 4.0 0.1 42.79 (206, 207) 1 SOV 0 252.0 2.8 2.6 0.2 2.2 2.0 0.2 36.61 (200, 210) 1 SOV 0 247.0 4.2 4.2 0.1 3.3 3.2 0.0 44.03 (210, 211) 1 SOV 0 247.0 4.2 4.2 0.1 3.3 3.2 0.0 44.03 (210, 211) 1 SOV 1 643.2 1.9 1.7 0.2 1.5 1.3 0.2 54.49 (178, 202) 2 SOV 1 643.2 1.9 1.7 0.2 1.5 1.3 0.2 54.49 (178, 202) 2 SOV 0 127.0 2.1 2.0 0.1 1.6 1.5 0.1 55.07 (7010, 141) 1 SOV 0 127.0 2.1 2.0 0.1 1.6 1.5 0.1 55.07 (7010, 141) 1 SOV 0 127.0 2.1 2.0 0.1 1.6 1.5 0.1 55.07 (7010, 141) 1 SOV 0 127.0 2.1 2.0 0.1 1.6 1.5 0.1 55.07 (7010, 141) 1 SOV 0 127.0 2.1 2.0 0.1 1.6 1.5 0.1 55.07 (7010, 141) 1 SOV 0 127.0 2.1 2.0 0.1 1.6 1.5 0.1 55.07 (7010, 141) 1 SOV 0 127.0 2.1 2.0 0.1 1.6 1.5 0.1 55.07 (7010, 141) 1 SOV 0 127.0 2.1 2.0 0.1 1.6 1.5 0.1 55.07 (7010, 141) 1 SOV 0 127.0 2.1 2.0 0.1 1.6 1.5 0.1 55.07 (7010, 141) 1 SOV 0 127.0 2.1 2.0 0.1 1.6 1.5 0.1 55.07 (7010, 141) 1 SOV 0 127.0 2.1 2.0 0.1 1.6 1.5 0.1 55.07 (7010, 141) 1 SOV 0 127.0 2.1 2.0 0.1 1.6 1.5 0.1 55.07 (7010, 141) 1 SOV 0 127.0 2.1 2.0 0.1 1.6 1.5 0.1 55.07 (7010, 141) 1 SOV 0 127.0 6.6 5.4 1.2 5.1 4.1 0.9 44.90		-						 					0.2	
(204, 197)	(184,	183)	2	sov	 	5	877.3	 24.0	23.7	0.2	. 18.5	18.3	0.2	54.62
(182, 193)	(205,	204)	1	sov	 	2	449.2	 2.9	2.8	0.1	2.3	2.2	0.1	43.01
(182, 193) 2 SOV 1 365.3 6.7 6.2 0.6 5.2 4.8 0.4 59.65 (193, 194) 1 SOV 0 118.0 4.3 3.7 0.6 3.4 2.9 0.5 60.01 (193, 194) 2 SOV 2 582.8 4.3 4.0 0.3 3.3 3.1 0.2 60.57 (193, 194) 3 SOV 0 0.2 4.9 0.8 4.1 3.7 0.6 3.1 53.39 (208, 209) 1 SOV 0 92.0 6.5 6.2 0.2 5.0 4.8 0.2 47.91 (207, 198) 1 SOV 0 253.0 5.3 5.1 0.2 4.1 4.0 0.1 42.79 (206, 207) 1 SOV 0 247.0 2.8 2	(204,	197)	1	sov	 	2	447.6	 4.9	4.7	0.1	3.7	3.6	0.1	43.29
(182, 193) 2 SOV 1 365.3 6.7 6.2 0.6 5.2 4.8 0.4 59.65 (193, 194) 1 SOV 0 118.0 4.3 3.7 0.6 3.4 2.9 0.5 60.01 (193, 194) 2 SOV 2 582.8 4.3 4.0 0.3 3.3 3.1 0.2 60.57 (193, 194) 3 SOV 0 0.2 4.9 0.8 4.1 3.7 0.6 3.1 53.39 (208, 209) 1 SOV 0 92.0 6.5 6.2 0.2 5.0 4.8 0.2 47.91 (207, 198) 1 SOV 0 253.0 5.3 5.1 0.2 4.1 4.0 0.1 42.79 (206, 207) 1 SOV 0 247.0 2.8 2	(182.	193)	1	sov	 	0	336.1	 7.4	6.3	1.0	5.7	4.9	0.8	54 51
(193, 194)					 	-								
(193, 194) 2 SOV 2 582.8 4.3 4.0 0.3 3.3 3.1 0.2 60.57 (193, 194) 3 SOV 0 0.2 4.9 0.8 4.1 3.7 0.6 3.1 53.39 (208, 209) 1 SOV 0 92.0 6.5 6.2 0.2 5.0 4.8 0.2 47.91 (207, 198) 1 SOV 0 253.0 5.3 5.1 0.2 4.1 4.0 0.1 42.79 (206, 207) 1 SOV 0 252.0 2.8 2.6 0.2 2.2 2.0 0.2 36.61 (200, 210) 1 SOV 0 247.0 4.2 4.2 0.1 3.3 3.2 0.0 44.03 (210, 211) 1 SOV 0 247.0 3.6 3.6 0.0 2	(101)		_	201		-	303.3	0.,	0.2	0.0	3.2	4.0	0.4	33.03
(193, 194) 3 SOV 0 0.2 4.9 0.8 4.1 3.7 0.6 3.1 53.39 (208, 209) 1 SOV 0 92.0 6.5 6.2 0.2 5.0 4.8 0.2 47.91 (207, 198) 1 SOV 0 253.0 5.3 5.1 0.2 4.1 4.0 0.1 42.79 (206, 207) 1 SOV 0 252.0 2.8 2.6 0.2 2.2 2.0 0.2 36.61 (200, 210) 1 SOV 0 247.0 4.2 4.2 0.1 3.3 3.2 0.0 44.03 (210, 211) 1 SOV 0 247.0 3.6 3.6 0.0 2.8 2.8 0.0 40.73 (178, 202) 1 SOV 1 670.8 1.9 1.7 0.2			1	sov	 	0	118.0	 4.3	3.7	0.6	3.4	2.9	0.5	60.01
(208, 209) 1 SOV 0 92.0 6.5 6.2 0.2 5.0 4.8 0.2 47.91 (207, 198) 1 SOV 0 253.0 5.3 5.1 0.2 4.1 4.0 0.1 42.79 (206, 207) 1 SOV 0 252.0 2.8 2.6 0.2 2.2 2.0 0.2 36.61 (200, 210) 1 SOV 0 247.0 4.2 4.2 0.1 3.3 3.2 0.0 44.03 (210, 211) 1 SOV 0 247.0 3.6 3.6 0.0 2.8 2.8 0.0 40.73 (178, 202) 1 SOV 1 670.8 1.9 1.7 0.2 1.5 1.3 0.2 54.49 (178, 202) 2 SOV 1 643.2 1.9 <t< td=""><td>(193,</td><td>194)</td><td>2</td><td>sov</td><td> </td><td>2</td><td>582.8</td><td> 4.3</td><td>4.0</td><td>0.3</td><td>3.3</td><td>3.1</td><td>0.2</td><td>60.57</td></t<>	(193,	194)	2	sov	 	2	582.8	 4.3	4.0	0.3	3.3	3.1	0.2	60.57
(207, 198) 1 SOV 0 253.0 5.3 5.1 0.2 4.1 4.0 0.1 42.79 (206, 207) 1 SOV 0 252.0 2.8 2.6 0.2 2.2 2.0 0.2 36.61 (200, 210) 1 SOV 0 247.0 4.2 4.2 0.1 3.3 3.2 0.0 44.03 (210, 211) 1 SOV 0 247.0 3.6 3.6 0.0 2.8 2.8 0.0 40.73 (178, 202) 1 SOV 1 670.8 1.9 1.7 0.2 1.5 1.3 0.2 54.49 (178, 202) 2 SOV 1 643.2 1.9 1.7 0.2 1.5 1.3 0.2 54.60 (139,7009) 1 SOV 2 1284.2 2.2 2.1 0.1 1.7 1.6 0.0 52.63 (139,7009) 2 SOV<	(193,	194)	3	sov	 	0	0.2	 4.9	0.8	4.1	3.7	0.6	3.1	53.39
(206, 207) 1 SOV 0 252.0 2.8 2.6 0.2 2.2 2.0 0.2 36.61 (200, 210) 1 SOV 0 247.0 4.2 4.2 0.1 3.3 3.2 0.0 44.03 (210, 211) 1 SOV 0 247.0 3.6 3.6 0.0 2.8 2.8 0.0 40.73 (178, 202) 1 SOV 1 670.8 1.9 1.7 0.2 1.5 1.3 0.2 54.49 (178, 202) 2 SOV 1 643.2 1.9 1.7 0.2 1.5 1.3 0.2 54.49 (139,7009) 1 SOV 2 1284.2 1.9 1.7 0.2 1.5 1.3 0.2 54.60 (139,7009) 2 SOV 0 127.0 2.1 2.0 0.1 1.6 1.5	(208,	209)	1	sov	 	0	92.0	 6.5	6.2	0.2	5.0	4.8	0.2	47.91
(206, 207) 1 SOV 0 252.0 2.8 2.6 0.2 2.2 2.0 0.2 36.61 (200, 210) 1 SOV 0 247.0 4.2 4.2 0.1 3.3 3.2 0.0 44.03 (210, 211) 1 SOV 0 247.0 3.6 3.6 0.0 2.8 2.8 0.0 40.73 (178, 202) 1 SOV 1 670.8 1.9 1.7 0.2 1.5 1.3 0.2 54.49 (178, 202) 2 SOV 1 643.2 1.9 1.7 0.2 1.5 1.3 0.2 54.49 (139,7009) 1 SOV 2 1284.2 1.9 1.7 0.2 1.5 1.3 0.2 54.60 (139,7009) 2 SOV 0 127.0 2.1 2.0 0.1 1.6 1.5	(207	100)	1	9077	 	0	253 0	 5 3	5 1	0.2	4 1	4 0	0 1	12 70
(200, 210) 1 SOV 0 247.0 4.2 4.2 0.1 3.3 3.2 0.0 44.03 (210, 211) 1 SOV 0 247.0 3.6 3.6 0.0 2.8 2.8 0.0 40.73 (178, 202) 1 SOV 1 670.8 1.9 1.7 0.2 1.5 1.3 0.2 54.49 (178, 202) 2 SOV 1 643.2 1.9 1.7 0.2 1.5 1.3 0.2 54.60 (139,7009) 1 SOV 2 1284.2 2.2 2.1 0.1 1.7 1.6 0.0 52.63 (139,7009) 2 SOV 0 127.0 2.1 2.0 0.1 1.6 1.5 0.1 55.07 (7010, 141) 1 SOV 1 698.3 6.6 5.4 1.2 5.	(207,	190,	-	501	 	v	233.0	 3.3	3.1	0.2	4.1	4.0	0.1	42.73
(210, 211) 1 SOV 0 247.0 3.6 3.6 0.0 2.8 2.8 0.0 40.73 (178, 202) 1 SOV 1 670.8 1.9 1.7 0.2 1.5 1.3 0.2 54.49 (178, 202) 2 SOV 1 643.2 1.9 1.7 0.2 1.5 1.3 0.2 54.60 (139,7009) 1 SOV 2 1284.2 2.2 2.1 0.1 1.7 1.6 0.0 52.63 (139,7009) 2 SOV 0 127.0 2.1 2.0 0.1 1.6 1.5 0.1 55.07 (7010, 141) 1 SOV 1 698.3 6.6 5.4 1.2 5.1 4.1 0.9 44.90	(206,	207)	1	sov	 	0	252.0	 2.8	2.6	0.2	2.2	2.0	0.2	36.61
(178, 202)	(200,	210)	1	sov	 	0	247.0	 4.2	4.2	0.1	3.3	3.2	0.0	44.03
(178, 202) 2 SOV 1 643.2 1.9 1.7 0.2 1.5 1.3 0.2 54.60 (139,7009) 1 SOV 2 1284.2 2.2 2.1 0.1 1.7 1.6 0.0 52.63 (139,7009) 2 SOV 0 127.0 2.1 2.0 0.1 1.6 1.5 0.1 55.07 (7010, 141) 1 SOV 1 698.3 6.6 5.4 1.2 5.1 4.1 0.9 44.90	(210,	211)	1	sov	 	0	247.0	 3.6	3.6	0.0	2.8	2.8	0.0	40.73
(178, 202) 2 SOV 1 643.2 1.9 1.7 0.2 1.5 1.3 0.2 54.60 (139,7009) 1 SOV 2 1284.2 2.2 2.1 0.1 1.7 1.6 0.0 52.63 (139,7009) 2 SOV 0 127.0 2.1 2.0 0.1 1.6 1.5 0.1 55.07 (7010, 141) 1 SOV 1 698.3 6.6 5.4 1.2 5.1 4.1 0.9 44.90						_								
(139,7009) 1 SOV 2 1284.2 2.2 2.1 0.1 1.7 1.6 0.0 52.63 (139,7009) 2 SOV 0 127.0 2.1 2.0 0.1 1.6 1.5 0.1 55.07 (7010, 141) 1 SOV 1 698.3 6.6 5.4 1.2 5.1 4.1 0.9 44.90														
(139,7009) 2 SOV 0 127.0 2.1 2.0 0.1 1.6 1.5 0.1 55.07 (7010, 141) 1 SOV 1 698.3 6.6 5.4 1.2 5.1 4.1 0.9 44.90	(178,	202)	2	sov	 	1	643.2	 1.9	1.7	0.2	1.5	1.3	0.2	54.60
(139,7009) 2 SOV 0 127.0 2.1 2.0 0.1 1.6 1.5 0.1 55.07 (7010, 141) 1 SOV 1 698.3 6.6 5.4 1.2 5.1 4.1 0.9 44.90	(139,7	009)	1	sov	 	2	1284.2	 2.2	2.1	0.1	1.7	1.6	0.0	52.63
(7010, 141) 1 SOV 1 698.3 6.6 5.4 1.2 5.1 4.1 0.9 44.90			2	sov	 	0	127.0	 2.1	2.0	0.1	1.6	1.5	0.1	55.07
· · · · · · · · · · · · · · · · · · ·	. === •	,	_											
(7010, 141) 2 SOV 1 662.2 6.3 5.2 1.1 4.9 4.0 0.9 46.72	(7010,	141)	1		 	_								44.90
	(7010,	141)	2	sov	 	1	662.2	 6.3	5.2	1.1	4.9	4.0	0.9	46.72

(211,70	11)	L sov	7		1	247.0		4.8	4.6	0.2	3.7	3.6	0.1	33.90
(7012, 2	06) :	L sov	7		0	294.5		2.3	2.1	0.2	1.8	1.7	0.1	33.19
(7014, 2	05)	108 I	7		1	483.9		4.1	3.7	0.4	3.2	2.9	0.3	41.16
(194,70	15)	1 so	<i>,</i>		0	130.0		2.0	1.8	0.3	1.6	1.4	0.2	57.35
(194,70		2 SO7	<i>J</i>		1	565.9		2.1	1.9	0.2	1.6	1.4	0.2	56.43
(194,70	15)	3 so	J		0	4.0		2.3	1.8	0.5	1.8	1.4	0.4	49.34
(201, 2	-	1 so			5	1195.1		8.9	8.9	0.1	6.9	6.8	0.0	57.02
(201, 2	95)	2 so	J		3	1238.4		8.9	8.9	0.1	6.9	6.9	0.0	56.87
(149, 2	98)	1 so	v		5	1489.9		16.4	15.7	0.8	12.7	12.2	0.6	62.32
(149, 2	98)	2 SO	y		4	1198.0		16.4	15.9	0.5	12.7	12.3	0.4	62.48
(149, 2	98)	3 so	v		7	1220.2		16.1	15.6	0.4	12.4	12.1	0.3	63.71
(149, 2	98)	4 SO	v		4	1153.6		16.6	16.0	0.6	12.7	12.3	0.5	61.75
(149, 2	98)	5 но	v 0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
/ 522 0	00)	1	•		•	1006.0		10 1		4.0				
(533, 2		1 SO			0	1896.2		10.1	5.7	4.3	7.8	4.4	3.4	37.55
(533, 2		2 so			1	1464.1		6.6	5.8	0.8	5.1	4.5	0.6	56.96
(533, 2	-	3 SO			2	1324.3		6.0	5.8	0.3	4.7	4.5	0.2	62.74
(533, 2	-	4 SO			1	1111.5		6.1	5.9	0.2	4.7	4.5	0.2	61.56
(533, 2		5 но		0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(533, 2	99)	9 SO	v		0	310.4		12.6	9.5	3.2	9.8	7.3	2.4	29.92
(299, 3	00)	1 so	v		15	2170.7		20.1	15.9	4.2	15.5	12.3	3.2	51.00
(299, 3	00)	2 SO	v		11	1876.7		17.8	15.9	2.0	13.8	12.3	1.5	57.34
(299, 3	00)	3 SO	v		6	1530.9		16.5	15.6	0.9	12.8	12.1	0.7	61.94
(299, 3	00)	4 SO	v		8	1162.9		16.6	15.9	0.7	12.8	12.2	0.5	61.53
(299, 3	00)	5 но	v 0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(299, 3	00)	9 so	v		2	64.7		25.3	21.8	3.5	19.5	16.8	2.7	40.50
(300, 3	01)	1 so	v		15	2025.4		29.4	27.4	2.1	22.8	21.2	1.6	60.14
(300, 3	01)	2 SO	v		17	1896.3		29.0	27.4	1.5	22.4	21.3	1.2	61.09
(300, 3	01)	3 so	v		14	1637.1		28.2	27.0	1.2	21.8	20.9	0.9	62.69
(300, 3		4 SO			11	1248.5		28.7	27.4	1.2	22.0	21.1	1.0	61.74
(300, 3	01)	5 но	٥ ٧	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(301, 3	021	1 so	v		4	1027.0		14.0	13.1	0.9	10.8	10.1	0.7	61.04
(301, 3		1 sov 2 sov			9	1645.1		13.8	13.1	0.9	10.8	10.1	0.7	61.69
					8									
(301, 3		3 SO		1171		1642.0		13.9	13.1	0.8	10.7	10.1	0.6	61.34
(301, 3		4 HO		1171	1	699.3	699.3	13.7	13.1	0.6	10.6	10.1	0.5	61.96
(301, 3	02)	9 so	v		6	1796.9		14.2	13.3	0.9	11.0	10.3	0.7	60.05

													10.0		F0 41
(302,		1	SOV			15	2036.4		17.2	15.8	1.4	13.3	12.2	1.1	59.41
	, 303)	2	sov			5	1479.9		16.6	15.9	0.7	12.9	12.3	0.6	61.51
(302,		3	sov			3	1292.1		16.3	15.7	0.6	12.6	12.1	0.5	62.70
(302	, 303)	4	SOV			5	1026.4		16.4	15.7	0.6	12.6	12.1	0.5	62.38
(302	, 303)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(302,	, 303)	9	SOV			3	416.4		16.5	15.7	0.8	12.7	12.2	0.6	62.04
(302	, 303)	10	SOV			1	559.2		17.5	16.5	1.0	13.5	12.8	0.7	58.50
,															
	, 304)	1	sov			4	1835.8		11.5	10.8	0.7	8.9	8.4	0.6	59.75
	, 304)	2	sov			4	1500.7		11.1	10.7	0.4	8.6	8.2	0.3	62.09
	, 304)	3	sov			2	1283.7		10.9	10.5	0.4	8.4	8.1	0.3	63.26
	, 304)	4	SOV			5	1022.1		11.0	10.6	0.4	8.5	8.2	0.3	62.35
	, 304)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(303,	, 304)	9	sov			1	413.3		11.3	11.1	0.2	8.7	8.5	0.2	60.86
/ 204	, 305)	1	sov			5	1805.1		10.7	0.7	0 0				F0 00
									10.7	9.7	0.9	8.3	7.5	0.7	58.39
	, 305)	2	sov			1	1331.8		10.1	9.5	0.6	7.8	7.4	0.5	61.55
	, 305)	3	SOV			2	923.8		9.9	9.5	0.4	7.6	7.3	0.3	62.92
(304,		4	HOV	0	885	0	155.5	155.5	9.9	9.5	0.3	7.6	7.3	0.3	63.08
(304,	, 305)	9	sov			6	1029.9		10.2	9.6	0.5	7.9	7.4	0.4	61.27
(305,	. 306)	1	sov			3	545.1		16.2	15.3	0.8	12.5	11.9	0.7	63.30
(305,		2	sov			5	1595.4		16.8	16.1	0.6	13.0	12.5	0.5	60.90
(305,		3	sov			3	1255.1		16.1	15.6	0.5	12.4	12.1	0.4	63.63
(305,	-	4	sov			1	915.8		16.2	15.6	0.6	12.5	12.0	0.4	63.16
	, 306)	5	HOV	0	0	ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	, 306)	9	SOV			6	939.3		17.0	16.5	0.5	13.1	12.7	0.4	60.22
(303)	, 300,	,	501			0	333.3		17.0	10.5	0.5	13.1	12.7	0.4	00.22
(306,	, 307)	1	sov			5	616.0		19.4	19.1	0.4	15.0	14.7	0.3	65.95
(306,	307)	2	sov			9	1368.1		21.1	20.4	0.7	16.4	15.8	0.6	60.71
(306,	, 307)	3	sov			6	1238.9		20.2	19.6	0.6	15.6	15.1	0.4	63.44
(306	307)	4	sov			3	950.8		20.3	19.5	0.7	15.6	15.0	0.6	63.15
(306	307)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	•														
(187,		1	sov			. 1	1337.0		8.5	7.0	1.5	6.5	5.4	1.2	54.32
(187,	, 310)	2	SOV			4	1342.0		7.7	7.3	0.4	6.0	5.7	0.3	59.49
(187,	310)	3	SOV			3	1286.7		7.3	7.1	0.2	5.6	5.5	0.2	63.12
(187,	310)	4	SOV			0	965.6		7.3	7.0	0.3	5.6	5.4	0.2	62.96
(187,	310)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(187,	310)	9	sov			0	90.8		12.1	9.1	3.0	9.4	7.1	2.3	38.09
(310,		1	SOV			11	2274.7		18.6	15.7	3.0	14.4	12.1	2.3	54.88
(310,	311)	2	SOV			6	1527.8		17.2	16.1	1.1	13.4	12.5	0.9	59.38
(310,	311)	3	sov			4	1282.0		16.3	15.7	0.6	12.6	12.1	0.5	62.84

	0111					_	006.0		16.0	15.6	0.7	10 5	12.0	0.5	62.98
(310,		4	sov			3	926.8		16.2		0.7	12.5			
(310,		5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(310,	311)	9	sov			1	80.2		20.4	18.6	1.9	15.8	14.4	1.4	50.06
(159,	312)	1	sov			4	2019.6		6.6	6.0	0.6	5.1	4.7	0.5	58.45
(159,	312)	2	sov			1	1254.4		6.2	6.0	0.2	4.8	4.6	0.2	62.03
(159,	312)	3	sov			0	934.2		6.0	5.9	0.1	4.6	4.5	0.1	64.82
(159,	-	4	sov			1	595.9		6.0	5.9	0.1	4.6	4.5	0.1	64.68
(159,	-	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	·,	_				•				• • • • • • • • • • • • • • • • • • • •	•••	0.0	0.0	0.0	0.00
(312,	-	1	sov			4	1961.6		10.9	10.1	0.8	8.4	7.8	0.6	58.59
(312,	-	2	sov			4	1273.2		10.2	9.9	0.3	7.9	7.6	0.3	62.29
(312,	-	3	sov			3	955.4		9.8	9.6	0.2	7.6	7.4	0.1	64.85
(312,	-	4	sov			1	613.7		9.8	9.6	0.2	7.6	7.4	0.1	64.77
(312,	313)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(248,	314)	1	sov			5	1567.8		17.2	16.2	1.0	13.3	12.5	0.8	59.33
(248,	•	2	sov			5	1000.0		16.3	15.9	0.4	12.6	12.3	0.3	62.74
(248,	-	3	sov			7	787.5		15.7	15.5	0.2	12.1	12.0	0.2	65.03
(248,		4	sov			4	519.1		15.7	15.4	0.3	12.1	11.9	0.2	65.11
(248,	-	5	HOV	0	0	ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(210,	, 311,	3	1101	J	Ū	·	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(314,	315)	1	sov			1	683.8		8.2	7.9	0.3	6.4	6.1	0.3	60.34
(314,	315)	2	sov			3	967.5		7.9	7.7	0.2	6.1	6.0	0.1	62.64
(314,	315)	3	sov			1	795.8		7.6	7.5	0.1	5.9	5.8	0.1	65.03
(314,	315)	4	SOV			1	532.5		7.6	7.5	0.1	5.8	5.7	0.1	65.21
(314,	315)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(555,	216\	1	sov			5	355.2		24.5	23.6	0.9	19.0	18.3	0.7	61.61
(555,		2	SOV			11	1086.1		24.3	23.6	0.7	18.8	18.2	0.7	62.23
-		3	SOV			4	834.0		23.3	22.8	0.7	18.0	17.6	0.3	64.80
(555,	-	4	SOV			6	506.8		23.2	22.7	0.5	17.9	17.5	0.4	65.09
(555,		5			0	0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.00
(555,			HOV	•	•	8	970.1			23.3	1.1	18.9	18.0	0.8	61.83
(555,	_	9	sov			_			24.4						61.13
(555,	316)	10	sov			7	793.0		24.7	23.7	1.1	19.1	18.3	0.8	61.13
(316,	317)	1	sov			1	227.5		10.6	10.3	0.3	8.2	8.0	0.2	64.33
(316,	317)	2	sov			9	1497.6		11.0	10.7	0.3	8.5	8.3	0.3	61.73
(316,	317)	3	sov			5	948.0		10.5	10.3	0.2	8.1	8.0	0.2	64.70
(316,		4	sov			2	593.1		10.4	10.2	0.2	8.0	7.9	0.2	65.37
(316,		5	HOV	17	17	0	17.0	17.0	10.5	10.3	0.1	8.1	8.0	0.1	65.03
(316,		9	sov			7	1250.0		11.0	10.6	0.4	8.5	8.2	0.3	62.25
(310,	,	_	201			,									
(317,	318)	1	sov			4	1014.9		16.8	16.1	0.7	13.0	12.4	0.6	60.88
(317,		2	sov			4	1212.7		16.2	15.7	0.5	12.5	12.2	0.4	63.00
,,		_				_									

(317,	318)	3	sov			1	773.1		15.7	15.4	0.4	12.1	11.9	0.3	65.05
(317,	-	4	sov			1	200.9		15.6	15.3	0.3	12.0	11.8	0.2	65.46
(317,	-	5	HOV	17	0	0	5.1	5.1	15.5	15.5	0.1	12.1	12.0	0.0	65.86
(317,		9	sov			4	1320.6		16.8	15.9	0.9	12.9	12.3	0.7	60.98
(31/)	310,		501			•	1320.0		10.0	13.5	0.5	12.5	12.5	0.7	00.50
(318,	319)	1	sov			7	1659.2		17.9	15.9	2.0	13.8	12.3	1.5	57.25
(318,	-	2	sov			4	1488.5		16.9	16.1	0.8	13.0	12.4	0.6	60.66
(318,	-	3	sov			3	1150.8		15.9	15.5	0.4	12.3	12.0	0.3	64.50
(318,		4	sov			2	727.8		15.6	15.3	0.4	12.0	11.7	0.3	65.53
(318,		5	HOV	17	16	1	16.0	16.0	15.4	15.4	0.0				
(318,		9	sov			0	31.4		24.1	19.0		11.9	11.9	0.0	66.51
(310,	313,	,	504			U	31.4		24.1	19.0	5.1	18.6	14.7	3.9	42.48
(319,	320)	1	sov			1	1611.6		8.3	7.8	0.5	6.4	6.0	0.4	60.51
(319,	320)	2	sov			0	1496.6		8.2	7.9	0.3	6.3	6.1	0.2	61.28
(319,		3	sov			1	1183.0		7.8	7.6	0.2	6.0	5.9	0.1	64.54
(319,	-	4	sov			0	778.0		7.6	7.5	0.2	5.9	5.7	0.1	65.53
(319,	•	5	HOV	16	16	0	16.0	16.0	7.5	7.5	0.0	5.8	5.8	0.0	66.51
(323,	520,	•	1101	10		·	10.0	10.0	7.5	7.5	0.0	3.0	5.0	0.0	66.51
(320,	321)	1	sov			10	2007.7		19.6	17.7	1.9	15.1	13.6	1.5	58.17
(320,	321)	2	sov			7	1335.9		18.6	17.8	0.7	14.4	13.8	0.6	61.22
(320,	321)	3	sov			8	1042.2		17.6	17.2	0.4	13.6	13.3	0.3	64.55
(320,	321)	4	sov			3	683.4		17.3	17.0	0.4	13.3	13.0	0.3	65.71
(320,		5	HOV	16	16	0	16.0	16.0	17.1	17.1	0.0	13.3	13.3	0.0	66.51
,,	,					•		2000	_,	_,,_	0.0	13.3	13.3	0.0	00.51
(321,	322)	1	sov			10	1808.3		17.5	16.2	1.2	13.5	12.5	1.0	58.60
(321,	322)	2	sov			6	1182.2		16.6	16.0	0.6	12.8	12.4	0.5	61.56
(321,	322)	3	sov			4	949.3		15.8	15.5	0.3	12.2	12.0	0.2	64.83
(321,	322)	4	sov			1	607.0		15.5	15.3	0.3	12.0	11.7	0.2	65.77
(321,	322)	5	HOV	16	16	0	16.0	16.0	15.4	15.4	0.0	11.9	11.9	0.0	66.54
(321,	322)	9	sov			2	518.2		17.2	16.6	0.6	13.3	12.8	0.5	59.54
(322,	323)	1	sov			5	897.4		19.9	19.0	0.9	15.4	14.7	0.7	60.58
(322,	323)	2	SOV			6	1117.9		19.6	19.0	0.6	15.1	14.7	0.4	61.72
(322,	323)	3	sov			4	986.0		18.6	18.3	0.4	14.4	14.1	0.3	64.82
(322,	323)	4	sov			2	644.0		18.4	18.0	0.4	14.1	13.8	0.3	65.69
(322,	323)	5	HOV	16	16	0	16.0	16.0	18.1	18.1	0.0	14.1	14.1	0.0	66.52
(323,		1	sov			2	1012.2		10.2	9.6	0.6	7.9	7.4	0.5	59.79
(323,	324)	2	sov			3	1100.4		9.9	9.6	0.3	7.7	7.4	0.2	61.48
(323,	324)	3	sov			7	1016.2		9.4	9.2	0.2	7.3	7.1	0.2	64.65
(323,	324)	4	sov			5	671.8		9.3	9.1	0.2	7.1	7.0	0.2	65.61
(323,	324)	5	HOV	16	16	0	16.0	16.0	9.2	9.2	0.0	7.1	7.1	0.0	66.53
(323,	324)	9	sov			0	11.2		12.0	10.6	1.4	9.3	8.2	1.1	50.67
(324,	325)	1	sov			9	1159.8		17.0	16.1	0.9	13.1	12.4	0.7	60.27

(324, 325)	2	sov			8	1121.9		16.6	16.1	0.5	12.8	12.4	0.4	61.63
(324, 325)	3	sov			6	1029.5		15.8	15.5	0.3	12.2	12.0	0.3	64.59
(324, 325)	4	sov			1	703.1		15.6	15.2	0.4	12.0	11.7	0.3	65.62
(324, 325)	5	HOV	16	16	0	16.0	16.0	15.4	15.4	0.0	11.9	11.9	0.0	66.53
(324, 325)	9	sov			0	8.4		19.9	17.9	2.0	15.3	13.8	1.5	51.38
,,									_,,,,					02.00
(7023, 147)	1	sov			0	487.8		3.3	2.7	0.6	2.6	2.1	0.5	37.88
(143,7025)	1	sov			0	1194.0		2.3	2.0	0.3	1.8	1.6	0.2	44.54
(144, 131)	1	sov			0	263.0		2.1	2.0	0.1	1.6	1.5	0.1	48.59
(7022, 144)	1	sov			2	292.1		2.6	2.3	0.3	2.0	1.8	0.2	44.28
(347, 348)	1	sov			0	55.6		2.9	2.7	0.1	2.2	2.1	0.1	51.81
(347, 348)	2	sov			0	877.3		2.9	2.8	0.0	2.2	2.2	0.0	51.59
(348, 349)	1	sov			0	116.2		4.5	4.3	0.2	3.5	3.3	0.1	51.40
(348, 349)	2	sov			0	817.3		4.8	4.7	0.1	3.7	3.6	0.1	48.61
(560, 370)	1	sov			0	138.2		5.1	5.0	0.0	3.9	3.9	0.0	66.93
(560, 370)	2	sov			1	717.5		5.3	5.3	0.1	4.1	4.1	0.1	63.78
(560, 370)	3	sov			1	477.1		5.4	5.4	0.1	4.2	4.1	0.0	62.88
(560, 370)	4	sov			0	445.7		5.2	5.1	0.1	4.0	4.0	0.0	65.79
(560, 370)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(560, 370)	9	sov			2	708.9		5.4	5.3	0.1	4.2	4.1	0.1	63.43
(370, 371)	1	sov			2	125.3		17.5	13.7	3.8	13.5	10.6	2.9	43.07
(370, 371)	2	sov			2	736.8		11.9	11.5	0.4	9.2	8.9	0.3	63.06
(370, 371)	3	sov			1	489.6		11.9	11.8	0.2	9.2	9.1	0.1	63.08
(370, 371)	4	sov			1	388.2		11.5	11.3	0.1	8.8	8.7	0.1	65.67
(370, 371)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(370, 371)	9	sov			2	734.6		12.1	11.6	0.5	9.4	9.0	0.4	62.12
(0.0, 0.2,	-				_					•••		,,,	•••	V2.11
(371, 372)	1	sov			3	482.5		16.5	15.5	0.9	12.7	12.0	0.7	61.04
(371, 372)	2	sov			6	1135.6		16.4	15.6	0.8	12.7	12.0	0.6	61.30
(371, 372)	3	sov			2	571.3		15.9	15.5	0.4	12.3	11.9	0.3	63.30
(371, 372)	4	sov			1	298.5		15.4	15.2	0.2	11.9	11.7	0.2	65.35
(371, 372)	5	HOV	7	0	1	4.4	4.4	16.2	15.8	0.4	12.5	12.2	0.3	62.00
										-				
(372, 373)	1	SOV			3	1908.9		10.6	9.8	0.9	8.2	7.5	0.7	58.97
(372, 373)	2	sov			1	731.4		10.0	9.6	0.4	7.7	7.4	0.3	62.93
(372, 373)	3	sov			0	393.4		9.6	9.4	0.2	7.4	7.3	0.1	65.46
(372, 373)	4	HOV	6	6	0	6.0	6.0	10.2	10.0	0.2	7.8	7.7	0.2	61.51
(372, 373)	9	sov			1	207.5		10.7	9.7	1.0	8.3	7.5	0.8	58.31

(373,	374)	1	sov			1	1670.3		6.5	6.2	0.3	5.0	4.8	0.2	60.76
(373,	-	2	SOV			1	839.6		6.2	6.0	0.1	4.8	4.7	0.1	64.16
(373,		3	SOV			1	448.6		6.0	5.9	0.1	4.7	4.6	0.1	65.66
(373,		4	HOV	6	6	0	6.0	6.0	6.4	6.3	0.1	5.0	4.9	0.1	61.52
(373,		9	SOV			0	285.1		6.1	5.9	0.2	4.8	4.6	0.2	64.47
(3/3/	3/4/	,	501			U	203.1		0.1	3.3	0.2	1.0	1.0	0.2	01.17
(374	375)	1	sov			2	1538.8		10.5	10.0	0.5	8.1	7.7	0.4	59.62
(374	375)	2	sov			0	903.3		9.7	9.5	0.2	7.5	7.4	0.1	64.55
(374		3	sov			1	488.5		9.5	9.4	0.1	7.3	7.2	0.1	65.99
(374	375)	4	HOV	6	6	0	6.0	6.0	10.2	10.0	0.2	7.8	7.7	0.2	61.55
(374		9	sov			0	313.0		10.2	10.1	0.2	7.9	7.8	0.1	61.17
	,												,	0.1	01.17
(375	, 376)	1	sov			9	1012.1		17.3	16.6	0.7	13.3	12.8	0.5	60.46
(375	, 376)	2	sov			6	948.4		16.2	15.9	0.3	12.5	12.3	0.2	64.50
(375	, 376)	3	SOV			2	560.5		15.8	15.5	0.2	12.2	12.0	0.2	66.27
(375	, 376)	4	HOV	6	6	0	6.0	6.0	17.0	16.6	0.4	13.1	12.8	0.3	61.51
	, 377)	1	SOV			2	1171.5		8.5	8.0	0.6	6.6	6.2	0.4	59.07
	, 377)	2	SOV			2	992.3		7.9	7.7	0.2	6.1	5.9	0.1	64.05
(376	, 377)	3	SOV			1	615.1		7.6	7.5	0.1	5.9	5.8	0.1	66.32
(376	, 377)	4	HOV	6	6	0	6.0	6.0	8.2	8.0	0.2	6.3	6.2	0.1	61.48
(376	, 377)	9	sov			0	26.0		10.0	8.5	1.5	7.7	6.6	1.2	50.26
/ 277	270\	1	sov			5	1507.7		15.1	14.0	1.1	11.6	10.8	0.8	58.89
-	, 378)	1	SOV			2	1012.6		13.1	13.5	0.4	10.7	10.8	0.8	63.71
	, 378)	2				_									
	, 378)	3	sov			4	618.4		13.4	13.1	0.2	10.3	10.1	0.2	66.32
-	, 378)	4	HOV	6	6	0	6.0	6.0	14.4	14.1	0.3	11.1	10.9	0.2	61.52
(377	, 378)	9	sov			0	20.9		18.6	15.0	3.6	14.4	11.6	2.8	47.62
(381	, 382)	1	sov			0	66.9		3.4	3.3	0.1	2.6	2.6	0.0	44.42
-	, 382)	2	sov			1	929.4		3.6	3.5	0.0	2.8	2.7	0.0	41.65
(301	, 302,	_	201			_									
(378	, 384)	1	sov			0	1503.6		2.3	2.1	0.1	1.7	1.7	0.1	60.42
(378	, 384)	2	sov			1	1020.3		2.1	2.1	0.0	1.6	1.6	0.0	64.10
(378	, 384)	3	sov			1	638.1		2.1	2.0	0.0	1.6	1.6	0.0	66.34
	, 384)	4	HOV	6	6	0	6.0	6.0	2.2	2.1	0.1	1.7	1.7	0.1	61.64
(384	, 385)	1	sov			5	1450.1		14.8	14.1	0.7	11.4	10.9	0.5	60.03
(384	, 385)	2	sov			1	1035.6		13.8	13.6	0.3	10.7	10.5	0.2	64.14
(384	, 385)	3	sov			4	678.7		13.3	13.1	0.2	10.3	10.1	0.2	66.42
(384	, 385)	4	HOV	6	6	0	6.0	6.0	14.4	14.1	0.3	11.1	10.9	0.2	61.49
•	, 386)	1	sov			4	974.5		28.7	27.8	0.9	22.1	21.5	0.7	60.67
(385	, 386)	2	sov			5	1036.0		27.2	26.7	0.5	21.0	20.6	0.4	63.98

(385,	386)	3	sov			2	752.1		26.2	25.8	0.5	20.2	19.9	0.4	66.39
(385,	-	4	HOV	6	6	0	6.0	6.0	28.3	27.7	0.6	21.8	21.3	0.5	61.49
, , , , ,	,														
(402,	403)	1	sov			0	421.2		11.2	9.5	1.8	8.7	7.3	1.4	44.19
(402,		2	sov			1	635.3		10.8	9.8	1.0	8.3	7.6	0.7	45.92
·,	,														
(401,	381)	1	sov			0	51.9		2.8	2.8	0.0	2.2	2.1	0.0	50.57
(401,	381)	2	sov			1	945.6		2.8	2.8	0.0	2.2	2.1	0.0	50.44
	-														
(395,	396)	1	sov			1	884.2		12.9	12.3	0.6	10.0	9.5	0.4	60.96
(395,	396)	2	sov			2	1078.3		12.3	12.1	0.3	9.5	9.3	0.2	63.78
(395,	396)	3	sov			2	760.3		12.4	12.1	0.4	9.6	9.3	0.3	63.29
(395,	396)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(394,	395)	1	sov			3	1550.5		6.5	6.2	0.4	5.0	4.8	0.3	58.50
(394,	395)	2	sov			1	1052.1		6.0	5.8	0.2	4.6	4.5	0.1	63.67
(394,	395)	3	sov			0	727.6		6.0	5.9	0.2	4.7	4.5	0.1	63.20
(394,	395)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(394,	395)	9	sov			2	379.4		6.3	6.2	0.1	4.8	4.8	0.1	60.94
(393,	394)	1	sov			7	1644.3		10.5	10.0	0.5	8.1	7.7	0.4	61.11
(393,	-	2	sov			3	1012.3		10.1	9.8	0.3	7.8	7.6	0.2	63.37
(393,	394)	3	sov			2	700.7		10.2	9.9	0.3	7.9	7.6	0.2	62.99
(393,		4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(393,	394)	9	sov			1	352.8		9.9	9.5	0.4	7.7	7.4	0.3	64.72
(392,		1	sov			2	1880.2		6.4	5.9	0.5	5.0	4.6	0.4	59.23
(392,		2	sov			0	916.9		6.1	5.9	0.2	4.7	4.5	0.2	62.78
(392,		3	sov			0	670.1		6.1	5.9	0.2	4.7	4.6	0.1	62.79
(392,	-	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(392,	393)	9	sov			2	242.9		6.6	5.9	0.7	5.1	4.5	0.6	57.87
(391,	-	1	sov			6	1205.5		12.2	11.3	0.9	9.4	8.7	0.7	60.53
(391,	-	2	sov			4	1047.7		11.7	11.4	0.3	9.1	8.8	0.3	62.87
(391,	-	3	sov			4	850.5		11.8	11.4	0.4	9.1	8.8	0.3	62.38
(391,	-	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(391,	392)	9	sov			0	20.5		15.9	13.3	2.7	12.3	10.2	2.1	46.27
		_				_									
(390,	-	1	sov			0	727.2		16.9	16.2	0.7	13.1	12.6	0.5	62.87
(390,		2	sov			6	1094.6		16.8	16.4	0.4	13.0	12.7	0.3	63.12
(390,		3	sov			3	949.4		17.0	16.5	0.6	13.2	12.7	0.5	62.33
(390,	391)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
		_										10.6	10.0		60 80
(389,		1	sov				1455.1		16.8	15.9	0.9	13.0	12.3	0.7	60.73
(389,	390)	2	sov			6	1051.9		16.2	15.9	0.4	12.5	12.2	0.3	63.04

(389,	390)	3	sov			3	956.1		16.4	15.8	0.6	12.7	12.2	0.4	62.41
	389,		4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
`	3037	550,	-		•	•	•									
(388,	389)	1	sov			3	1479.0		5.4	5.1	0.3	4.2	4.0	0.2	62.12
	388,	-	2	sov			1	1019.0		5.3	5.2	0.1	4.1	4.0	0.1	62.83
•	388,		3	sov			3	968.7		5.3	5.2	0.2	4.1	4.0	0.1	62.59
	388,		4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
•		,	_				_									
(387,	388)	1	sov			2	1120.5		16.4	15.6	0.8	12.7	12.0	0.6	62.40
(387,	388)	2	sov			4	1174.7		16.4	15.9	0.5	12.7	12.3	0.4	62.31
(387,	388)	3	sov			5	1159.2		16.4	15.8	0.6	12.7	12.2	0.4	62.30
. (387,	388)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(387,	388)	9	sov			0	12.2		21.1	17.4	3.7	16.3	13.5	2.8	48.45
(166,	404)	1	sov			3	935.1		8.2	8.0	0.2	6.3	6.2	0.2	62.56
(166,	404)	2	sov			3	1240.4		8.1	7.9	0.2	6.3	6.1	0.1	62.95
(166,	404)	3	sov			3	1297.2		8.1	7.9	0.2	6.3	6.1	0.2	63.02
(166,	404)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(404,	387)	1	sov			5	731.9		17.1	16.8	0.3	13.2	13.0	0.3	64.53
(404,	387)	2	sov			5	1223.7		17.7	17.2	0.4	13.6	13.3	0.3	62.63
(404,	387)	3	sov			7	1267.0		17.7	17.1	0.6	13.7	13.2	0.4	62.53
(404,	387)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(306,	405)	1	sov			2	824.1		6.4	6.2	0.1	4.9	4.8	0.1	52.81
(306,	405)	2	sov			0	253.0		5.9	5.8	0.1	4.6	4.5	0.1	56.64
(558,	406)	1	sov			0	628.2		5.2	5.0	0.2	4.0	3.9	0.1	43.37
(558,	406)	2	sov			1	394.9		4.8	4.7	0.1	3.7	3.6	0.0	47.19
(558,	406)	3	sov			0	54.3		4.4	4.4	0.0	3.4	3.4	0.0	51.38
(351,	408)	1	sov			0	224.2		5.3	4.5	0.8	4.1	3.5	0.6	40.67
(351,	408)	2	SOV			1	712.5		5.0	4.9	0.2	3.9	3.7	0.2	42.82
(408,	409)	1	sov			2	550.6		10.3	9.5	0.8	8.0	7.3	0.6	41.35
(408,	409)	2	sov			1	387.2		10.2	9.5	0.7	7.9	7.4	0.6	41.56
(410,	405)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(413,	409)	1	sov			4	723.8		12.1	11.9	0.2	9.3	9.2	0.2	43.06
(413,	409)	2	sov			4	351.8		11.2	11.1	0.1	8.7	8.6	0.1	46.58
(349,	350)	1	sov			0	206.6		15.2	15.0	0.2	11.7	11.6	0.2	52.19
(349,	350)	2	sov			2	728.3		16.3	16.1	0.2	12.6	12.4	0.2	48.47

(350, 351)	1	sov	 	0	291.2	 12.5	12.4	0.2	9.7	9.6	0.1	47.59
(350, 351)	2	sov	 	0	643.9	 13.6	13.4	0.2	10.5	10.3	0.2	43.85
(559, 407)	1	sov	 	7	813.9	 22.1	21.3	0.7	17.0	16.5	0.5	47.39
(559, 407)	6	sov	 	3	499.9	 20.4	20.0	0.4	15.8	15.5	0.3	51.22
(559, 407)	7	sov	 	2	698.2	 21.7	21.2	0.6	16.8	16.3	0.4	48.12
(407, 411)	1	sov	 	0	399.5	 5.7	5.6	0.1	4.4	4.3	0.1	49.15
(406, 413)	1	sov	 	2	754.0	 6.8	6.6	0.2	5.2	5.1	0.1	42.99
(406, 413)	2	sov	 	3	325.8	 6.2	6.2	0.1	4.8	4.8	0.1	46.56
(161,7031)	1	sov	 	0	301.0	 4.5	4.3	0.2	3.5	3.3	0.2	47.48
(161,7031)	2	sov	 	1	384.4	 4.5	4.3	0.2	3.5	3.3	0.2	47.33
(7032, 435)	1	sov	 	1	814.8	 3.6	3.2	0.4	2.8	2.5	0.3	44.24
(435, 436)	1	sov	 	0	755.3	 3.1	3.0	0.2	2.4	2.3	0.1	48.02
(436, 372)	1	sov	 	0	756.0	 3.9	3.7	0.3	3.0	2.8	0.2	50.14
(395, 437)	1	sov	 	0	404.8	 6.5	6.4	0.1	5.0	5.0	0.1	56.25
(395, 437)	2	sov	 	0	585.6	 7.0	6.9	0.1	5.4	5.3	0.1	52.67
(437,7033)	1	sov	 	1	417.9	 5.2	5.0	0.2	4.1	3.9	0.2	50.74
(437,7033)	2	sov	 	2	573.0	 5.6	5.3	0.2	4.3	4.1	0.2	47.90
(7034, 440)	1	sov	 	0	725.9	 3.2	2.9	0.4	2.5	2.2	0.3	44.42
(440, 441)	1	sov	 	0	667.0	 2.7	2.5	0.1	2.0	2.0	0.1	48.52
(7035, 443)	1	sov	 	1	317.4	 3.9	2.9	1.0	3.0	2.2	0.8	33.89
(443, 444)	1	sov	 	0	291.0	 3.2	2.8	0.3	2.4	2.2	0.2	44.76
(444, 376)	1	sov	 	5	291.0	 9.1	8.8	0.3	7.1	6.8	0.3	52.63
(375, 442)	1	sov	 	0	314.6	 4.4	4.4	0.1	3.4	3.4	0.0	55.69
(375, 442)	2	sov	 	1	406.1	 4.7	4.6	0.1	3.6	3.6	0.1	52.60
(442,7036)	1	sov	 	0	317.0	 3.2	3.2	0.0	2.5	2.5	0.0	52.72
(442,7036)	2	sov	 	1	402.8	 3.5	3.4	0.1	2.7	2.6	0.1	48.26
(7037, 454)	1	sov	 	0	378.6	 3.5	3.1	0.4	2.7	2.4	0.3	45.17

(454, 455)	1	sov	 	0	350.1	 3.5	3.4	0.1	2.7	2.6	0.1	49.21
(455, 377)	1	sov	 	0	351.5	 5.0	4.8	0.2	3.8	3.7	0.2	52.21
(390, 458)	1	sov	 	5	696.1	 8.9	8.6	0.3	6.9	6.6	0.3	52.54
(456, 457)	1	sov	 	0	359.0	 2.4	2.2	0.2	1.9	1.7	0.2	45.44
(457, 391)	1	sov	 	0	359.0	 2.1	1.9	0.2	1.6	1.5	0.1	48.55
(7038, 456)	1	sov	 	0	414.8	 2.1	1.6	0.5	1.6	1.2	0.4	39.37
(458,7039)	1	sov	 	2	693.3	 3.0	2.8	0.2	2.3	2.2	0.1	48.54
(7040, 466)	1	sov	 	1	637.1	 3.4	3.0	0.4	2.6	2.3	0.3	43.87
(466, 467)	1	sov	 	2	585.3	 3.1	2.9	0.1	2.4	2.3	0.1	48.37
(467, 392)	1	sov	 	1	585.7	 4.0	3.7	0.2	3.1	2.9	0.2	50.86
(309,7043)	1	sov	 	2	715.5	 5.5	5.4	0.2	4.3	4.1	0.1	48.77
(309,7043)	2	sov	 	1	737.1	 5.7	5.5	0.2	4.4	4.2	0.1	47.59
(7044, 483)	1	sov	 	4	572.8	 5.9	5.3	0.6	4.5	4.1	0.4	45.54
(484, 318)	1	sov	 	1	544.9	 4.8	4.5	0.3	3.7	3.5	0.2	50.96
(483, 484)	1	sov	 	0	545.0	 3.6	3.5	0.2	2.8	2.7	0.1	48.61
(303, 487)	1	sov	 	0	757.0	 3.8	3.7	0.1	3.0	2.9	0.1	52.78
(487, 488)	1	sov	 	0	757.0	 6.9	6.7	0.2	5.3	5.2	0.2	49.00
(488,7046)	1	sov	 	1	756.0	 4.2	4.0	0.2	3.3	3.1	0.2	47.05
(489, 490)	1	sov	 	0	914.3	 5.8	4.2	1.6	4.5	3.3	1.2	34.82
(489, 490)	2	SOV	 	1	280.7	 7.1	4.5	2.5	5.5	3.5	2.0	28.54
(403, 430)	4	50 V	 	-	200.7	 , . .	4.5	2.5	3.3	3.3	2.0	20.34
(7047, 489)	1	sov	 	0	357.0	 4.3	2.8	1.4	3.3	2.2	1.1	33.88
(7047, 489)	2	sov	 	1	965.6	 4.3	2.8	1.5	3.3	2.2	1.1	33.99
(.01,, 10)	_	20.		_	200.3							
(7045, 531)	1	sov	 	2	690.4	 4.5	2.3	2.2	3.5	1.8	1.7	35.73
(7045, 531)	2	sov	 	0	57.8	 5.4	2.3	3.1	4.1	1.8	2.4	29.84
(531, 532)	1	sov	 	0	691.3	 3.1	2.3	0.9	2.4	1.7	0.7	45.58

(531, 5	32)	2	sov			0	0.7		10.8	4.4	6.4	8.3	3.4	4.9	13.13
(532, 2	99)	1	sov			1	691.2		2.7	2.3	0.4	2.1	1.8	0.3	51.92
(322, 5	(22)	1	sov			1	663.0		2.9	2.9	0.0	2.3	2.3	0.0	54.89
(322, 5		2	sov			1	748.5		3.0	2.9	0.1	2.3	2.3	0.0	53.62
(322, 3	122)	2	504			_	740.5		3.0	2.3	0.1	2.5	2.3	0.0	33.02
(7049, 5	(23)	1	sov			0	198.3		3.3	3.0	0.3	2.5	2.3	0.2	37.95
(523, 5	524)	1	sov			0	180.6		6.2	5.7	0.5	4.8	4.4	0.4	45.31
(524, 3	323)	1	sov			3	181.5		5.2	5.0	0.2	4.0	3.8	0.2	52.42
(298, 5	33)	1	sov			7	790.9		19.2	18.3	0.9	14.9	14.2	0.7	62.71
(298, 5	33)	2	sov			10	1218.3		19.4	18.7	0.7	15.0	14.5	0.5	62.20
(298, 5	33)	3	sov			7	1264.7		19.0	18.4	0.6	14.7	14.3	0.5	63.34
(298, 5	33)	4	sov			6	1125.5		19.6	18.8	0.8	15.1	14.5	0.6	61.54
(298, 5	33)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(7050, 5	29)	1	sov			0	515.9		4.2	2.9	1.3	3.2	2.2	1.0	28.91
(7050, 5	29)	2	sov			0	1387.3		4.1	2.8	1.2	3.1	2.2	0.9	29.59
(529,5		1	sov			0	672.2		3.6	1.9	1.7	2.8	1.4	1.3	30.83
(529,5	30)	2	sov			0	1051.8		3.9	2.5	1.4	3.0	1.9	1.1	28.43
								,							
(530,5	33)	1	sov		-	0	1724.0		8.2	6.4	1.9	6.3	4.9	1.4	41.36
		_				_									
(7051, 5	(25)	1	sov			0	230.4		3.3	3.0	0.3	2.5	2.3	0.2	45.74
/ 505 5						•	010 0								
(525, 5	26)	1	sov			0	212.0		5.5	5.4	0.1	4.2	4.2	0.1	49.36
(526, 3	241	1	sov			0	212.0		6.7	6.5	0.2	5.2	F 0		F2 04
(320, 3	124)	-	200			U	212.0		0.7	0.5	0.2	5.2	5.0	0.2	53.04
(298, 5	34)	1	sov			2	659.1		5.4	5.1	0.3	4.2	3.9	0.2	61.50
(250, 5	,51,	-	DOV			-	033.1		3.1	3.1	0.5	7.2	3.3	0.2	01.50
(534,70	152)	1	sov			1	658.9		3.2	2.8	0.3	2.5	2.2	0.3	57.39
(331, 70	,52,	-	501			-	030.5		3.2	2.0	0.5	2.5	2.2	0.5	37.33
(313, 3	47)	1	sov			2	601.0		5.2	5.1	0.2	4.1	3.9	0.1	53.05
(313, 3	-	2	sov			0	331.7		5.2	5.0	0.2	4.0	3.9	0.1	53.47
,, -		-				-	-		- • -	- • •			- • •		
(522,70	48)	1	sov			0	671.0		3.2	3.2	0.0	2.5	2.5	0.0	52.26
(522,70	- •	2	sov			1	740.9		3.4	3.3	0.1	2.6	2.5	0.1	50.47
		_				_						,			
(405, 5	58)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(405, 5	-	6	sov			0	790.0		2.8	2.8	0.0	2.2	2.1	0.0	50.75
	•														

(405,	558)	7	sov			0	287.0		2.6	2.6	0.0	2.0	2.0	0.0	55.35
,	409,	559)	1	sov			0	706.2		5.2	5.1	0.1	4.0	3.9	0.1	43.05
-	409,		2	sov			0	431.0		4.9	4.8	0.1	3.8	3.7	0.1	46.22
	409,	-	6	SOV			2	872.1		5.2	5.0	0.2	4.0	3.9	0.1	43.44
`	400,	3331	Ū	501			_	0,2.2		512		***			• • •	
(369,	560)	1	sov			1	470.9		10.9	10.7	0.2	8.4	8.3	0.1	62.37
(369,	560)	2	sov			1	445.5		10.4	10.2	0.1	8.0	7.9	0.1	65.86
(369,	560)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	369,		9	sov			1	530.3		11.4	10.7	0.6	8.8	8.3	0.5	59.94
(369,	560)	10	sov			2	511.2		10.9	10.2	0.7	8.4	7.9	0.5	62.71
(369,	560)	11	sov			1	528.5		11.4	10.8	0.6	8.8	8.4	0.5	59.65
(97,	563)	1	sov			5	960.2		16.5	15.5	1.0	12.7	12.0	0.7	61.99
(97,	563)	2	sov			6	1132.2		17.0	16.4	0.6	13.2	12.7	0.5	60.03
(97,	563)	3	sov			4	1097.8		16.0	15.7	0.4	12.4	12.1	0.3	63.75
(97,	563)	4	sov			3	784.1		15.7	15.4	0.4	12.1	11.8	0.3	64.96
(97,	563)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(97,	563)	9	SOV			0	15.1		22.3	18.6	3.6	17.2	14.4	2.8	45.94
(10,	11)	1	sov			1	783.0		6.5	6.3	0.1	5.0	4.9	0.1	62.47
(10,	11)	2	sov			2	546.6		6.2	6.1	0.1	4.8	4.7	0.1	65.13
(10,	11)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(-	12)	1	sov			1	766.8		6.3	6.2	0.1	4.8	4.8	0.1	62.41
(11,	12)	2	SOV			2	565.4		6.0	5.9	0.1	4.7	4.6	0.1	65.12
(11,	12)	. 3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(-	13)	1	sov			1	746.9		3.6	3.6	0.1	2.8	2.7	0.1	62.37
(-	13)	2	sov			0	586.5		3.5	3.4	0.1	2.7	2.6	0.0	65.11
(12,	13)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(13,	14)	1	sov			1	735.4		3.7	3.6	0.1	2.8	2.8	0.1	62.29
(-	14)	2	SOV			1	598.0		3.5	3.4	0.1	2.7	2.7	0.0	65.06
(-	14)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
'	13,	14/	3	1101	Ū	Ū	Ū	0.0	0.0	0.0	0.0	0.0	•••	0.0	0.0	0.00
(14,	15)	1	sov			0	728.6		3.8	3.7	0.1	2.9	2.8	0.1	62.21
ì		15)	2	sov			1	602.5		3.6	3.5	0.1	2.8	2.7	0.1	65.07
ì		15)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
`	,		-		•	•	-			J	- • •	2		- • •	- • -	
(15,	16)	1	sov			2	882.1		11.1	10.6	0.5	8.6	8.2	0.4	61.40
ì	15,	16)	2	sov			1	621.7		10.5	10.3	0.2	8.1	8.0	0.2	64.81
ì		16)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
ì		16)	9	sov			2	1003.6		11.9	10.7	1.2	9.2	8.3	0.9	57.32
•	/		-													

(16,	17)	1	sov			1	903.3		5.4	5.3	0.1	4.2	4.1	0.1	62.76
ì	16,	17)	2	sov			1	643.5		5.3	5.1	0.1	4.1	4.0	0.1	64.85
ì	16,	17)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(16,	17)	9	sov			1	964.9		5.5	5.3	0.2	4.2	4.1	0.1	62.16
•																
(17,	18)	1	sov			2	902.6		10.8	10.6	0.2	8.3	8.2	0.2	62.97
(17,	18)	2	sov			0	664.2		10.5	10.3	0.2	8.1	7.9	0.2	64.77
(17,	18)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(17,	18)	9	sov			3	943.8		11.0	10.6	0.4	8.5	8.2	0.3	62.04
(18,	19)	1	sov			2	894.2		9.7	9.5	0.2	7.5	7.3	0.1	63.07
(18,	19)	2	sov			3	687.2		9.4	9.2	0.2	7.3	7.1	0.2	64.76
(18,	19)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(18,	19)	9	sov			3	928.4		9.8	9.5	0.3	7.6	7.3	0.3	61.99
,	10	201		0077				882.3		۰.	8.3	0.2	6 F		0 1	60.07
(19, 19,	20) 20)	1 2	SOV			1 0	709.3		8.5 8.2	8.0	0.2	6.5 6.3	6.4 6.2	0.1 0.1	62.87 64.74
,	19,	20)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.00
,	19,	20)	9	SOV			2	915.8		8.6	8.3	0.3	6.6	6.4	0.0	61.95
'	19,	20)	9	50V			2	915.6		0.0	0.5	0.3	0.0	0.4	0.2	01.95
(20,	21)	1	sov			1	876.1		8.5	8.4	0.2	6.6	6.4	0.1	62.82
(20,	21)	2	sov			0	730.3		8.3	8.1	0.2	6.4	6.2	0.2	64.65
(20,	21)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(20,	21)	9	sov			1	903.3		8.7	8.3	0.3	6.7	6.5	0.2	61.89
(21,	22)	1	sov			2	884.5		6.0	5.9	0.1	4.6	4.5	0.1	62.88
(21,	22)	2	sov			1	742.0		5.8	5.7	0.1	4.5	4.4	0.1	64.63
(21,	22)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(21,	22)	9	sov			1	885.2		6.1	5.9	0.2	4.7	4.5	0.2	61.91
(22,	23)	1	sov			3	884.0		12.8	12.6	0.2	9.9	9.7	0.2	62.94
(22,	23)	2	SOV			0	757.5		12.4	12.2	0.3	9.6	9.4	0.2	64.70
(22,	23)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(23)	9	sov			5	869.6		13.0	12.6	0.4	10.1	9.7	0.3	61.88
`	22,	23,	_	501			•	003.0		2010		•••				
(24,	25)	1	sov			5	1476.7		8.7	8.3	0.4	6.7	6.4	0.3	61.49
(24,	25)	2	sov			3	374.8		8.3	8.1	0.3	6.4	6.2	0.2	64.25
(24,	25)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(24,	25)	9	sov			5	652.9		8.6	8.3	0.3	6.6	6.4	0.3	62.25
			_				•	1255 5			. .	0 0	4.3	4 1	0.1	61.83
(25,	26)	1	sov			3	1357.5		5.5	5.3	0.2	4.3	4.1		65.14
(25,	26)	2	sov			0	429.8		5.2	5.1	0.1	4.0	4.0	0.1	0.00
(25,	26)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.1	63.04
(25,	26)	9	sov			1	710.5		5.4	5.2	0.2	4.2	4.1	0.1	03.04

(26,	27)	1	sov			5	1298.7		11.5	11.0	0.5	8.8	8.5	0.4	59.45
ì		27)	2	SOV			2	471.3		10.4	10.2	0.2	8.1	7.9	0.2	65.36
į		27)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
į		27)	9	sov			3	727.8		11.5	11.1	0.4	8.9	8.6	0.3	59.47
•	•															
(190,	255)	1	sov			0	423.0		11.0	10.8	0.2	8.5	8.4	0.2	61.75
(190,	255)	2	sov			1	343.2		10.2	10.1	0.2	7.9	7.8	0.1	66.70
(255,	257)	1	sov			1	764.5		9.2	8.6	0.6	7.1	6.6	0.5	59.30
-	255,	-	2	sov			0	413.9		8.3	8.1	0.3	6.4	6.2	0.2	65.61
(255,	257)	9	sov			0	25.9		11.0	9.8	1.2	8.5	7.6	0.9	49.78
-	257,	-	1	sov			0	723.7		5.6	5.4	0.2	4.3	4.2	0.1	61.28
(257,	280)	2	sov			1	483.4		5.2	5.1	0.1	4.0	3.9	0.1	65.98
,		0001	_													
	280,		1	sov			3	991.9		16.9	16.1	0.7	13.0	12.4	0.6	60.62
	280,		6	sov			0	574.1		15.5	15.2	0.3	12.0	11.7	0.2	66.01
(280,	282)	9	sov			0	17.5		18.6	17.5	1.0	14.4	13.6	0.8	55.08
,	282,	221	-	g077			•	045.0								
-	282,	32) 32)	1 2	SOV			0	946.2		8.4	8.1	0.3	6.5	6.3	0.2	61.19
'	202,	32)	2	50V			0	639.8		7.8	7.6	0.1	6.0	5.9	0.1	65.98
(32,	33)	1	sov			2	457.4		8.1	8.0	0.1			0 1	60.04
(-	33)	2	SOV			1	479.3		7.8	7.7	0.1	6.3 6.1	6.2	0.1	62.84
ì		33)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	6.0 0.0	0.1	65.18
ì	32,	33)	9	sov			2	675.6		7.7	7.6	0.1	6.0	5.9	0.0	0.00 66.10
ì		33)	10	sov			2	885.8		8.4	8.1	0.1	6.4	6.3	0.1	61.15
`	32,	33,		501			-	003.0		0.4	0.1	0.2	0.4	0.3	0.2	01.15
(33,	34)	1	sov			3	831.0		8.4	8.1	0.2	6.5	6.3	0.2	61.05
(-	34)	2	sov			4	713.6		7.7	7.6	0.1	6.0	5.9	0.1	66.08
(33,	34)	3	sov			1	479.8		8.1	8.0	0.1	6.2	6.2	0.1	63.35
(33,	34)	4	sov			1	471.1		7.9	7.7	0.1	6.1	6.0	0.1	65.04
(33,	34)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(34,	35)	1	sov			1	796.8		8.5	8.2	0.2	6.5	6.4	0.2	60.97
(34,	35)	2	sov			1	739.7		7.8	7.7	0.1	6.0	6.0	0.1	66.00
(34,	35)	3	sov			1	490.2		8.1	8.0	0.1	6.3	6.2	0.1	63.64
(35)	4	sov			0	464.2		7.9	7.8	0.1	6.1	6.0	0.1	65.04
(34,	35)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
_			_				_									
(-	36)	1	sov			2	771.4		8.8	8.6	0.2	6.8	6.6	0.2	60.88
(,	36)	2	sov			1	752.0		8.2	8.1	0.1	6.3	6.2	0.1	65.87
(35,	36)	3	sov			0	511.8		8.4	8.4	0.1	6.5	6.4	0.0	63.89
(36)	4	sov			0	456.8		8.3	8.1	0.1	6.4	6.3	0.1	65.07
(35,	36)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00

(36,	37)	1	sov			1	743.1		9.7	9.5	0.2	7.5	7.3	0.2	60.89
ì	36,	37)	2	sov			1	765.5		9.0	8.9	0.1	7.0	6.9	0.1	65.70
ì	36,	37)	3	sov			0	528.3		9.3	9.2	0.1	7.1	7.1	0.1	64.04
ì	36,	37)	4	sov			Ö	459.8		9.1	9.0	0.1	7.0	6.9	0.1	64.97
ì	36,	37)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
`	.,	.,	•			•										
(37,	54)	1	sov			3	703.8		11.2	10.9	0.3	8.6	8.4	0.2	60.82
į.	37,	54)	2	sov			5	779.4		10.4	10.2	0.1	8.0	7.9	0.1	65.49
į.	37,	54)	3	sov			3	546.8		10.6	10.5	0.1	8.2	8.1	0.1	64.22
į.	37,	54)	4	sov			2	463.8		10.5	10.3	0.2	8.1	7.9	0.1	64.97
Ċ	37,	54)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(54,	55)	1	sov			2	767.2		7.4	7.1	0.3	5.7	5.5	0.2	59.98
(54,	55)	2	sov			1	796.7		6.8	6.7	0.1	5.2	5.2	0.1	65.27
(54,	55)	3	sov			1	562.4		6.9	6.8	0.1	5.3	5.3	0.0	64.36
(54,	55)	4	sov			0	464.1		6.8	6.7	0.1	5.3	5.2	0.1	65.10
(54,	55)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(54,	55)	9	sov			0	12.3		8.7	7.7	1.1	6.8	5.9	0.8	50.69
(55,	56)	1	sov			0	745.9		5.6	5.5	0.2	4.3	4.2	0.1	60.54
(55,	56)	2	sov			2	816.0		5.2	5.2	0.1	4.0	4.0	0.1	65.10
(55,	56)	3	sov			0	568.6		5.3	5.2	0.1	4.1	4.0	0.0	64.42
(55,	56)	4	SOV			0	472.8		5.2	5.2	0.1	4.0	4.0	0.1	65.12
(55,	56)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(56,	57)	1	sov			2	849.1		10.5	10.3	0.2	8.1	8.0	0.1	64.90
(56,	57)	2	sov			1	585.2		10.6	10.5	0.1	8.2	8.1	0.1	64.37
(56,	57)	3	sov			1	481.3		10.5	10.3	0.2	8.1	8.0	0.1	65.18
(56,	57)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(56,	57)	9	sov			1	884.6		11.4	10.9	0.5	8.8	8.4	0.4	59.94
(56,	57)	10	sov			1	13.1		13.9	11.6	2.3	10.8	9.0	1.8	49.17
(57,	58)	1	SOV			2	859.9		5.2	5.2	0.1	4.0	4.0	0.1	65.05
(58)	2	sov			0	603.8		5.3	5.2	0.1	4.1	4.0	0.1	64.41
(57,	58)	3	sov			0	487.2		5.2	5.1	0.1	4.0	4.0	0.1	65.19
(57,	58)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(57,	58)	9	sov			0	864.5		5.6	5.5	0.2	4.3	4.2	0.1	60.82
(58,	59)	1	sov			1	849.9		6.1	6.0	0.1	4.7	4.6	0.1	65.07
(58,	59)	2	sov			1	599.4		6.1	6.1	0.1	4.7	4.7	0.1	64.48
(58,	59)	3	sov			0	474.6		6.1	6.0	0.1	4.7	4.6	0.1	65.18
(58,	59)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(58,	59)	9	sov			1	894.0		6.5	6.3	0.2	5.0	4.9	0.1	61.00

(59,	60)	1	sov			4	697.2		8.8	8.7	0.2	6.8	6.7	0.1	65.03
ì	59,	60)	2	sov			4	474.0		8.9	8.8	0.1	6.8	6.8	0.1	64.79
ì	59,	60)	3	sov			3	374.6		8.8	8.7	0.1	6.8	6.7	0.1	65.36
ì	59,	60)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
ì	59,	60)	9	sov			3	1267.1		9.4	9.1	0.4	7.3	7.0	0.3	60.94
`	33,	007	,	BOV			3	1207.1		J. 1		0.4	7.3	7.0	0.3	60.94
(60,	61)	1	sov			6	1536.3		17.0	16.0	1.0	13.1	12.3	0.8	60.04
(60,	61)	2	sov			1	759.0		16.2	16.0	0.2	12.5	12.3	0.2	62.99
(60,	61)	3	sov			0	332.8		15.7	15.5	0.2	12.1	11.9	0.2	65.25
(60,	61)	4	sov			0	183.4		15.6	15.4	0.1	12.0	11.9	0.1	65.75
(60,	61)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
															•••	0.00
(61,	62)	1	sov			2	669.7		10.9	10.7	0.2	8.4	8.3	0.1	62.70
(61,	62)	2	SOV			1	355.7		10.4	10.3	0.1	8.0	7.9	0.1	65.84
(61,	62)	3	sov			0	182.9		10.3	10.3	0.1	8.0	7.9	0.1	66.00
(61,	62)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(61,	62)	9	sov			1	958.4		11.7	11.0	0.6	9.0	8.5	0.5	58.45
(62,	63)	1	SOV			0	629.1		12.1	12.0	0.2	9.3	9.2	0.1	62.44
(62,	63)	2	sov			0	390.1		11.5	11.4	0.1	8.9	8.8	0.1	65.74
(62,	63)	3	sov			0	187.8		11.4	11.4	0.1	8.8	8.8	0.1	66.14
(62,	63)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(63,	64)	1	sov			2	576.2		12.6	12.4	0.2	9.7	9.6	0.1	62.18
(63,	64)	2	sov			1	431.2		11.9	11.8	0.1	9.2	9.1	0.1	65.67
(63,	64)	3	sov			0	202.0		11.8	11.7	0.1	9.1	9.1	0.1	66.41
(63,	64)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
			_													
(64,	65)	1	sov			3	787.6		11.4	10.8	0.6	8.8	8.3	0.5	59.85
(64,	65)	2	sov			2	495.7		10.5	10.3	0.2	8.1	8.0	0.2	64.82
(64,	65)	3	sov			1	227.0		10.3	10.2	0.1	7.9	7.9	0.1	66.44
(64,	65)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(64,	65)	9	sov			0	18.9		14.5	12.2	2.3	11.2	9.4	1.8	47.10
(65,	66)	1	sov			0	752.9		5.5	5.4	0.1	4.3	4.2	0.1	61.56
ì	65,	66)	2	sov			0	534.9		5.2	5.2	0.1	4.0	4.0	0.1	65.17
ì	65,	66)	3	sov			Ö	244.3		5.1	5.1	0.1	4.0	3.9	0.0	66.64
ì	65,	66)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
`	00,	00,	•	110 4	J	v	3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(66,	67)	1	sov			8	787.4		10.3	10.1	0.2	8.0	7.8	0.2	61.80
(66,	67)	2	sov			2	513.2		9.8	9.7	0.1	7.6	7.5	0.1	65.39
(66,	67)	3	sov			3	230.5		9.6	9.5	0.1	7.4	7.3	0.1	66.82
(66,	67)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(67,	68)	1	sov			2	1235.9		14.5	13.8	0.7	11.2	10.6	0.5	61.19

(67,	68)	2	sov			0	225.3		13.5	13.3	0.2	10.5	10.3	0.2	65.52
ì	67,	68)	3	sov			0	72.2		13.2	13.1	0.1	10.2	10.2	0.1	67.04
ì	67,	68)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
`	.,	,	_													
(68,	69)	1	sov			2	883.9		16.9	16.5	0.4	13.1	12.7	0.3	60.38
ì	68,	69)	2	sov			1	247.6		15.5	15.3	0.1	12.0	11.9	0.1	66.15
ì	68,	69)	3	sov			0	78.6		15.2	15.2	0.1	11.8	11.8	0.1	67.16
ì	68,	69)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
ì	68,	69)	9	sov			0	324.5		16.7	16.4	0.3	12.9	12.7	0.2	61.16
`	,	027	-				·	52-15			-0.1	0.5	-2.,		0.2	01.10
(69,	70)	1	sov			0	198.0		18.9	18.8	0.2	14.6	14.4	0.1	60.99
(69,	70)	2	sov			2	255.1		17.5	17.4	0.1	13.5	13.5	0.1	66.11
(69,	70)	3	sov			0	88.7		17.1	17.1	0.1	13.3	13.2	0.1	67.51
į	69,	70)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
`	,	,	-		•	•	·		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(70,	71)	1	sov			1	192.4		8.7	8.6	0.0	6.7	6.6	0.0	61.27
ì	70,	71)	2	sov			0	249.6		8.0	8.0	0.0	6.2	6.2	0.0	66.03
ì	70,	71)	3	sov			0	98.1		7.8	7.8	0.0	6.1	6.1	0.0	67.59
ì	70,	71)	4	HOV	0	0	Ö	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
•	,	,	-		-	•	•			• • • •	•••		0.0	0.0	0.0	0.00
(71,	72)	1	sov			4	293.8		16.8	16.4	0.4	12.9	12.6	0.3	61.00
į	71,	72)	2	sov			1	266.6		15.5	15.4	0.1	12.0	11.9	0.1	65.85
(71,	72)	3	sov			0	104.9		15.1	15.1	0.1	11.7	11.7	0.1	67.61
ì	71,	72)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
ì	71,	72)	9	sov			Ö	3.4		18.8	18.8	0.0	14.5	14.5	0.0	54.40
`	,	,	-				•									51110
(72,	73)	1	sov			0	231.6		24.4	24.2	0.2	18.8	18.7	0.1	61.89
ì	72,	73)	2	sov			2	325.3		23.1	23.0	0.2	17.9	17.8	0.1	65.28
ì	72,	73)	3	sov			1	111.2		22.3	22.2	0.1	17.3	17.2	0.1	67.58
ì	72,	73)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
`	, _ ,	, , ,	-		· ·	·	·	0.0	•••	• • • •	•••	•••	•••			
(73,	74)	1	sov			0	185.0		16.1	16.0	0.2	12.5	12.3	0.1	63.35
ì	73,	74)	2	sov			2	393.6		16.0	15.8	0.2	12.4	12.2	0.1	63.79
ì	73,	74)	3	sov			1	91.3		15.3	15.1	0.2	11.9	11.7	0.2	66.79
ì	73,	74)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
`	,	,	_		•											
(74,	75)	1	sov			4	462.5		22.7	22.5	0.2	17.5	17.4	0.1	63.11
ì	74,	75)	2	sov			2	203.1		21.4	21.2	0.2	16.6	16.4	0.2	66.79
ì	74,	75)	3	HOV	2	2	0	2.0	2.0	21.5	21.5	0.0	17.2	17.2	0.0	66.48
`	,	,	-		~	_	•		2.3			3				
(75,	76)	1	sov			0	437.1		5.7	5.7	0.1	4.4	4.4	0.0	62.87
ì	75,	76)	2	sov			0	228.2		5.4	5.3	0.1	4.2	4.1	0.0	66.75
ì		76)	3	HOV	2	2	0	2.0	2.0	5.4	5.4	0.0	4.3	4.3	0.0	66.54
`	,	,	-		-	_	•		,	3	J	3				
(76,	77)	1	sov			0	434.7		3.5	3.5	0.0	2.7	2.7	0.0	62.86
٠,	,	,	_				-					•				

(76,	77)	2	sov			1	232.9		3.3	3.2	0.0	2.5	2.5	0.0	66.81
ì	-	77)	3	HOV	2	2	0	2.0	2.0	3.3	3.2	0.0	2.6	2.6	0.0	67.08
`	,	,			_											
(568,	569)	1	sov			0	597.7		2.3	2.1	0.2	1.8	1.6	0.2	58.65
-	568,		2	sov			0	459.3		2.3	2.1	0.2	1.8	1.6	0.2	58.05
•	568,		3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
•																
(569,	570)	1	sov			1	590.5		13.4	13.0	0.5	10.4	10.0	0.4	62.95
(569,	570)	2	sov			2	465.4		13.5	12.9	0.6	10.4	10.0	0.4	62.70
(569,	570)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(570,	571)	1	sov			1	579.6		8.8	8.6	0.2	6.8	6.6	0.2	63.65
-	570,	-	2	sov			3	473.9		8.8	8.6	0.3	6.8	6.6	0.2	63.59
(570,	571)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	571,	-	1	sov			3	202.1		16.1	15.6	0.5	12.4	12.0	0.3	63.69
-	571,	-	2	sov			8	518.2		16.0	15.7	0.3	12.4	12.1	0.3	63.77
(571,	572)	3	HOA	0	475	5	332.3	332.3	16.1	15.6	0.5	12.5	12.1	0.4	63.39
•	572,		1	sov			0	125.6		22.4	22.0	0.4	17.3	17.0	0.3	66.82
	572,		2	sov			1	490.6		23.4	23.1	0.3	18.1	17.9	0.2	63.95
	572,	-	3	sov			0	431.8		23.6	22.9	0.7	18.2	17.7	0.5	63.48
(572,	573)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,		43	_					101.0					10.0			
-	573,		1	sov			0	194.2		15.6	15.4	0.2	12.0	11.9	0.2	65.63
•	573,		2	sov			0	465.0		16.0	15.8	0.2	12.3	12.2	0.1	64.12
	573,		3	sov			1	387.9		16.1	15.7	0.4	12.4	12.1	0.3	63.53
(573,	574)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	574,	E7E\	1	sov			0	158.3		12.8	12.6	0.2	9.9	9.8	0.1	67.37
	574,		2	SOV			2	449.0		13.5	13.4	0.1	10.4	10.3	0.1	64.08
	574,	-	3	SOV			2	379.9		13.6	13.3	0.3	10.5	10.3	0.2	63.55
•	574,		4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
'	3/4,	3131	*	1104	Ū	·	·	0.0	0.0	0.0	0.0	•••	•••	•••		
(575,	576)	1	sov			0	172.2		17.6	17.4	0.2	13.6	13.5	0.2	67.41
	575,	-	2	sov			1	438.7		18.6	18.4	0.2	14.3	14.2	0.1	63.94
	575,		3	sov			4	377.6		18.6	18.2	0.4	14.4	14.1	0.3	63.65
	575,	-	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
`	/	- · • ,	-		-	-	-									
(576,	577)	1	sov			6	1475.7		17.7	15.8	2.0	13.7	12.2	1.5	57.70
	576,		2	sov			3	750.4		16.4	15.6	0.8	12.6	12.0	0.6	62.53
	576,	-	3	sov			4	438.6		16.1	15.6	0.5	12.4	12.1	0.4	63.60
	576,		4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	576,	-	9	sov			1	52.1		26.1	21.2	4.9	20.1	16.4	3.8	39.16
•																

(577,	578)	1	sov			1	1316.6		14.0	13.5	0.5	10.8	10.4	0.4	62.04
(577,		2	sov			1	905.7		13.4	13.2	0.2	10.3	10.2	0.1	64.94
(577,	578)	3	sov			2	495.0		13.4	13.2	0.3	10.4	10.2	0.2	64.71
(577,		4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,															
(578,	579)	1	sov			6	1545.0		11.9	11.2	0.7	9.2	8.7	0.5	60.67
(578,	579)	2	sov			2	807.6		11.1	10.9	0.2	8.6	8.4	0.2	65.02
(578,	579)	3	sov			1	366.4		11.1	10.9	0.2	8.5	8.4	0.1	65.48
(578,	579)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(579,	580)	1	sov			2	1497.8		5.6	5.3	0.3	4.3	4.1	0.2	60.91
(579,	580)	2	sov			1	830.0		5.2	5.2	0.1	4.0	4.0	0.1	65.09
(579,	580)	3	sov			1	388.4		5.2	5.1	0.1	4.0	3.9	0.0	66.05
(579,	580)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(580,	581)	1	sov			3	1431.1		11.4	10.8	0.5	8.8	8.3	0.4	60.01
(580,		2	sov			2	865.6		10.5	10.3	0.2	8.1	8.0	0.1	65.16
(580,	581)	3	sov			0	417.4		10.3	10.2	0.1	7.9	7.9	0.1	66.33
(580,	581)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(581,		1	sov			4	810.6		11.7	11.3	0.3	9.0	8.7	0.3	60.96
(581,		2	sov			4	895.4		10.9	10.8	0.2	8.4	8.3	0.1	65.08
(581,	582)	3	sov			3	461.4		10.7	10.6	0.1	8.3	8.2	0.1	66.39
(581,	582)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(582,	583)	1	SOV			5	754.2		13.9	13.5	0.4	10.7	10.4	0.3	60.94
(582,	-	2	SOV			7	888.7		13.1	12.9	0.2	10.1	9.9	0.1	64.76
(582,		3	SOV			5	522.2		12.7	12.6	0.2	9.8	9.7	0.1	66.49
(582,	583)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(583,		1	sov			7	1281.2		11.9	10.7	1.2	9.2	8.3	0.9	57.14
(583,	-	2	sov			1	1014.1		10.7	10.4	0.4	8.3	8.0	0.3	63.44
(583,	-	3	sov			0	583.1		10.3	10.1	0.2	7.9	7.8	0.1	66.43
(583,	-	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(583,	584)	9	sov			1	47.9		14.1	12.0	2.1	10.9	9.2	1.6	48.46
(584,	-	1	sov			11	1966.7		18.8	16.0	2.8	14.5	12.4	2.1	54.32
(584,		2	sov			4	1248.3		16.4	15.6	0.8	12.7	12.0	0.6	62.31
(584,		3	sov			2	686.8		15.5	15.1	0.4	12.0	11.7	0.3	65.95
(584,	-	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(584,	585)	9	sov			3	88.7		19.6	18.6	1.0	15.2	14.4	0.8	52.11
		_				_							_		
(585,	-	1	sov			2	1995.2		8.4	7.7	0.7	6.5	5.9	0.5	58.26
(585,	-	2	sov			1	1263.6		7.7	7.5	0.2	5.9	5.8	0.2	63.52
(585,	586)	3	sov			0	747.7		7.4	7.2	0.2	5.7	5.6	0.1	66.16

(585,	586)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	E0 <i>6</i>	587)	1	sov			3	1913.4		7.5	7.0	0.4	5.8	5.4	0.3	59.81
-		587)	2	SOV			1	1299.1		7.0	6.8	0.2	5.4	5.3	0.1	64.15
	-	587)	3	SOV			1	797.3		6.7	6.6	0.1	5.2	5.1	0.1	66.55
•		-			0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(586,	587)	4	HOV	U	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(587,	588)	1	sov			1	1864.7		5.7	5.4	0.3	4.4	4.1	0.2	59.89
(587,	588)	2	SOV			1	1312.4		5.3	5.2	0.1	4.1	4.0	0.1	64.06
(587,	588)	3	sov			0	837.2		5.1	5.0	0.1	4.0	3.9	0.1	66.45
(587,	588)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(588,	589)	1	sov			3	1805.8		11.6	10.9	0.7	9.0	8.4	0.6	58.68
(588,	589)	2	sov			2	1312.4		10.7	10.4	0.3	8.2	8.0	0.2	63.88
(588,	589)	3	sov			1	898.5		10.3	10.1	0.2	7.9	7.8	0.2	66.31
(588,	589)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(589.	590)	1	sov			0	940.3		9.3	8.9	0.4	7.2	6.9	0.3	59.67
-		590)	2	sov			2	1274.4		8.8	8.6	0.2	6.8	6.6	0.2	63.14
•	•	590)	3	sov			2	1015.3		8.5	8.3	0.2	6.5	6.4	0.2	65.51
-		590)	4	HOV	0	962	0	191.3	191.3	8.4	8.2	0.2	6.5	6.3	0.2	66.25
(590,	591)	1	SOV			1	117.3		6.7	6.1	0.5	5.2	4.7	0.4	62.75
(590,	591)	2	sov			2	1048.7		6.9	6.8	0.1	5.3	5.2	0.1	60.63
(590,	591)	3	sov			4	1276.6		6.6	6.4	0.2	5.1	4.9	0.1	63.70
(590,	591)	4	sov			2	980.2		6.3	6.2	0.2	4.9	4.8	0.1	66.04
(590,	591)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(591,	592)	1	sov			1	205.0		7.1	6.9	0.2	5.5	5.3	0.2	65.42
(591,	592)	2	sov			3	981.7		7.7	7.5	0.1	5.9	5.8	0.1	60.79
	-	592)	3	sov			3	1230.0		7.3	7.1	0.2	5.6	5.5	0.1	63.61
(591.	592)	4	sov			2	998.2		7.1	6.9	0.2	5.5	5.3	0.2	65.89
		592)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(592 -	593)	1	sov			1	257.7		10.4	10.1	0.2	8.0	7.8	0.2	65.80
-	-	593)	2	sov			4	1208.7		11.2	10.8	0.4	8.6	8.3	0.3	61.04
		593)	3	sov			9	1124.0		10.7	10.5	0.3	8.3	8.1	0.2	63.44
•	-	593)	4	SOV			5	816.5		10.3	10.1	0.3	8.0	7.8	0.2	65.92
		593)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	334,	333)	3	ноч	U	J	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(593,	594)	1	sov			1	463.5		5.5	5.0	0.4	4.2	3.9	0.3	62.09
(593,	594)	2	sov			5	1945.1		5.7	5.3	0.4	4.4	4.1	0.3	60.02
(593,	594)	3	sov			2	669.0		5.5	5.3	0.1	4.2	4.1	0.1	62.29
(593,	594)	4	sov			1	317.8		5.1	5.1	0.1	4.0	3.9	0.1	66.29
(593,	594)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00

(594, 595) 1 SOV	,	E 0 4	E0E\	-	2011			-	721 5		10 5	10 1	0.4	0 1	- 0	0 0	64 60
(\$94, \$95) 3 80V 2 619.4 10.9 10.7 0.2 8.4 8.3 0.1 62.71 (\$94, \$95) 4 80V 3 344.5 10.3 10.1 0.1 7.9 7.8 0.1 66.48 (\$94, \$95) 5 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	•		,					_									
(594, 595) 4 SOV			-														
(594, 595) 5 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		-															
(595, 596) 1 SOV 1 597,5 7.2 7.1 0.1 5.6 5.5 0.1 62.64 (595, 596) 2 SOV 1 1613.1 8.1 7.5 0.5 6.2 5.8 0.4 56.10 (595, 596) 10 SOV 0 814.5 7.5 7.3 0.2 5.8 5.7 0.1 60.22 (596, 597) 1 SOV 1 582.0 7.8 7.6 0.1 6.0 5.9 0.1 62.42 (596, 597) 2 SOV 1 582.0 7.3 7.2 0.1 5.6 5.6 6.1 66.31 (596, 597) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		-	-	_				_									
(595, 596) 2 SOV 1 367.9 6.8 6.6 0.2 5.3 5.1 0.2 66.43 (595, 596) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(594,	595)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(595, 596) 2 SOV	(595,	596)	1	sov			1	597.5		7.2	7.1	0.1	5.6	5.5	0.1	62.64
(595, 596) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(595,	596)	2	sov			1	367.9		6.8	6.6	0.2	5 3			
(595, 596) 9 SOV 0 814.5 7.5	(595,	596)	3	HOV	0	0	0									
(595, 596) 10 SOV 0 814.5 7.5 7.3 0.2 5.8 5.7 0.1 60.22 (596, 597) 1 SOV 1 582.0 7.8 7.6 0.1 6.0 5.9 0.1 62.42 (596, 597) 2 SOV 0 386.7 7.3 7.2 0.1 5.6 5.6 0.1 66.31 (596, 597) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(595,	596)	9	sov			1									
(596, 597) 1 SOV 1 582.0 7.8 7.6 0.1 6.0 5.9 0.1 62.42 (596, 597) 2 SOV 0 386.7 7.3 7.2 0.1 5.6 5.6 0.1 66.31 (596, 597) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		-	-														
(596, 597) 2 SOV 0 386.7 7.3 7.2 0.1 5.6 5.6 0.1 66.31 (596, 597) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	•		,					Ū	011.5		7.5	7.3	0.2	3.8	5.7	0.1	60.22
(596, 597) 2 SOV O 386.7 7.3 7.2 O.1 5.6 5.6 O.1 66.31 (596, 597) 3 HOV O O O O O O O O O O O O O O O O O O		_	-	1	sov			1	582.0		7.8	7.6	0.1	6.0	5.9	0.1	62.42
(596, 597) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(596,	597)	2	sov			0	386.7		7.3	7.2	0.1	5.6	5.6		
(597, 598) 2 SOV 1 412.5 8.5 8.3 0.1 6.5 6.4 0.1 66.24 (597, 598) 3 HOV 0 0 0.0 0	(596,	597)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0				
(597, 598) 2 SOV 1 412.5 8.5 8.3 0.1 6.5 6.4 0.1 66.24 (597, 598) 3 HOV 0 0 0.0 0	(597,	598)	1	sov			3	558.8		9.0	8 9	0 1	6 9	6 0	0 1	62 21
(597, 598) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(597,	598)	2	sov												
(598, 599) 1 SOV 0 531.9 4.7 4.7 0.1 3.6 3.6 0.1 62.21 (598, 599) 2 SOV 1 438.7 4.5 4.4 0.1 3.4 3.4 0.1 66.11 (598, 599) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	-	-		3		0											
(598, 599) 2 SOV 1 438.7 4.5 4.4 0.1 3.4 3.4 0.1 66.11 (598, 599) 3 HOV 0 0 0.0			,			v	·	·	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(598, 599) 2 SOV 1 438.7 4.5 4.4 0.1 3.4 3.4 0.1 66.11 (598, 599) 3 HOV 0 0 0.0	(598,	599)	1	sov			0	531.9		4.7	4.7	0.1	3.6	3.6	0.1	62.21
(598, 599) 3 HOV 0 0 0.0	(598,	599)	2	sov			1	438.7		4.5	4.4	0.1	3.4	3.4	0.1	
(600, 601) 1 SOV 1 511.7 6.5 6.4 0.1 5.0 4.9 0.1 62.15 (600, 601) 2 SOV 1 458.2 6.1 6.0 0.1 4.7 4.6 0.1 66.05 (600, 601) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(598,	599)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
(600, 601) 2 SOV 1 458.2 6.1 6.0 0.1 4.7 4.6 0.1 66.05 (600, 601) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.																	
(600, 601) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		-						1			6.5	6.4	0.1	5.0	4.9	0.1	62.15
(601, 602) 1 SOV 0 491.2 7.8 7.6 0.2 6.0 5.9 0.2 65.53 (601, 602) 2 SOV 0 1116.4 9.2 8.0 1.2 7.1 6.1 1.0 55.47 (601, 602) 10 SOV 0 55.9 10.8 9.3 1.5 8.3 7.2 1.2 47.34 (602, 603) 2 SOV 2 533.5 7.8 7.6 0.2 6.0 5.9 0.1 65.77 (602, 603) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.				2	SOV			1	458.2		6.1	6.0	0.1	4.7	4.6	0.1	66.05
(601, 602) 2 SOV 0 491.2 7.8 7.6 0.2 6.0 5.9 0.2 65.53 (601, 602) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(600,	601)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(601, 602) 2 SOV 0 491.2 7.8 7.6 0.2 6.0 5.9 0.2 65.53 (601, 602) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(601,	602)	1	sov			2	657.9		8.5	8.0	0.5	6.5	6.2	0.4	60.43
(601, 602) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(601,	602)	2	sov			0	491.2		7.8	7.6	0.2	6.0			
(601, 602) 9 SOV 0 1116.4 9.2 8.0 1.2 7.1 6.1 1.0 55.47 (601, 602) 10 SOV 0 55.9 10.8 9.3 1.5 8.3 7.2 1.2 47.34 (602, 603) 1 SOV 5 749.4 8.2 8.0 0.2 6.3 6.1 0.2 62.53 (602, 603) 2 SOV 2 533.5 7.8 7.6 0.2 6.0 5.9 0.1 65.77 (602, 603) 3 HOV 0 0 0.	(601,	602)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0				
(601, 602) 10 SOV 0 55.9 10.8 9.3 1.5 8.3 7.2 1.2 47.34 (602, 603) 1 SOV 5 749.4 8.2 8.0 0.2 6.3 6.1 0.2 62.53 (602, 603) 2 SOV 2 533.5 7.8 7.6 0.2 6.0 5.9 0.1 65.77 (602, 603) 3 HOV 0 0 0.0	(601,	602)	9	sov			0	1116.4		9.2						
(602, 603) 2 SOV 2 533.5 7.8 7.6 0.2 6.0 5.9 0.1 65.77 (602, 603) 3 HOV 0 0 0.0				10	sov			0									
(602, 603) 2 SOV 2 533.5 7.8 7.6 0.2 6.0 5.9 0.1 65.77 (602, 603) 3 HOV 0 0 0.0	,	602	603)	1	9077				740 4				0.0	6 3	6 1	0 0	60 50
(602, 603) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0																	
(602, 603) 9 SOV 4 1036.3 8.4 8.0 0.4 6.4 6.2 0.3 61.23 (603, 604) 1 SOV 0 761.8 6.9 6.8 0.1 5.3 5.2 0.1 63.46 (603, 604) 2 SOV 1 548.9 6.6 6.5 0.1 5.1 5.0 0.1 66.16 (603, 604) 3 HOV 0 0 0 0.0																	
(603, 604) 1 SOV 0 761.8 6.9 6.8 0.1 5.3 5.2 0.1 63.46 (603, 604) 2 SOV 1 548.9 6.6 6.5 0.1 5.1 5.0 0.1 66.16 (603, 604) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	•			_		-	•	•									
(603, 604) 2 SOV 1 548.9 6.6 6.5 0.1 5.1 5.0 0.1 66.16 (603, 604) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(602,	603)	9	sov			4	1036.3		8.4	8.0	0.4	6.4	6.2	0.3	61.23
(603, 604) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	•			1				0				6.8	0.1	5.3	5.2	0.1	63.46
	(603,	604)	2	sov			1	548.9		6.6	6.5	0.1	5.1	5.0	0.1	66.16
	(603,	604)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
(000) 001/	(603,	604)	9	sov			5	1011.2		7.0	6.8	0.2	5.4	5.3	0.2	62.16

(604, 605) 2 SOV 2 557.8 7.5 7.4 0.1 5.8 5.7 0.1 66.08 (604, 605) 9 SOV 4 976.7 8.0 7.7 0.3 6.2 6.0 0.2 61.76 (605, 606) 1 SOV 2 814.4 10.2 10.1 0.2 7.9 7.8 0.1 63.55 (605, 606) 2 SOV 3 935.6 10.2 10.1 0.2 7.9 7.8 0.1 66.02 (605, 606) 3 HOV 0 <t< th=""><th>1 6</th><th>04</th><th>605)</th><th>1</th><th>sov</th><th></th><th></th><th>3</th><th>786.2</th><th></th><th>7.8</th><th>7.7</th><th>0.1</th><th>6.0</th><th>5.9</th><th>0.1</th><th>63.49</th></t<>	1 6	04	605)	1	sov			3	786.2		7.8	7.7	0.1	6.0	5.9	0.1	63.49
(604, 605) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	-				-												
(604, 605) 9 SOV 4 976.7 8.0 7.7 0.3 6.2 6.0 0.2 61.76 (605, 606) 1 SOV 5 567.1 9.8 9.7 0.2 7.6 7.5 0.1 63.55 (605, 606) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-	-	-														
(605, 606) 1 SOV 2 814.4 10.2 10.1 0.2 7.9 7.8 0.1 63.55 (605, 606) 2 SOV 5 567.1 9.8 9.7 0.2 7.6 7.5 0.1 66.02 (605, 606) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		-						-									
(605, 606) 2 SOV 5 567.1 9.8 9.7 0.2 7.6 7.5 0.1 66.02 (605, 606) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(0	04,	603)	9	50V			4	9/0./		8.0	1.1	0.3	0.2	6.0	0.2	61.76
(605, 606) 2 SOV 5 557.1 9.8 9.7 0.2 7.6 7.5 0.1 66.02 (605, 606) 9 SOV 10.5 10.2 0.4 8.1 7.8 0.3 61.67 (606, 607) 1 SOV 1 830.7 8.1 8.0 0.1 6.3 6.2 0.1 63.53 (606, 607) 2 SOV 1 899.9 8.4 8.1 0.3 6.5 6.2 0.2 61.37 (606, 607) 3 MOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(6	05,	606)	1	sov			2	814.4		10.2	10.1	0.2	7.9	7.8	0.1	63.55
(605, 606) 3 HOV 0 0 0 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	(6	05,	606)	2	sov			5	567.1		9.8	9.7	0.2	7.6	7.5		66.02
(605, 606) 9 SOV 3 935.6 10.5 10.2 0.4 8.1 7.8 0.3 61.67 (606, 607) 1 SOV 1 830.7 8.1 8.0 0.1 6.3 6.2 0.1 63.53 (606, 607) 2 SOV 0 583.8 7.8 7.7 0.1 6.0 5.9 0.1 65.99 (606, 607) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(6	05,	606)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
(606, 607) 1 SOV 1 830.7 8.1 8.0 0.1 6.3 6.2 0.1 63.53 (606, 607) 2 SOV 0 583.8 7.8 7.7 0.1 6.0 5.9 0.1 65.99 (606, 607) 9 SOV 1 899.9 8.4 8.1 0.3 6.5 6.2 0.2 61.37 (607, 608) 1 SOV 5 600.0 6.8 6.7 0.1 5.5 5.4 0.1 63.38 (607, 608) 2 SOV 5 600.0 6.8 6.7 0.1 5.2 5.1 0.1 66.07 (607, 608) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(6	05,	606)	9	sov			3	935.6		10.5	10.2					
(606, 607) 2 SOV 0 583.8 7.8 7.7 0.1 6.0 5.9 0.1 65.99 (606, 607) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.																0.0	01.07
(606, 607) 2 SOV 0 583.8 7.8 7.7 0.1 6.0 5.99 0.1 65.99 (606, 607) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		-	-	1	sov			1	830.7		8.1	8.0	0.1	6.3	6.2	0.1	63.53
(606, 607) 9 SOV 1 899.9 8.4 8.1 0.3 6.5 6.2 0.2 61.37 (607, 608) 1 SOV 2 840.5 7.1 7.0 0.1 5.5 5.4 0.1 63.38 (607, 608) 2 SOV 5 600.0 6.8 6.7 0.1 5.2 5.1 0.1 66.07 (607, 608) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.				2	SOV			0	583.8		7.8	7.7	0.1	6.0	5.9	0.1	
(606, 607) 9 SOV 1 899.9 8.4 8.1 0.3 6.5 6.2 0.2 61.37 (607, 608) 1 SOV 2 840.5 7.1 7.0 0.1 5.5 5.4 0.1 63.38 (607, 608) 2 SOV 5 600.0 6.8 6.7 0.1 5.2 5.1 0.1 66.07 (607, 608) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	-			3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
(607, 608) 1 SOV 2 840.5 7.1 7.0 0.1 5.5 5.4 0.1 63.38 (607, 608) 2 SOV 5 600.0 6.8 6.7 0.1 5.2 5.1 0.1 66.07 (607, 608) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(6	06,	607)	9	sov			1	899.9		8.4	8.1	0.3	6.5	6.2		
(607, 608) 2 SOV 5 600.0 6.8 6.7 0.1 5.2 5.1 0.1 66.07 (607, 608) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0																	
(607, 608) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		-						2	840.5		7.1	7.0	0.1	5.5	5.4	0.1	63.38
(607, 608) 9 SOV 2 871.8 7.3 7.1 0.3 5.6 5.4 0.2 61.33 (608, 609) 1 SOV 1 836.4 8.8 8.6 0.2 6.8 6.7 0.1 63.27 (608, 609) 2 SOV 3 618.9 8.4 8.3 0.2 6.5 6.4 0.1 66.08 (608, 609) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	-	-						5	600.0		6.8	6.7	0.1	5.2	5.1	0.1	66.07
(608, 609) 1 SOV 1 836.4 8.8 8.6 0.2 6.8 6.7 0.1 63.27 (608, 609) 2 SOV 3 618.9 8.4 8.3 0.2 6.5 6.4 0.1 66.08 (608, 609) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-	-		3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(608, 609) 2 SOV 3 618.9 8.4 8.3 0.2 6.5 6.4 0.1 66.08 (608, 609) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(6	07,	608)	9	sov			2	871.8		7.3	7.1	0.3	5.6	5.4	0.2	61.33
(608, 609) 2 SOV 3 618.9 8.4 8.3 0.2 6.5 6.4 0.1 66.08 (608, 609) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0																	
(608, 609) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.								1	836.4		8.8	8.6	0.2	6.8	6.7	0.1	63.27
(608, 609) 9 SOV 1 849.8 9.1 8.8 0.3 7.0 6.7 0.2 61.29 (609, 610) 1 SOV 2 842.0 10.0 9.8 0.2 7.7 7.6 0.1 63.23 (609, 610) 2 SOV 1 636.9 9.6 9.4 0.2 7.4 7.2 0.2 65.97 (609, 610) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-	-		_							8.4	8.3	0.2	6.5	6.4	0.1	66.08
(609, 610) 1 SOV 2 842.0 10.0 9.8 0.2 7.7 7.6 0.1 63.23 (609, 610) 2 SOV 1 636.9 9.6 9.4 0.2 7.4 7.2 0.2 65.97 (609, 610) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	-					_	-	_		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(609, 610) 2 SOV 1 636.9 9.6 9.4 0.2 7.4 7.2 0.2 65.97 (609, 610) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(6	08,	609)	9	sov			1	849.8		9.1	8.8	0.3	7.0	6.7	0.2	61.29
(609, 610) 2 SOV 1 636.9 9.6 9.4 0.2 7.4 7.2 0.2 65.97 (609, 610) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0																	
(609, 610) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	•	•										9.8		7.7	7.6		63.23
(609, 610) 9 SOV 4 823.1 10.3 10.0 0.4 7.9 7.7 0.3 61.30 (610, 611) 1 SOV 2 1035.3 7.8 7.5 0.2 6.0 5.8 0.2 62.75 (610, 611) 2 SOV 0 581.1 7.4 7.2 0.2 5.7 5.6 0.1 65.93 (610, 611) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.														7.4			
(610, 611)	-						-							0.0	0.0	0.0	
(610, 611) 2 SOV 0 581.1 7.4 7.2 0.2 5.7 5.6 0.1 65.93 (610, 611) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(6	09,	610)	9	sov			4	823.1		10.3	10.0	0.4	7.9	7.7	0.3	61.30
(610, 611) 2 SOV 0 581.1 7.4 7.2 0.2 5.7 5.6 0.1 65.93 (610, 611) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(6	10.	611)	1	sov			2	1035.3		7.8	7 5	0.2	6.0	5.8	0.2	62 75
(610, 611) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		-	-	2													
(610, 611) 9 SOV 0 686.3 7.9 7.7 0.3 6.1 5.9 0.2 61.33 (611, 612) 1 SOV 0 1423.0 8.3 7.9 0.4 6.4 6.1 0.3 61.15 (611, 612) 2 SOV 0 415.3 7.8 7.5 0.3 6.0 5.8 0.2 65.15 (611, 612) 3 HOV 0 0 0.0	-	-		3	HOV	0	0	0		0.0							
(611, 612) 1 SOV 0 1423.0 8.3 7.9 0.4 6.4 6.1 0.3 61.15 (611, 612) 2 SOV 0 415.3 7.8 7.5 0.3 6.0 5.8 0.2 65.15 (611, 612) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.				9	sov												
(611, 612) 2 SOV 0 415.3 7.8 7.5 0.3 6.0 5.8 0.2 65.15 (611, 612) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			•											**-		• • •	02.00
(611, 612) 2 SOV 0 415.3 7.8 7.5 0.3 6.0 5.8 0.2 65.15 (611, 612) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(6	11,	612)	1	sov			0	1423.0		8.3	7.9	0.4	6.4	6.1	0.3	61.15
(611, 612) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(6	11,	612)	2	sov			0			7.8	7.5		6.0			
(611, 612) 9 SOV 2 464.8 8.2 7.9 0.3 6.3 6.1 0.2 61.91 (612, 613) 1 SOV 4 1271.4 16.8 16.2 0.6 13.0 12.5 0.5 60.81 (612, 613) 2 SOV 1 483.0 15.5 15.2 0.3 12.0 11.7 0.2 65.98 (612, 613) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(6	11,	612)	3	HOV	0	0	0	0.0	0.0	0.0						
(612, 613) 1 SOV 4 1271.4 16.8 16.2 0.6 13.0 12.5 0.5 60.81 (612, 613) 2 SOV 1 483.0 15.5 15.2 0.3 12.0 11.7 0.2 65.98 (612, 613) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(6	11,	612)	9	sov			2									
(612, 613) 2 SOV 1 483.0 15.5 15.2 0.3 12.0 11.7 0.2 65.98 (612, 613) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		-	-														
(612, 613) 2 SOV 1 483.0 15.5 15.2 0.3 12.0 11.7 0.2 65.98 (612, 613) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(6	12,	613)	1	sov			4	1271.4		16.8	16.2	0.6	13.0	12.5	0.5	60.81
(612, 613) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(6	12,	613)	2	sov			1	483.0		15.5	15.2	0.3	12.0	11.7	0.2	
				3	HOV	0	0	0	0.0	0.0	0.0	0.0					
,,,,,, -	(6	12,	613)	9	sov			1	549.4		16.9	16.4	0.5	13.1	12.7	0.4	60.39

(613, 614)	1	sov			0	725.7		3.5	3.3	0.1	2.7	2.6	0.1	61.09
(613, 614)	2	sov			0	436.4		3.2	3.2	0.1	2.5	2.4	0.1	65.81
(613, 614)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(614, 615)	1	sov			0	723.2		3.2	3.1	0.1	2.4	2.4	0.1	61.99
(614, 615)	2	sov			0	439.8		3.0	2.9	0.0	2.3	2.3	0.0	66.11
(614, 615)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(615, 616)	1	sov			1	717.2		5.5	5.4	0.1	4.2	4.1	0.1	62.40
(615, 616)	2	sov			ō	445.0		5.1	5.1	0.1	4.0	3.9	0.0	66.32
(615, 616)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
(020, 020,	•	1101	·	v	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(616, 617)	1	sov			2	705.8		11.2	11.0	0.3	8.6	8.4	0.2	60.78
(616, 617)	2	sov			1	456.5		10.3	10.2	0.1	8.0	7.9	0.1	66.19
(616, 617)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(617, 618)	1	sov			1	412.5		10.9	10.8	0 1	0.4	0.3	0 1	61 00
(617, 618)	2	SOV			1	460.7		10.9		0.1	8.4	8.3	0.1	61.92
(617, 618)	3	HOV	0	0		0.0			10.1	0.1	7.9	7.8	0.1	66.16
(617, 618)	3	ноч	U	U	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(618, 619)	1	sov			2	421.0		9.8	9.7	0.1	7.6	7.5	0.1	62.18
(618,619)	2	sov			2	448.6		9.3	9.2	0.1	7.1	7.1	0.1	66.13
(618, 619)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(619, 620)	-	sov			•	423.0		4.6	4.5	0.0	2 -	2.5	0 0	60.00
(619, 620)	1 2	SOV			0 1	445.1		4.6	4.5	0.0	3.5	3.5	0.0	62.38
								4.3	4.3		3.3	3.3	0.0	66.03
(619, 620)	3	HOV	U	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(599,600)	1	sov			1	517.9		4.2	4.2	0.1	3.3	3.2	0.0	62.18
(599,600)	2	sov			0	453.0		4.0	3.9	0.1	3.1	3.0	0.1	66.03
(599,600)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(77,7053)	1	sov			0	434.0		2.0	2.0	0.0	1.6	1.5	0.0	62.81
		sov			-	234.0				0.0	1.5	1.5	0.0	66.91
(77,7053)	2				0	234.0	2.0	1.9	1.9			1.5		
(77,7053)	3	HOV	2	2	0	2.0	2.0	1.9	1.9	0.0	1.5	1.5	0.0	65.64
(7054, 568)	1	sov			0	656.5		3.0	2.4	0.6	2.3	1.8	0.5	53.10
(7054, 568)	2	sov			0	488.6		3.0	2.3	0.7	2.3	1.8	0.5	52.48
(7054, 568)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(396, 397)	1	sov			5	887.1		25.4	24.4	1.0	19.6	18.8	0.8	61.37
(396, 397)	2	SOV			5 7	1041.2		24.5	23.9	0.6	18.9	18.5	0.5	63.50
(396, 397)	3	SOV			8	795.6		24.5	23.9	0.5	18.9	18.4	0.5	63.47
	-				_									
(396, 397)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00

(397,	398)	1	sov			2	1569.2		8.0	7.5	0.5	6.2	5.8	0.4	59.57
(397,		2	sov			1	828.4		7.6	7.3	0.2	5.8	5.6	0.2	63.18
(397,	-	3	sov			0	612.6		7.4	7.3	0.2	5.7	5.6	0.1	64.35
(397,	-	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(397,	398)	9	sov			1	384.0		8.1	7.4	0.7	6.3	5.7	0.6	58.93
(398,	564)	1	sov			1	1398.2		8.9	8.6	0.3	6.9	6.6	0.2	61.06
(398,	564)	.2	sov			1	897.5		8.6	8.4	0.2	6.6	6.4	0.2	63.68
(398,	-	3	sov			2	633.2		8.5	8.3	0.2	6.5	6.4	0.1	64.53
(398,	-	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(398,	564)	9	sov			0	462.8		8.4	8.2	0.2	6.5	6.3	0.2	64.64
(620,		1	sov			0	422.5		5.4	5.3	0.0	4.1	4.1	0.0	62.38
(620,		2	sov			2	447.3		5.1	5.0	0.0	3.9	3.9	0.0	65.96
(620,	369)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(617,	114)	1	sov			1	286.7		8.1	8.1	0.1	6.3	6.2	0.1	54.51
(114,	115)	1	sov			1	285.8		11.5	11.3	0.2	8.8	8.7	0.2	49.97
(117,	416)	1	sov			0	284.0		8.9	8.7	0.2	6.9	6.7	0.2	48.97
(399,	402)	1	sov			1	502.8		20.2	19.9	0.3	15.6	15.4	0.2	55.68
(399,	402)	2	sov			2	551.9		21.3	21.0	0.3	16.4	16.2	0.2	52.76
(625,	132)	1	sov			4	717.2		3.2	2.7	0.5	2.5	2.1	0.4	43.91
(626,	627)	1	sov			0	445.8		4.7	4.5	0.1	3.6	3.5	0.1	61.34
(626,		2	sov			0	326.2		4.3	4.2	0.1	3.3	3.3	0.1	66.22
(627,		1	sov			2	436.2		3.5	3.5	0.1	2.7	2.7	0.0	61.91
(627,	190)	2	sov			3	332.5		3.3	3.2	0.0	2.5	2.5	0.0	66.81
(629,	255)	1	sov			0	435.2		4.9	4.3	0.6	3.8	3.3	0.4	47.31
(628,	629)	1	sov			2	434.7		5.9	5.3	0.6	4.6	4.1	0.5	39.88
(631,	280)	1	sov			2	371.0		6.6	6.3	0.3	5.1	4.8	0.2	51.67
(630,	631)	1	sov			0	371.3		6.0	5.8	0.2	4.6	4.5	0.1	48.44
(632,	633)	1	sov			0	800.2		8.3	8.0	0.2	6.4	6.2	0.2	53.59
(632,	633)	2	sov			1	789.8		8.4	8.2	0.2	6.5	6.3	0.2	52.73
(635,	54)	1	sov			0	111.0		8.4	7.9	0.5	6.5	6.1	0.4	50.93

(634,	635)	1	sov	 	0	111.0	 7.7	7.1	0.6	5.9	5.5	0.4	41.59
(637,	56)	1	sov	 	0	206.8	 8.2	8.0	0.1	6.3	6.2	0.1	54.04
(636,	637)	1	sov	 	1	206.0	 5.7	5.6	0.1	4.4	4.3	0.1	53.61
(61,	638)	1	sov	 	0	645.1	 5.7	5.6	0.2	4.4	4.3	0.1	53.26
(638,	639)	1	sov	 	0	135.8	 4.4	4.2	0.1	3.4	3.3	0.1	52.82
(638,	639)	2	sov	 	1	509.5	 4.4	4.2	0.2	3.4	3.2	0.1	52.96
(62,	640)	1	sov	 	0	959.0	 5.2	5.0	0.2	4.0	3.9	0.2	52.83
(640,	641)	1	sov	 	0	280.9	 2.9	2.8	0.1	2.2	2.1	0.1	52.55
(640,	-	2	sov	 	0	678.1	 2.8	2.7	0.1	2.2	2.1	0.1	52.55 52.74
													02172
(643,	64)	1	sov	 	2	321.7	 7.6	7.3	0.3	5.9	5.6	0.2	52.21
(642,	643)	1	sov	 	2	219.3	 6.7	5.9	0.7	5.1	4.6	0.6	48.83
(642,	643)	2	sov	 	1	104.8	 6.9	6.1	0.8	5.3	4.7	0.6	47.42
	644)	1	sov	 	0	377.2	 4.3	4.3	0.0	3.3	3.3	0.0	55.33
(69,	644)	2	sov	 	0	616.8	 4.5	4.4	0.1	3.5	3.4	0.1	53.04
(644,	645)	1	sov	 	0	95.2	 3.1	3.1	0.0	2.4	2.4	0.0	54.87
(644,	645)	2	sov	 	1	443.9	 3.2	3.2	0.0	2.5	2.5	0.0	52.38
(644,	645)	3	sov	 	0	454.0	 3.4	3.3	0.1	2.6	2.5	0.1	49.66
(647,	71)	1	sov	 	0	127.6	 9.5	8.8	0.7	7.3	6.8	0.5	50.55
(646,	647)	1	sov	 	1	125.9	 8.3	7.6	0.7	6.4	5.9	0.5	41.20
(574,	660)	1	sov	 	0	62.0	 2.8	2.7	0.1	2.1	2.1	0.0	54.72
(660,	661)	1	sov	 	1	61.2	 2.8	2.7	0.1	2.1	2.1	0.1	51.91
(663,	576)	1	sov	 	2	1488.5	 8.2	6.2	1.9	6.3	4.8	1.5	41.72
(663,	576)	2	sov	 	1	238.3	 11.6	7.3	4.2	8.9	5.7	3.3	29.40
		_			_								
(662,		1	sov	 	0	217.4	 6.9	4.5	2.4	5.3	3.4	1.9	33.12
(662,	663)	2	sov	 	0	1509.5	 6.7	4.4	2.2	5.1	3.4	1.7	34.11
(581,	664)	1	sov	 	1	548.9	 7.3	7.1	0.2	5.6	5.5	0.1	54.10

(664	4,	665)	1	sov	 	0	548.5	 2.9	2.8	0.1	2.2	2.1	0.1	53.43
(66'	7,	583)	1	sov	 	6	765.8	 12.6	10.9	1.7	9.7	8.4	1.3	46.77
(66	6,	667)	1	sov	 	1	770.4	 4.3	4.0	0.3	3.3	3.1	0.2	34.11
(66	9.	584)	1	sov	 	4	943.3	 8.2	7.3	1.0	6.4	5.6	0.8	48.28
(66	-		2	sov	 	2	115.5	 9.6	7.8	1.7	7.4	6.1	1.3	41.55
(66	8,	669)	1	sov	 	0	68.2	 6.7	4.0	2.7	5.2	3.1	2.1	32.41
(66	8,	669)	2	sov	 	0	994.8	 4.6	3.9	0.6	3.5	3.0	0.5	47.58
(58	9,	670)	1	sov	 	1	597.5	 2.9	2.8	0.1	2.3	2.2	0.1	53.01
(67	0,	671)	1	sov	 	0	597.0	 2.8	2.7	0.1	2.2	2.1	0.1	53.05
(67	2,	673)	1	sov	 	0	820.9	 6.4	6.0	0.4	4.9	4.6	0.3	47.05
(67	4,	675)	1	sov	 	4	538.1	 3.9	3.8	0.2	3.0	2.9	0.1	52.40
(67	6,	677)	1	sov	 	7	1345.6	 19.6	18.6	1.0	15.1	14.3	0.8	52.30
(67	6,	677)	2	SOV	 	4	849.8	 19.4	18.8	0.6	15.0	14.5	0.5	52.68
(67	6,	677)	3	sov	 	0	34.8	 19.5	19.2	0.3	15.0	14.8	0.2	52.52
(67	6,	677)	9	sov	 	1	201.4	 19.2	18.7	0.5	14.8	14.4	0.4	53.31
(67	7.	680)	1	sov	 	0	474.5	 16.4	16.1	0.2	12.6	12.4	0.2	55.84
•	-	680)	2	sov	 	2	724.2	 17.3	16.9	0.4	13.4	13.1	0.3	52.70
(67	7.	678)	1	sov	 	0	488.3	 5.1	5.0	0.0	3.9	3.9	0.0	50.70
-	-	678)	2	sov	 	1	750.7	 5.3	5.2	0.1	4.1	4.0	0.1	48.53
(67	8	679)	1	sov	 	0	514.8	 5.5	5.5	0.0	4.3	4.2	0.0	50.72
-	-	679)	2	sov	 	Ō	725.1	 5.8	5.6	0.2	4.5	4.4	0.1	48.03
/ 60		681)	1	sov	 	1	537.7	 8.8	8.7	0.1	6.8	6.7	0.1	56.03
•						3	664.9	9.4	9.2	0.2	7.2	7.1	0.2	52.46
(68	, 0	681)	2	sov	 	3	004.9	 9.4	9.2	0.2	1.2	7.1	0.2	32.40
(68	31,	682)	1	sov	 	2	560.0	 9.1	9.0	0.1	7.1	7.0	0.1	55.92
(68	31,	682)	2	sov	 	2	640.1	 9.8	9.6	0.2	7.5	7.4	0.2	52.42
(68	84,	685)	1	sov	 	0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00
(68	86,	111)	1	sov	 	0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00
(68	85,	681)	1	sov	 	0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00

(682, 683)	1	sov	 	1	587.8	 9.1	9.0	0.1	7.1	7.0	0.1	55.89
(682, 683)	2	sov	 	0	609.7	 9.8	9.6	0.2	7.5	7.4	0.1	52.34
(687, 688)	1	sov	 	3	605.6	 6.8	6.7	0.1	5.2	5.1	0.1	46.65
(687,688)	2	sov	 	2	582.5	 7.3	7.1	0.1	5.6	5.5	0.1	43.57
(688,7027)	1	sov	 	1	604.3	 4.4	4.4	0.0	3.4	3.4	0.0	41.22
(688,7027)	2	sov	 	1	579.2	 4.7	4.7	0.0	3.7	3.6	0.0	38.07
(7056, 626)	1	sov	 	0	480.8	 5.3	4.6	0.7	4.1	3.5	0.5	54.84
(7056, 626)	2	sov	 	0	325.3	 4.7	4.2	0.5	3.6	3.3	0.4	61.80
(679,7058)	1	sov	 	0	527.4	 3.1	3.0	0.0	2.4	2.3	0.0	50.40
(679,7058)	2	sov	 	0	713.0	 3.3	3.2	0.1	2.5	2.4	0.1	47.07
(5050 604)	_			_								
(7059, 684)	1	sov	 	0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00
(7060, 628)	-	sov		•	474 6	4.3						
(7000, 628)	1	50V	 	2	474.6	 4.3	4.1	0.2	3.3	3.1	0.2	34.08
(7061, 630)	1	sov	 	3	392.8	 4.8	4.5	0.3	3.7	3.5	0.3	46.37
(7001, 030)	-	50 V	 	3	392.0	 4.0	4.5	0.3	3.7	3.5	0.3	46.37
(7062, 674)	1	sov	 	0	599.1	 2.4	2.0	0.3	1.8	1.6	0.2	48.15
(7002) 071)	-	501		Ū	333.1	2.7	2.0	0.5	1.0	1.0	0.2	40.15
(7063, 672)	1	sov	 	0	853.6	 7.5	6.8	0.7	5.8	5.2	0.5	41.28
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_	201		·	000.0	,	0.0	•••	3.0	3.2	0.5	11.20
(671,7064)	1	sov	 	0	597.5	 2.4	2.3	0.1	1.8	1.8	0.1	52.14
,,								• • •			• • •	02122
(633,7065)	1	sov	 	1	802.6	 4.2	4.1	0.1	3.3	3.2	0.1	53.45
(633,7065)	2	sov	 	1	785.4	 4.3	4.2	0.1	3.3	3.2	0.1	52.75
,,												
(7066, 634)	1	sov	 	0	121.5	 4.1	3.9	0.2	3.2	3.0	0.1	34.75
(7067, 636)	1	sov	 	1	215.9	 5.2	4.7	0.5	4.0	3.6	0.4	50.08
(665,7068)	1	sov	 	0	549.0	 2.7	2.5	0.2	2.1	2.0	0.1	51.91
(7069, 666)	1	sov	 	3	854.3	 3.4	3.3	0.1	2.6	2.5	0.1	35.67
(7070, 668)	1	sov	 	1	262.4	 4.5	3.8	0.7	3.5	2.9	0.5	47.50
(7070, 668)	2	sov	 	4	867.1	 4.1	3.8	0.3	3.2	3.0	0.2	51.44
:	_											
(639,7071)	1	sov	 	0	53.0	 2.2	2.0	0.2	1.7	1.6	0.2	50.05
(639,7071)	2	sov	 	0	592.0	 2.2	2.1	0.1	1.7	1.6	0.1	51.09

(7072, 642)	1	sov	 	0	79.9	 2.4	1.8	0.5	1.8	1.4	0.4	44.33
(7072, 642)	2	sov	 	1	286.1	 2.2	1.9	0.3	1.7	1.5	0.2	48.01
(641,7073)	1	sov	 	0	66.0	 2.3	2.3	0.0	1.7	1.7	0.0	52.41
(641,7073)	2	sov	 	0	893.8	 2.4	2.3	0.0	1.8	1.8	0.0	50.45
(661,7074)	1	sov	 	0	61.0	 2.7	2.6	0.2	2.1	2.0	0.1	47.52
(7075, 662)	1	sov	 	0	526.9	 4.4	3.8	0.6	3.4	2.9	0.5	44.12
(7075, 662)	2	sov	 	1	1307.0	 4.2	3.9	0.4	3.3	3.0	0.3	46.10
(645,7076)	1	sov	 	0	1.0	 3.0	2.9	0.1	2.3	2.2	0.1	53.70
(645,7076)	2	sov	 	0	390.0	 3.2	3.2	0.0	2.5	2.5	0.0	49.97
(645,7076)	3	sov	 	0	602.0	 3.4	3.3	0.1	2.6	2.5	0.1	46.99
(7077, 646)	1	sov	 	0	140.6	 3.2	3.0	0.2	2.5	2.3	0.2	34.33
(7084, 857)	1	sov	 	0	258.7	 2.6	2.3	0.3	2.0	1.8	0.2	49.97
(857, 858)	1	SOV	 	0	236.0	 4.0	3.9	0.1	3.0	3.0	0.1	53.75
(859,7085)	1	SOV	 	0	321.0	 6.2	6.0	0.2	4.8	4.7	0.1	53.33
(7086, 860)	1	sov	 	0	17.7	 5.9	5.8	0.0	4.5	4.5	0.0	54.09
(860, 861)	1	sov	 	0	17.0	 5.7	5.7	0.0	4.4	4.4	0.0	54.30
(866,7087)	1	sov	 	0	56.0	 3.8	3.7	0.0	2.9	2.9	0.0	55.38
(873,7088)	1	SOV	 	0	58.0	 6.9	6.9	0.0	5.3	5.3	0.0	55.04
(7089, 874)	1	sov	 	0	98.2	 3.8	3.6	0.2	2.9	2.8	0.2	52.04
(874, 875)	1	sov	 	0	92.0	 3.7	3.7	0.0	2.9	2.8	0.0	54.01
(876,7090)	1	sov	 	0	161.0	 6.0	5.9	0.1	4.6	4.6	0.1	54.01
(7091, 877)	1	SOV	 	0	59.7	 5.1	3.6	1.5	3.9	2.8	1.1	39.65
(877, 878)	1	sov	 	0	56.0	 4.6	4.3	0.2	3.5	3.4	0.2	51.63
(879,880)	1	sov	 	1	998.3	 13.9	13.7	0.1	10.7	10.6	0.1	64.36
(879,880)	2	sov	 	7	1028.8	 13.9	13.7	0.2	10.7	10.6	0.1	64.27
(880, 881)	1	sov	 	5	990.0	 19.9	19.5	0.4	15.4	15.1	0.3	63.80

(880,	881)	2	sov	 	8	1009.5	 19.9	19.6	0.4	15.4	15.1	0.3	63.74
,	881,	882)	1	sov	 	6	1014.1	 16.4	15.9	0.5	12.7	12.3	0.4	63.20
-	881,	-	2	SOV	 	4	983.0	 16.4	16.0	0.4	12.7	12.4	0.3	63.22
(001,	002)	2	50V	 	-	903.0	 10.4	10.0	0.4	12.7	12.4	0.5	03.22
(882,	883)	1	sov	 	4	1028.0	 16.3	15.8	0.5	12.6	12.2	0.4	62.78
(882,	883)	2	sov	 	4	968.7	 16.2	15.8	0.5	12.5	12.2	0.4	63.02
(883,	884)	1	sov	 	3	970.0	 13.0	12.6	0.4	10.1	9.7	0.3	62.80
(883,	884)	2	sov	 	4	969.9	 13.0	12.6	0.4	10.1	9.8	0.3	62.84
(883,	873)	1	sov	 	0	58.0	 7.4	7.4	0.0	5.7	5.7	0.0	55.16
(884,	885)	1	sov	 	4	977.3	 12.1	11.6	0.4	9.3	9.0	0.3	62.69
(884,	885)	2	sov	 	0	961.4	 12.1	11.6	0.4	9.3	9.0	0.3	62.60
(885,	886)	1	sov	 	3	989.1	 14.9	14.4	0.6	11.5	11.1	0.4	62.63
(885,	886)	2	sov	 	3	955.0	 14.9	14.4	0.5	11.6	11.1	0.4	62.51
													• • •	
(886,	887)	1	sov	 	6	1058.6	 16.4	15.7	0.7	12.7	12.2	0.5	62.26
(886,	887)	2	sov	 	4	971.1	 16.4	15.8	0.6	12.7	12.2	0.5	62.45
(886,	887)	9	sov	 	0	3.7	 19.5	17.4	2.1	15.1	13.4	1.6	52.39
•														-
(887,	888)	1	sov	 	3	1039.3	 16.9	16.2	0.6	13.0	12.5	0.5	62.43
(887,	888)	2	sov	 	5	995.5	 16.9	16.2	0.7	13.0	12.5	0.5	62.37
(875,	886)	1	sov	 	1	91.3	 5.3	5.3	0.0	4.1	4.1	0.0	54.50
(888,	889)	1	sov	 	3	1031.6	 18.3	17.6	0.7	14.2	13.6	0.6	62.26
(888,	889)	2	sov	 	11	1001.5	 18.3	17.6	0.8	14.2	13.6	0.6	62.29
(889,	890)	1	sov	 	3	1030.2	 12.1	11.6	0.5	9.4	9.0	0.4	62.13
(889,	890)	2	sov	 	3	1001.5	 12.1	11.6	0.5	9.4	9.0	0.4	62.23
(890,	891)	1	sov	 	10	1030.4	 19.1	18.3	0.8	14.8	14.1	0.6	62.10
(890,	891)	2	sov	 	5	998.9	 19.1	18.3	0.8	14.8	14.1	0.6	62.13
(891,	892)	1	sov	 	2	1027.3	 14.4	13.7	0.6	11.1	10.6	0.5	62.11
(891,	892)	2	sov	 	4	1002.3	 14.3	13.7	0.6	11.1	10.6	0.4	62.32
•	•				-									
(892,	893)	1	sov	 	9	1020.6	 33.7	32.2	1.5	26.0	24.9	1.1	62.09
	892,		2	sov	 	7	1011.5	 33.5	32.2	1.3	25.9	24.9	1.0	62.37
•	7		_											
(893,	894)	1	sov	 	20	1014.4	 39.7	38.0	1.7	30.7	29.4	1.3	62.11
-	893,	-	2	sov	 	17	1013.0	 39.6	37.9	1.7	30.6	29.3	1.3	62.26
٠,	/	- ,	_											

(894,	895)	1	sov	 	2	1023.3	 24.3	23.3	1.0	18.8	18.0	0.8	62.19
(894,	895)	2	sov	 	4	997.4	 24.2	23.2	1.0	18.7	18.0	0.8	62.34
(895,	896)	1	sov	 	15	1025.6	 37.9	36.2	1.7	29.4	28.0	1.3	62.01
(895,	896)	2	sov	 	13	1001.5	 37.8	36.2	1.6	29.2	28.0	1.2	62.25
-	896,		1	sov	 	11	1016.8	 40.7	38.8	2.0	31.5	30.0	1.5	61.87
(896,	897)	2	sov	 	6	1006.4	 40.5	38.8	1.6	31.3	30.0	1.3	62.27
	897,	,	1	sov	 	9	1008.0	 22.4	21.4	1.0	17.3	16.6	0.8	62.05
(897,	898)	2	sov	 	5	1020.4	 22.4	21.4	1.0	17.3	16.5	0.8	62.08
,			_											
-	898,	,	1	sov	 	5	1020.5	 16.5	15.8	0.8	12.8	12.2	0.6	61.83
(898,	899)	2	sov	 	8	1004.3	 16.5	15.7	0.8	12.8	12.2	0.6	61.98
,	000	000)												
-	899,		1	sov	 	4	969.7	 18.1	17.3	0.8	14.0	13.4	0.6	62.05
(899,	900)	2	sov	 	3	999.4	 18.1	17.3	0.8	14.0	13.4	0.7	61.93
,	899,	9661	1	sov		•	F.C. 0							
'	099,	000)	_	50V	 	0	56.0	 7.6	7.6	0.0	5.9	5.9	0.0	55.51
,	900,	901:)	1	sov	 	6	977.9	 21.3	20.3	1.0	16.5	15.5		61.00
	900,		2	sov	 	3	997.5	 21.3	20.3	1.0	16.5	15.7	0.8	61.90
`	300,	301)	2	504	 	3	997.5	 21.3	20.3	1.0	10.5	15.7	0.8	61.91
(901,	902)	1	sov	 	4	1123.1	 17.1	15.8	1.4	13.2	12.2	1.0	59.76
-	901,		2	sov	 	1	1068.4	 16.6	15.7	0.9	12.8	12.2	0.7	61.66
•	901,		9	sov	 	ō	12.8	 26.7	20.0	6.7	20.5	15.4	5.1	38.37
`	,	,		201		·	12.0	20.7	20.0	0.7	20.5	13.1	3.1	30.37
(902,	903)	1	sov	 	7	1083.7	 16.7	15.9	0.8	12.9	12.3	0.6	61.58
	902,	-	2	sov	 	4	1115.7	 16.6	15.8	0.8	12.8	12.2	0.6	62.07
•		,											•••	02.07
(858,	901)	1	sov	 	4	233.8	 10.1	9.9	0.3	7.8	7.6	0.2	53.63
(903,	904)	1	sov	 	9	1060.6	 19.1	18.2	0.9	14.8	14.1	0.7	61.64
(903,	904)	2	sov	 	10	1128.8	 19.1	18.1	1.0	14.8	14.0	0.7	61.83
	904,		1	sov	 	7	1064.0	 14.8	14.1	0.7	11.5	10.9	0.5	61.58
(904,	905)	2	sov	 	4	1124.4	 14.8	14.1	0.7	11.4	10.9	0.6	61.74
•	906,		1	sov	 	5	1247.4	 14.4	14.2	0.2	11.1	11.0	0.2	63.91
(906,	907)	2	sov	 	8	1288.0	 14.4	14.2	0.2	11.2	11.0	0.2	63.93
-	907,		1	sov	 	9	1265.4	 22.0	21.4	0.6	17.0	16.6	0.5	63.11
(907,	908)	2	sov	 	6	1232.9	 22.0	21.4	0.6	17.0	16.5	0.5	63.29

,	908,	9091	1	sov	 	9	1343.3	 16.6	15.9	0.7	12.8	12.3	0.5	61.69
-	908,		2	SOV	 	8	1152.8	 16.3	15.7	0.6	12.6	12.1	0.5	62.74
'	900,	303)	2	50V	 	0	1132.0	10.5	13.7	0.0	12.0		•••	02172
,	909,	910)	1	sov	 	2	1012.9	 14.5	14.0	0.5	11.2	10.8	0.4	62.32
	909,	-	2	SOV	 	1	1161.6	 14.4	13.9	0.5	11.1	10.7	0.4	62.72
(909,	910)	2	50V	 		1101.0	 11.1	13.9	0.5	11.1	10.7	0.1	02.72
(909,	859)	1	sov	 	0	321.0	 9.6	9.5	0.1	7.4	7.3	0.1	54.07
`	,,,	002,	_	20.		•							• • •	
(910,	911)	1	sov	 	6	1039.7	 17.4	16.8	0.7	13.5	13.0	0.5	62.36
(910,	911)	2	sov	 	8	1138.1	 17.4	16.7	0.7	13.4	12.9	0.5	62.59
(911,	912)	1	sov	 	4	1053.7	 16.0	15.4	0.6	12.4	11.9	0.5	62.27
(911,	912)	2	sov	 	2	1124.8	 16.0	15.3	0.7	12.4	11.9	0.5	62.22
(861,	912)	1	sov	 	0	17.0	 6.3	6.3	0.0	4.9	4.9	0.0	54.44
-	912,	-	1	sov	 	7	1086.2	 16.5	15.8	0.7	12.7	12.2	0.5	62.11
-	912,	-	2	sov	 	3	1109.7	 16.5	15.8	0.7	12.8	12.2	0.6	62.03
(912,	913)	9	sov	 	0	0.6	 19.1	17.4	1.8	14.7	13.4	1.4	53.42
			_			_								
	913,		1	sov	 		1092.2	 17.3	16.5	0.8	13.4	12.8	0.6	62.07
(913,	914)	2	sov	 	4	1103.0	 17.3	16.5	0.8	13.4	12.8	0.6	61.94
,	014	01=)					1004 =							
	914,		1	sov	 	14	1094.7	 34.1	32.5	1.6	26.4	25.2	1.3	61.87
(914,	915)	2	sov	 	13	1096.8	 34.1	32.6	1.5	26.3	25.2	1.2	61.98
,	915,	016\	1	sov	 	9	1092.6	 34.5	32.8	1.7	26.7	25.4	1.3	61.71
	-		2	SOV	 	13	1092.0	 34.5	32.8	1.6	26.6	25.4	1.3	61.78
'	915,	910)	2	SOV	 	13	1090.7	 34.5	32.0	1.0	20.0	25.4	1.3	61.76
,	916,	917)	1	sov	 	3	1078.1	 31.4	29.8	1.6	24.3	23.1	1.2	61.62
-	916,	-	2	sov	 		1115.7	 31.3	29.8	1.5	24.2	23.0	1.2	61.82
'	J10,	J = 1 ,		DOV		•	1113.7	31.3	23.0	1.5	21.2	23.0		01.02
(917,	918)	1	sov	 	8	1088.3	 24.7	23.3	1.3	19.1	18.0	1.0	61.39
-	917,	-	2	sov	 	6	1106.4	 24.5	23.3	1.2	18.9	18.0	0.9	61.85
•		,	_											
(918,	919)	1	sov	 	7	1092.5	 31.7	30.0	1.7	24.5	23.2	1.3	61.44
(918,	919)	2	sov	 	9	1116.0	 31.6	30.0	1.5	24.4	23.2	1.2	61.75
(919,	920)	1	sov	 	9	1093.8	 32.9	31.2	1.7	25.5	24.1	1.3	61.41
(919,	920)	2	sov	 	14	1107.9	 32.8	31.1	1.7	25.4	24.1	1.3	61.66
	920,	-	1	sov	 	7	1077.8	 20.2	19.1	1.1	15.6	14.8	0.8	61.34
(920,	921)	2	sov	 	9	1116.2	 20.0	19.0	1.0	15.5	14.7	0.8	61.74
(921,	922)	1	sov	 	4	1076.5	 19.2	18.2	1.0	14.8	14.1	0.7	61.47

(921,	922)	2	sov	 	3	1117.3	 19.1	18.1	0.9	14.7	14.0	0.7	61.77
(922,	923)	1	sov	 	9	1081.0	 19.3	18.3	1.0	14.9	14.2	0.8	61.54
(922,	-	2	sov	 	10	1110.7	 19.2	18.3	1.0	14.9	14.1	0.7	61.70
()22,	323,	-	DO 1		10	1110.7	17.2	10.5	1.0	11.5		0.7	01.70
(923,	924)	1	sov	 	8	1101.8	 21.6	20.5	1.1	16.7	15.9	0.9	61.57
(923,	924)	2	sov	 	8	1089.4	 21.6	20.5	1.1	16.7	15.9	0.8	61.68
(924,		1	sov	 	8	1118.2	 20.7	19.5	1.2	16.0	15.1	0.9	60.81
(924,	925)	2	sov	 	9	1060.9	 20.3	19.4	1.0	15.7	15.0	0.8	61.84
		_											
(925,		1	sov	 	0	958.0	 23.6	22.5	1.2	18.3	17.4	0.9	61.61
(925,	926)	2	sov	 	1	1060.6	 23.5	22.4	1.1	18.2	17.3	0.8	61.95
(925,	9761	1	sov		•	160 6	10 1	10.0					
(925,	0/0)	1	SUV	 	0	160.6	 10.1	10.0	0.1	7.8	7.8	0.1	54.16
(926,	927)	1	sov	 	7	975.2	 17.3	16.5	0.8	12.4	10.0	0.6	61
(926,		2	sov	 	5	1046.5	 17.3	16.5	0.8	13.4 13.4	12.8	0.6	61.77
()20,	3211	-	501		3	1040.5	 17.3	10.5	0.8	13.4	12.7	0.6	61.88
(878,	927)	1	sov	 	0	56.0	 3.7	3.7	0.0	2.9	2.9	0.0	54.08
, ,	,				•	50.0	3.,	3.7	0.0	2.,	2.5	0.0	34.00
(927,	928)	1	sov	 	6	1021.6	 16.7	15.8	0.9	12.9	12.2	0.7	61.38
(927,	928)	2	sov	 	6	1054.4	 16.6	15.7	0.9	12.8	12.2	0.7	61.67
(927,	928)	9	sov	 	0	2.2	 20.0	17.6	2.4	15.5	13.6	1.8	51.08
(928,	929)	1	sov	 	1	1023.7	 15.5	14.7	0.8	12.0	11.4	0.6	61.54
(928,	929)	2	sov	 	5	1053.0	 15.4	14.6	0.8	11.9	11.3	0.6	61.62
(929,		1	sov	 	10	1008.3	 19.1	18.2	0.9	14.8	14.1	0.7	61.55
(929,	930)	2	sov	 	7	1063.9	 19.1	18.1	1.0	14.8	14.0	0.8	61.62
	0011				_	1011 0							
(930,		1	sov	 	5	1011.9	 12.7	12.1	0.6	9.8	9.4	0.4	61.69
(930,	931)	2	sov	 	5	1055.2	 12.7	12.1	0.6	9.8	9.3	0.5	61.74
(683,	687)	1	sov	 	2	598.6	 6.3	6.1	0.1	4.8	4.7	0.1	51.87
(683,	-	2	sov	 	6	595.7	 6.7	6.6	0.1	5.2	5.1	0.1	48.50
(000,	00,,	-			•		•••						10.50
(407,	369)	1	sov	 	1	545.1	 5.0	4.7	0.2	3.8	3.7	0.2	50.66
(407,	369)	2	sov	 	0	496.8	 4.6	4.4	0.2	3.6	3.4	0.2	54.48
(407,	369)	3	sov	 	1	572.8	 4.9	4.7	0.2	3.8	3.6	0.2	51.37
(411,	416)	1	sov	 	0	400.0	 3.8	3.7	0.0	2.9	2.9	0.0	49.43
(115,	117)	1	sov	 	1	284.5	 13.9	13.6	0.3	10.7	10.5	0.2	49.10

(3	82.	383)	1	sov			0	73.5		3.8	3.4	0.3	2.9	2.6	0.3	36.16
-	-	383)	2	sov			1	921.6		4.1	3.7	0.4	3.1	2.9	0.3	33.34
, ,	,	,														
(4	12,	414)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(2	81,	937)	1	sov			0	10.4		3.6	-1.9	5.6	2.8	-1.5	4.3	37.90
(2	81,	937)	6	sov			1	783.9		2.9	2.8	0.1	2.2	2.2	0.1	47.51
(2	81,	937)	7	sov			0	780.2		2.8	2.7	0.1	2.1	2.1	0.0	49.21
(3	83	414)	1	sov			0	105.2		8.9	7.8	1.2	6.9	6.0	0.9	39.14
		414)	2	sov			2	891.5		8.8	7.8	0.9	6.8	6.1	0.7	39.14
, ,	,05,	111/	-	501			2	091.3		0.0	7.3	0.9	0.0	0.1	0.7	39.32
(3	14,	553)	1	sov			0	891.1		7.8	7.5	0.3	6.0	5.8	0.2	52.72
(5	53,	933)	1	sov			2	893.1		10.3	9.8	0.5	7.9	7.6	0.4	48.29
(9	33,	934)	1	sov			2	894.4		10.1	9.6	0.5	7.8	7.4	0.4	47.28
			_													
		936)	1	sov			4	669.5		9.4	9.2	0.2	7.3	7.1	0.2	49.00
(9	35,	936)	2	sov			3	789.8		9.6	9.3	0.3	7.4	7.2	0.2	47.90
(9	34,	935)	1	sov			1	622.2		5.0	4.9	0.2	3.9	3.7	0.1	48.29
(9	34,	935)	6	sov			0	839.7		5.1	4.9	0.2	4.0	3.8	0.2	47.40
(9	36,	309)	1	sov			1	706.6		7.7	7.5	0.2	5.9	5.8	0.1	49.20
(9	36,	309)	2	sov			4	745.4		7.9	7.6	0.2	6.1	5.9	0.2	47.84
	-	415)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(4	114,	415)	9	sov			1	996.8		4.5	4.2	0.2	3.4	3.2	0.2	42.06
(9	37.	555)	1	sov			2	804.2		4.6	4.4	0.3	3.6	3.4	0.2	50.64
	-	555)	2	SOV			1	767.8		4.5	4.3	0.3	3.5	3.3	0.2	51.81
, ,	,	000,	_	201												
(1	L11,	676)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(1	L11,	676)	6	sov			2	1373.0		8.4	8.1	0.3	6.5	6.3	0.2	53.38
(1	L11,	676)	7	sov			4	1053.1		8.5	8.3	0.3	6.6	6.4	0.2	52.79
(4	116	161)	1	sov			1	396.3		7.7	7.6	0.1	6.0	5.9	0.1	49.23
		161)	9	sov			0	288.4		7.8	7.6	0.2	6.0	5.8	0.1	48.98
, -	,		_	201			•				. • •					
(1	L62,	165)	1	sov			1	856.8		9.6	9.4	0.2	7.4	7.3	0.1	64.11
(1	L62,	165)	2	sov			4	1326.5		9.7	9.5	0.2	7.5	7.3	0.2	63.20
(1	L62,	165)	3	sov			5	1359.6		9.7	9.5	0.2	7.5	7.3	0.2	63.45
(1	L62,	165)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00

(165,	166)	1	sov			3	901.8		7.9	7.8	0.1	6.1	6.0	0.1	64.43
(165,	166)	2	sov			2	1256.4		8.1	7.9	0.1	6.2	6.1	0.1	63.49
(165,	166)	3	sov			4	1312.1		8.0	7.9	0.1	6.2	6.1	0.1	63.63
(165,	166)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(386,	167)	1	sov			2	1191.5		8.6	8.1	0.5	6.6	6.3	0.4	59.35
(386,	167)	2	sov			2	1043.4		8.0	7.9	0.2	6.2	6.1	0.1	63.63
(386,	167)	3	sov			1	831.1		7.7	7.6	0.2	6.0	5.8	0.1	66.18
(386,	167)	4	HOV	6	6	0	6.0	6.0	8.3	8.1	0.2	6.4	6.2	0.2	61.60
(386,	167)	9	sov			1	26.5		9.8	8.8	1.0	7.6	6.8	0.8	52.12
(167,	168)	1	sov			0	1164.6		8.5	8.1	0.3	6.5	6.3	0.3	60.38
(167,	168)	2	sov			1	1080.5		8.0	7.9	0.2	6.2	6.1	0.1	63.57
(167,	168)	3	sov			1	851.0		7.7	7.6	0.2	6.0	5.8	0.1	66.20
(167,	168)	4	HOV	6	6	0	6.0	6.0	8.3	8.2	0.2	6.4	6.3	0.1	61.42
(168,	169)	1	sov			4	1135.6		9.0	8.7	0.3	7.0	6.7	0.2	60.66
(168,		2	sov			3	1080.3		8.6	8.5	0.3	6.7	6.5	0.1	63.52
(168,		3	sov			2	883.5		8.3	8.1	0.2	6.4	6.3	0.1	66.14
(168,		4	HOV	6	6	0	6.0	6.0	8.9	8.7	0.2	6.9	6.7	0.1	61.54
,,	,	_		·	ŭ	Ū	0.0	0.0	0.5	0.7	0.2	0.9	0.7	0.1	61.54
(404,	170)	1	sov			0	251.0		3.6	3.5	0.0	2.8	2.7	0.0	54.58
(7018,	171)	1	sov			0	266.1		2.9	2.5	0.4	2.2	1.9	0.3	44.03
(171,	172)	1	sov			0	242.7		2.6	2.5	0.1	2.0	1.9	0.1	48.93
(172,	387)	1	sov			1	242.6		2.7	2.5	0.2	2.1	1.9	0.1	50.73
						_					• • •			0.1	30173
(7020,	174)	1	sov			0	353.6		3.3	3.0	0.3	2.5	2.3	0.2	45.81
(174,	175)	1	sov			0	326.0		3.3	3.3	0.1	2.6	2.5	0.1	49.48
(175,	386)	1	sov			1	325.9		3.8	3.6	0.2	2.9	2.8	0.1	51.98
(385,	173)	1	sov			0	404.0		3.3	3.2	0.1	2.5	2.5	0.1	53.67
		_													
(173,	7019)	1	sov			0	404.0		3.2	3.2	0.1	2.5	2.4	0.1	50.97
(170,	7017)	1	sov			0	251.0		3.7	3.7	0.0	2.9	2.8	0.0	51.65
(151,	344)	1	sov			4	964.9		7.9	7.5	0.4	6.1	5.8	0.3	52.18
(151,	-	2	SOV			0	78.1		8.0	7.3	0.4	6.2	5.6	0.5	52.18
(151,	344/	4	500			J	70.1		0.0	1.2	0.0	0.2	3.0	0.0	51.59
(344,	7026)	1	sov			0	13.0		3.4	2.8	0.6	2.6	2.2	0.5	42.47

(7007, 208) 1 SOV 0 102.1 2.9 2.5 0.4 2.3 1.9 0.3 38.97 (209, 180) 1 SOV 0 92.0 3.7 3.5 0.2 2.8 2.7 0.1 51.47 (315, 555) 1 SOV 2 686.9 14.2 13.9 0.4 11.1 10.8 0.3 61.51 (315, 555) 2 SOV 1815.5 13.5 13.3 0.2 10.4 10.2 0.2 65.00 (315, 555) 3 SOV 1 545.1 13.4 13.2 0.2 10.3 10.1 0.2 65.23 (315, 555) 5 BOV 0	(344,7	7026)	2	sov			1	1027.9		3.0	2.8	0.2	2.3	2.2	0.2	47.00
(315, 555)	(7007,	208)	1	sov			0	102.1		2.9	2.5	0.4	2.3	1.9	0.3	38.97
(315, 555) 2 80V 1 815.5 13.5 13.3 0.4 10.9 10.6 0.3 62.38 (315, 555) 3 80V 1 815.5 13.5 13.3 0.2 10.4 10.2 0.2 65.00 (315, 555) 4 80V 1 545.1 13.4 13.2 0.2 10.3 10.1 0.2 65.23 (315, 555) 5 80V 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(209,	180)	1	sov			0	92.0		3.7	3.5	0.2	2.8	2.7	0.1	51.47
(315, 555) 2 80V 1 815.5 13.5 13.3 0.4 10.9 10.6 0.3 62.38 (315, 555) 3 80V 1 815.5 13.5 13.3 0.2 10.4 10.2 0.2 65.00 (315, 555) 4 80V 1 545.1 13.4 13.2 0.2 10.3 10.1 0.2 65.23 (315, 555) 5 80V 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(315,	555)	1	sov			2	686.9		14.2	13.9	0.4	11.1	10.8	0.3	61.51
(315, 555) 3 SOV 1 815.5 13.5 13.3 0.2 10.4 10.2 0.2 65.00 (315, 555) 4 SOV 1 545.1 13.4 13.2 0.2 10.3 10.1 0.2 65.23 (315, 555) 5 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(315,	555)	2	sov			4			14.0	13.7	0.4	10.9	10.6		
(315, 555)	(315,	555)	3	sov			1	815.5		13.5	13.3					
(315, 555) 5 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(315,	555)	4	sov			1	545.1		13.4	13.2					
(313, 248) 2 SOV 5 1068.8 11.5 11.2 0.3 8.9 8.7 0.2 62.66 (313, 248) 3 SOV 6 801.2 11.1 11.0 0.2 8.6 8.5 0.1 65.01 (313, 248) 4 SOV 1 514.2 11.1 11.0 0.2 8.6 8.5 0.1 65.01 (313, 248) 5 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(315,	555)	5	HOV	0	0	0	0.0	0.0		0.0					
(313, 248) 2 SOV 5 1068.8 11.5 11.2 0.3 8.9 8.7 0.2 62.66 (313, 248) 3 SOV 6 801.2 11.1 11.0 0.2 8.6 8.5 0.1 65.01 (313, 248) 4 SOV 1 514.2 11.1 11.0 0.2 8.6 8.5 0.1 65.01 (313, 248) 5 ROV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(313,	248)	. 1	sov			5	1487.4		12.1	11.3	0.8	9.3	8.8	0.6	59.95
(313, 248) 3 SOV 66 801.2 11.1 11.0 0.2 8.6 8.5 0.1 65.01 (313, 248) 4 SOV 1 514.2 11.1 11.0 0.2 8.6 8.4 0.1 64.94 (313, 248) 5 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(313,	248)	2	sov			5	1068.8		11.5	11.2					
(313, 248)	(313,	248)	3	sov			6	801.2		11.1	11.0		8.6	8.5		
(313, 248) 5 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(313,	248)	4	sov			1	514.2		11.1	10.9		8.6	8.4		
(258, 259) 2 SOV 0 254.1 5.0 4.6 0.4 3.9 3.6 0.3 43.56 (259, 260) 1 SOV 0 892.8 9.5 9.0 0.5 7.3 6.9 0.4 51.54 (259, 260) 6 SOV -1 722.5 9.1 8.9 0.2 7.1 6.9 0.2 53.59 (259, 260) 7 SOV 1 409.5 9.1 8.9 0.2 7.1 6.9 0.2 53.59 (259, 260) 7 SOV 1 409.5 9.1 8.9 0.2 7.1 6.9 0.2 53.59 (260, 261) 1 SOV 1 858.9 8.8 8.4 0.4 6.8 6.5 0.3 52.54 (260, 261) 7 SOV 1 421.6	(313,	248)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0			
(258, 259) 2 SOV 0 254.1 5.0 4.6 0.4 3.9 3.6 0.3 43.56 (259, 260) 1 SOV 0 892.8 9.5 9.0 0.5 7.3 6.9 0.4 51.54 (259, 260) 6 SOV 1 722.5 9.1 8.9 0.2 7.1 6.9 0.2 53.59 (259, 260) 7 SOV 1 409.5 9.1 0.1 7.1 7.0 0.1 53.59 (250, 261) 1 SOV 1 858.9 8.8 8.4 0.4 6.8 6.5 0.3 52.54 (260, 261) 6 SOV 2 748.9 8.6 8.4 0.2 6.6 6.5 0.1 54.04 (261, 262) 1 SOV 1 421.6 8.7 8.6 0.1 6.7 6.6 0.1 53.59 (261, 262) 1 SOV </td <td>(258,</td> <td>259)</td> <td>1</td> <td>sov</td> <td></td> <td></td> <td>0</td> <td>965.0</td> <td></td> <td>4.8</td> <td>4.3</td> <td>0.5</td> <td>3.7</td> <td>3.3</td> <td>0.4</td> <td>45.44</td>	(258,	259)	1	sov			0	965.0		4.8	4.3	0.5	3.7	3.3	0.4	45.44
(259, 260) 6 SOV 1 722.5 9.1 8.9 0.2 7.1 6.9 0.2 53.59 (259, 260) 7 SOV 1 409.5 9.2 9.1 0.1 7.1 7.0 0.1 53.40 (260, 261) 1 SOV 1 858.9 8.8 8.4 0.4 6.8 6.5 0.3 52.54 (260, 261) 6 SOV 2 748.9 8.6 8.4 0.2 6.6 6.5 0.1 54.04 (260, 261) 7 SOV 1 421.6 8.7 8.6 0.1 6.7 6.6 0.1 53.59 (261, 262) 1 SOV 9 858.7 16.4 15.5 0.9 12.7 11.9 0.7 51.71 (262, 263) 1 SOV 3 856.9 6.8 6.3 0.4 5.2 4.9 0.3 51.33 (263, 264) 1 SOV 4 855.9 7.5 7.0 0.5 5.8 5.4 0.4 51.14 (7008, 625) 1 SOV 1 796.3 3.5 1.7 1.8 2.7 1.3 1.4 33.19 (403, 310) 1 SOV 2 851.3 5.2 4.2 1.0 4.0 3.3 0.7 44.24 (403, 310) 2 SOV 0 202.7 6.0 4.7 1.3 4.6 3.6 1.0 38.35 (307, 187) 1 SOV 2 1651.6 4.3 4.2 0.1 3.3 3.2 0.1 65.45 (307, 187) 2 SOV 2 1297.4 4.7 4.5 0.2 3.6 3.5 0.1 60.42 (307, 187) 3 SOV 2 1258.3 4.5 4.3 0.2 3.4 3.3 0.1 63.31 (307, 187) 4 SOV 1 964.2 4.5 4.3 0.2 3.4 3.3 0.1 63.31	(258,	259)	2	sov			0	254.1		5.0	4.6	0.4	3.9	3.6	0.3	43.56
(259, 260) 6 SOV 1 722.5 9.1 8.9 0.2 7.1 6.9 0.2 53.59 (259, 260) 7 SOV 1 409.5 9.2 9.1 0.1 7.1 7.0 0.1 53.40 (260, 261) 1 SOV 1 858.9 8.8 8.4 0.4 6.8 6.5 0.3 52.54 (260, 261) 6 SOV 2 748.9 8.6 8.4 0.2 6.6 6.5 0.1 54.04 (260, 261) 7 SOV 1 421.6 8.7 8.6 0.1 6.7 6.6 0.1 53.59 (261, 262) 1 SOV 9 858.7 16.4 15.5 0.9 12.7 11.9 0.7 51.71 (262, 263) 1 SOV 3 856.9 6.8 6.3 0.4 5.2 4.9 0.3 51.33 (263, 264) 1 SOV 4 855.9 7.5 7.0 0.5 5.8 5.4 0.4 51.14 (7008, 625) 1 SOV 2 851.3 5.2 4.2 1.0 4.0 3.3 0.7 44.24 (403, 310) 1 SOV 0 202.7 6.0 4.7 1.3 4.6 3.6 1.0 38.35 (307, 187) 1 SOV 1 651.6 4.3 4.2 0.1 3.3 3.2 0.1 65.45 (307, 187) 2 SOV 2 1297.4 4.7 4.5 0.2 3.6 3.5 0.1 60.42 (307, 187) 3 SOV 2 1258.3 4.5 4.3 0.2 3.4 3.3 0.1 63.31 (307, 187) 4 SOV 1 964.2 4.5 4.3 0.2 3.4 3.3 0.1 63.31	(259,	260)	1	sov			0	892.8		9.5	9.0	0.5	7.3	6.9	0.4	51 54
(259, 260) 7 SOV 1 409.5 9.2 9.1 0.1 7.1 7.0 0.1 53.40 (260, 261) 1 SOV 1 858.9 8.8 8.4 0.4 6.8 6.5 0.3 52.54 (260, 261) 6 SOV 2 748.9 8.6 8.4 0.2 6.6 6.5 0.1 54.04 (260, 261) 7 SOV 1 421.6 8.7 8.6 0.1 6.7 6.6 0.1 53.59 (261, 262) 1 SOV 9 858.7 16.4 15.5 0.9 12.7 11.9 0.7 51.71 (262, 263) 1 SOV 3 856.9 6.8 6.3 0.4 5.2 4.9 0.3 51.33 (263, 264) 1 SOV 4 855.9 7.5 7.0	(259,	260)	6	sov			1									
(260, 261) 1 SOV 1 858.9 8.8 8.4 0.4 6.8 6.5 0.3 52.54 (260, 261) 6 SOV 2 748.9 8.6 8.4 0.2 6.6 6.5 0.1 54.04 (260, 261) 7 SOV 1 421.6 8.7 8.6 0.1 6.7 6.6 0.1 53.59 (261, 262) 1 SOV 9 858.7 16.4 15.5 0.9 12.7 11.9 0.7 51.71 (262, 263) 1 SOV 3 856.9 6.8 6.3 0.4 5.2 4.9 0.3 51.33 (263, 264) 1 SOV 4 855.9 7.5 7.0 0.5 5.8 5.4 0.4 51.14 (7008, 625) 1 SOV 1 796.3 3.5 1.7 1.8 2.7 1.3 1.4 33.19 (403, 310) 1 SOV 2 851.3 5.2 4.2 1.0 4.0 3.3 0.7 44.24 (403, 310) 2 SOV 0 202.7 6.0 4.7 1.3 4.6 3.6 1.0 38.35 (307, 187) 1 SOV 1 651.6 4.3 4.2 0.1 3.3 3.2 0.1 65.45 (307, 187) 2 SOV 2 1258.3 4.4 4.3 0.1 3.4 3.3 0.1 63.31 (307, 187) 3 SOV 2 1258.3 4.4 4.3 0.1 3.4 3.3 0.1 63.31 (307, 187) 4 SOV 1 964.2 4.5 4.3 0.2 3.4 3.3 0.1 63.31 (307, 187) 4 SOV 1 964.2 4.5 4.3 0.2 3.4 3.3 0.1 63.31 (307, 187) 4 SOV 1 964.2 4.5 4.3 0.2 3.4 3.3 0.1 62.98	(259,	260)	7													
(260, 261) 6 SOV 2 748.9 8.6 8.4 0.2 6.6 6.5 0.1 54.04 (260, 261) 7 SOV 1 421.6 8.7 8.6 0.1 6.7 6.6 0.1 53.59 (261, 262) 1 SOV 9 858.7 16.4 15.5 0.9 12.7 11.9 0.7 51.71 (262, 263) 1 SOV 3 856.9 6.8 6.3 0.4 5.2 4.9 0.3 51.33 (263, 264) 1 SOV 4 855.9 7.5 7.0 0.5 5.8 5.4 0.4 51.14 (7008, 625) 1 SOV 1 796.3 3.5 1.7 1.8 2.7 1.3 1.4 33.19 (403, 310) 1 SOV 2 851.3																00110
(260, 261) 6 SOV 2 748.9 8.6 8.4 0.2 6.6 6.5 0.1 54.04 (260, 261) 7 SOV 1 421.6 8.7 8.6 0.1 6.7 6.6 0.1 53.59 (261, 262) 1 SOV 9 858.7 16.4 15.5 0.9 12.7 11.9 0.7 51.71 (262, 263) 1 SOV 3 856.9 6.8 6.3 0.4 5.2 4.9 0.3 51.33 (263, 264) 1 SOV 4 855.9 7.5 7.0 0.5 5.8 5.4 0.4 51.14 (7008, 625) 1 SOV 1 796.3 3.5 1.7 1.8 2.7 1.3 1.4 33.19 (403, 310) 1 SOV 2 851.3 5.2 4.2 1.0 4.0	(260,	261)	1	sov			1	858.9		8.8	8.4	0.4	6.8	6.5	0.3	52.54
(261, 262) 1 SOV 9 858.7 16.4 15.5 0.9 12.7 11.9 0.7 51.71 (262, 263) 1 SOV 3 856.9 6.8 6.3 0.4 5.2 4.9 0.3 51.33 (263, 264) 1 SOV 4 855.9 7.5 7.0 0.5 5.8 5.4 0.4 51.14 (7008, 625) 1 SOV 1 796.3 3.5 1.7 1.8 2.7 1.3 1.4 33.19 (403, 310) 1 SOV 2 851.3 5.2 4.2 1.0 4.0 3.3 0.7 44.24 (403, 310) 2 SOV 0 202.7 6.0 4.7 1.3 4.6 3.6 1.0 38.35 (307, 187) 1 SOV 2 1297.4 4.7 4.5 0.2 <	(260,	261)	6	sov			2	748.9		8.6	8.4	0.2	6.6	6.5	0.1	54.04
(262, 263) 1 SOV 3 856.9 6.8 6.3 0.4 5.2 4.9 0.3 51.33 (263, 264) 1 SOV 4 855.9 7.5 7.0 0.5 5.8 5.4 0.4 51.14 (7008, 625) 1 SOV 1 796.3 3.5 1.7 1.8 2.7 1.3 1.4 33.19 (403, 310) 1 SOV 2 851.3 5.2 4.2 1.0 4.0 3.3 0.7 44.24 (403, 310) 2 SOV 2 851.3 5.2 4.2 1.0 4.0 3.3 0.7 44.24 (403, 310) 2 SOV 6.0 4.7 1.3 4.6 3.6 1.0 38.35 (307, 187) 1 SOV 2 1297.4 4.7 4.5	(260,	261)	7	sov			1	421.6		8.7	8.6	0.1	6.7	6.6	0.1	53.59
(263, 264) 1 SOV 4 855.9 7.5 7.0 0.5 5.8 5.4 0.4 51.14 (7008, 625) 1 SOV 1 796.3 3.5 1.7 1.8 2.7 1.3 1.4 33.19 (403, 310) 1 SOV 2 851.3 5.2 4.2 1.0 4.0 3.3 0.7 44.24 (403, 310) 2 SOV 0 202.7 6.0 4.7 1.3 4.6 3.6 1.0 38.35 (307, 187) 1 SOV 2 1297.4 4.3 4.2 0.1 3.3 3.2 0.1 65.45 (307, 187) 2 SOV 2 1297.4 4.7 4.5 0.2 3.6 3.5 0.1 60.42 (307, 187) 3 SOV 2 1258.3	(261,	262)	1	sov			9	858.7		16.4	15.5	0.9	12.7	11.9	0.7	51.71
(7008, 625) 1 SOV 1 796.3 3.5 1.7 1.8 2.7 1.3 1.4 33.19 (403, 310) 1 SOV 2 851.3 5.2 4.2 1.0 4.0 3.3 0.7 44.24 (403, 310) 2 SOV 0 202.7 6.0 4.7 1.3 4.6 3.6 1.0 38.35 (307, 187) 1 SOV 1 651.6 4.3 4.2 0.1 3.3 3.2 0.1 65.45 (307, 187) 2 SOV 2 1297.4 4.7 4.5 0.2 3.6 3.5 0.1 60.42 (307, 187) 3 SOV 2 1258.3 4.4 4.3 0.1 3.4 3.3 0.1 63.31 (307, 187) 4 SOV 1 964.2 4	(262,	263)	1	sov			3	856.9		6.8	6.3	0.4	5.2	4.9	0.3	51.33
(403, 310) 1 SOV 2 851.3 5.2 4.2 1.0 4.0 3.3 0.7 44.24 (403, 310) 2 SOV 0 202.7 6.0 4.7 1.3 4.6 3.6 1.0 38.35 (307, 187) 1 SOV 1 651.6 4.3 4.2 0.1 3.3 3.2 0.1 65.45 (307, 187) 2 SOV 2 1297.4 4.7 4.5 0.2 3.6 3.5 0.1 60.42 (307, 187) 3 SOV 2 1258.3 4.4 4.3 0.1 3.4 3.3 0.1 63.31 (307, 187) 4 SOV 4.5 4.3 0.2 3.4 3.3 0.1 62.98	(263,	264)	1	sov			4	855.9		7.5	7.0	0.5	5.8	5.4	0.4	51.14
(403, 310) 1 SOV 2 851.3 5.2 4.2 1.0 4.0 3.3 0.7 44.24 (403, 310) 2 SOV 0 202.7 6.0 4.7 1.3 4.6 3.6 1.0 38.35 (307, 187) 1 SOV 2 1297.4 4.3 4.2 0.1 3.3 3.2 0.1 65.45 (307, 187) 2 SOV 2 1297.4 4.7 4.5 0.2 3.6 3.5 0.1 60.42 (307, 187) 3 SOV 2 1258.3 4.4 4.3 0.1 3.4 3.3 0.1 63.31 (307, 187) 4 SOV 4.5 4.3 0.2 3.4 3.3 0.1 62.98																
(403, 310) 2 SOV 0 202.7 6.0 4.7 1.3 4.6 3.6 1.0 38.35 (307, 187) 1 SOV 1 651.6 4.3 4.2 0.1 3.3 3.2 0.1 65.45 (307, 187) 2 SOV 2 1297.4 4.7 4.5 0.2 3.6 3.5 0.1 60.42 (307, 187) 3 SOV 2 1258.3 4.4 4.3 0.1 3.4 3.3 0.1 63.31 (307, 187) 4 SOV 1 964.2 4.5 4.3 0.2 3.4 3.3 0.1 62.98	(7008,	625)	1	sov			1	796.3		3.5	1.7	1.8	2.7	1.3	1.4	33.19
(307, 187)																
(307, 187) 2 SOV 2 1297.4 4.7 4.5 0.2 3.6 3.5 0.1 60.42 (307, 187) 3 SOV 2 1258.3 4.4 4.3 0.1 3.4 3.3 0.1 63.31 (307, 187) 4 SOV 1 964.2 4.5 4.3 0.2 3.4 3.3 0.1 62.98	(403,	310)	2	sov			0	202.7		6.0	4.7	1.3	4.6	3.6	1.0	38.35
(307, 187) 2 SOV 2 1297.4 4.7 4.5 0.2 3.6 3.5 0.1 60.42 (307, 187) 3 SOV 2 1258.3 4.4 4.3 0.1 3.4 3.3 0.1 63.31 (307, 187) 4 SOV 1 964.2 4.5 4.3 0.2 3.4 3.3 0.1 62.98	(307,	187)	1	sov			1	651.6		4.3	4.2	0.1	3.3	3.2	0.1	65.45
(307, 187) 3 SOV 2 1258.3 4.4 4.3 0.1 3.4 3.3 0.1 63.31 (307, 187) 4 SOV 1 964.2 4.5 4.3 0.2 3.4 3.3 0.1 62.98			2	sov			2	1297.4		4.7	4.5	0.2	3.6	3.5	0.1	60.42
			3	sov			2	1258.3		4.4	4.3	0.1	3.4	3.3	0.1	63.31
(307, 187) 5 HOV 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(307,	187)	4	sov			1	964.2		4.5	4.3	0.2	3.4	3.3	0.1	62.98
	(307,	187)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00

(264,	187)	1	sov			0	855.0		3.9	3.7	0.3	3.0	2.8	0.2	50.71
(261,	180)	1	sov			2	722.7		7.6	7.5	0.1	5.9	5.8	0.1	53.86
(261,	-	2	sov			0	451.4		7.7	7.6	0.1	5.9	5.9	0.1	53.66
(201,	109)	2	DOV			Ū	131.1		, . ,	,	0.1	3.5	3.5	***	33100
(189,	265)	1	sov			1	691.1		8.2	8.0	0.2	6.3	6.2	0.1	49.67
(189,	265)	2	sov			2	484.3		8.1	8.0	0.1	6.3	6.2	0.1	50.05
(265,		1	sov			1	673.5		6.5	6.4	0.1	5.0	4.9	0.1	44.88
(265,	266)	2	sov			2	500.8		6.4	6.3	0.1	5.0	4.9	0.1	45.55
(266,	-	1	sov			3	641.4		8.7	8.5	0.2	6.7	6.6	0.1	43.72
(266,	267)	2	sov			0	533.4		8.5	8.4	0.1	6.6	6.5	0.1	44.44
(267,		1	sov			1	625.1		8.1	7.9	0.2	6.3	6.1	0.2	43.62
(267,	268)	2	sov			2	551.3		8.0	7.8	0.2	6.2	6.0	0.1	44.38
(268,		1	sov			0	527.9		13.3	12.4	0.9	10.3	9.6	0.7	46.01
(268,	269)	2	sov			2	647.7		12.9	12.1	0.7	10.0	9.4	0.6	47.61
(441,	397)	1	sov			0	667.0		3.5	3.2	0.2	2.7	2.5	0.2	50.43
(564,	399)	1	sov			4	1441.9		8.1	7.7	0.5	6.3	5.9	0.4	58.63
	-	1 2	sov			4 4	1441.9 982.7		8.1 7.6	7.7 7.4	0.5	6.3 5.9	5.9 5.7		58.63 62.91
(564, (564, (564,	399)					_								0.4 0.2 0.1	
(564,	399) 399)	2	sov			4	982.7		7.6	7.4	0.2	5.9	5.7	0.2	62.91
(564, (564,	399) 399) 399)	2	sov			4	982.7 4 77.6		7.6 7.4	7.4 7.2	0.2	5.9 5.7	5.7 5.6	0.2	62.91 64.59
(564, (564, (564, (564,	399) 399) 399) 399)	2 3 4 9	SOV SOV HOV SOV	 0 	 0 	4 2 0 1	982.7 477.6 0.0 486.4	0.0	7.6 7.4 0.0 8.0	7.4 7.2 0.0 7.8	0.2 0.2 0.0 0.2	5.9 5.7 0.0 6.2	5.7 5.6 0.0 6.0	0.2 0.1 0.0 0.1	62.91 64.59 0.00 59.91
(564, (564, (564, (564,	399) 399) 399) 399)	2 3 4 9	SOV SOV HOV SOV	 0 	 0 	4 2 0 1	982.7 477.6 0.0 486.4 987.3	0.0	7.6 7.4 0.0 8.0	7.4 7.2 0.0 7.8	0.2 0.2 0.0 0.2	5.9 5.7 0.0 6.2	5.7 5.6 0.0 6.0	0.2 0.1 0.0 0.1	62.91 64.59 0.00 59.91
(564, (564, (564, (564, (399, (399,	399) 399) 399) 399) 400)	2 3 4 9	SOV SOV HOV SOV	 0 	0	4 2 0 1	982.7 477.6 0.0 486.4 987.3 885.9	0.0	7.6 7.4 0.0 8.0 4.8 4.6	7.4 7.2 0.0 7.8 4.5 4.5	0.2 0.2 0.0 0.2 0.3	5.9 5.7 0.0 6.2 3.7 3.5	5.7 5.6 0.0 6.0 3.5 3.5	0.2 0.1 0.0 0.1	62.91 64.59 0.00 59.91 60.47 62.64
(564, (564, (564, (564, (399, (399, (399,	399) 399) 399) 399) 400) 400)	2 3 4 9	SOV SOV SOV SOV SOV	 0 	0	4 2 0 1 2 2 2	982.7 477.6 0.0 486.4 987.3 885.9 456.8	0.0	7.6 7.4 0.0 8.0 4.8 4.6 4.5	7.4 7.2 0.0 7.8 4.5 4.5	0.2 0.2 0.0 0.2 0.3 0.1	5.9 5.7 0.0 6.2 3.7 3.5 3.4	5.7 5.6 0.0 6.0 3.5 3.5 3.4	0.2 0.1 0.0 0.1 0.2 0.1	62.91 64.59 0.00 59.91 60.47 62.64 64.76
(564, (564, (564, (564, (399, (399,	399) 399) 399) 399) 400) 400)	2 3 4 9	SOV SOV HOV SOV	 0 	0	4 2 0 1	982.7 477.6 0.0 486.4 987.3 885.9	0.0	7.6 7.4 0.0 8.0 4.8 4.6	7.4 7.2 0.0 7.8 4.5 4.5	0.2 0.2 0.0 0.2 0.3	5.9 5.7 0.0 6.2 3.7 3.5	5.7 5.6 0.0 6.0 3.5 3.5	0.2 0.1 0.0 0.1	62.91 64.59 0.00 59.91 60.47 62.64
(564, (564, (564, (564, (399, (399, (399,	399) 399) 399) 399) 400) 400) 400)	2 3 4 9 1 2 3	SOV SOV SOV SOV SOV	 0 	0	4 2 0 1 2 2 2	982.7 477.6 0.0 486.4 987.3 885.9 456.8	0.0	7.6 7.4 0.0 8.0 4.8 4.6 4.5	7.4 7.2 0.0 7.8 4.5 4.5	0.2 0.2 0.0 0.2 0.3 0.1	5.9 5.7 0.0 6.2 3.7 3.5 3.4	5.7 5.6 0.0 6.0 3.5 3.5 3.4	0.2 0.1 0.0 0.1 0.2 0.1	62.91 64.59 0.00 59.91 60.47 62.64 64.76
(564, (564, (564, (564, (399, (399, (399,	399) 399) 399) 399) 400) 400) 400)	2 3 4 9 1 2 3 4	SOV SOV HOV SOV SOV SOV HOV	 0 0	 0 0	4 2 0 1 2 2 2 0	982.7 477.6 0.0 486.4 987.3 885.9 456.8 0.0	0.0	7.6 7.4 0.0 8.0 4.8 4.6 4.5	7.4 7.2 0.0 7.8 4.5 4.5 4.4 0.0	0.2 0.2 0.0 0.2 0.3 0.1 0.1	5.9 5.7 0.0 6.2 3.7 3.5 3.4 0.0	5.7 5.6 0.0 6.0 3.5 3.5 3.4 0.0	0.2 0.1 0.0 0.1 0.2 0.1 0.1	62.91 64.59 0.00 59.91 60.47 62.64 64.76 0.00
(564, (564, (564, (564, (399, (399, (399, (399,	399) 399) 399) 399) 400) 400) 400)	2 3 4 9 1 2 3 4	SOV SOV HOV SOV SOV SOV HOV	 0 0	 0 0	4 2 0 1 2 2 2 0	982.7 477.6 0.0 486.4 987.3 885.9 456.8 0.0	0.0	7.6 7.4 0.0 8.0 4.8 4.6 4.5 0.0	7.4 7.2 0.0 7.8 4.5 4.5 4.4 0.0	0.2 0.2 0.0 0.2 0.3 0.1 0.1	5.9 5.7 0.0 6.2 3.7 3.5 3.4 0.0	5.7 5.6 0.0 6.0 3.5 3.5 3.4 0.0	0.2 0.1 0.0 0.1 0.2 0.1 0.1	62.91 64.59 0.00 59.91 60.47 62.64 64.76 0.00
(564, (564, (564, (564, (399, (399, (399, (269,	399) 399) 399) 399) 400) 400) 400)	2 3 4 9 1 2 3 4	SOV SOV HOV SOV SOV SOV HOV	 0 0	 0 0	4 2 0 1 2 2 2 0	982.7 477.6 0.0 486.4 987.3 885.9 456.8 0.0	0.0	7.6 7.4 0.0 8.0 4.8 4.6 4.5 0.0	7.4 7.2 0.0 7.8 4.5 4.5 4.4 0.0	0.2 0.2 0.0 0.2 0.3 0.1 0.1	5.9 5.7 0.0 6.2 3.7 3.5 3.4 0.0	5.7 5.6 0.0 6.0 3.5 3.5 3.4 0.0	0.2 0.1 0.0 0.1 0.2 0.1 0.1	62.91 64.59 0.00 59.91 60.47 62.64 64.76 0.00
(564, (564, (564, (564, (399, (399, (399, (269, (269,	399) 399) 399) 399) 400) 400) 400) 15) 15)	2 3 4 9 1 2 3 4	SOV SOV SOV SOV SOV HOV	 0 0	 0 0	2 2 2 2 2 0 1	982.7 477.6 0.0 486.4 987.3 885.9 456.8 0.0 342.3 833.1	0.0	7.6 7.4 0.0 8.0 4.8 4.6 4.5 0.0	7.4 7.2 0.0 7.8 4.5 4.4 0.0	0.2 0.2 0.0 0.2 0.3 0.1 0.1 0.0	5.9 5.7 0.0 6.2 3.7 3.5 3.4 0.0	5.7 5.6 0.0 6.0 3.5 3.5 3.4 0.0	0.2 0.1 0.0 0.1 0.2 0.1 0.1 0.0	62.91 64.59 0.00 59.91 60.47 62.64 64.76 0.00 41.50 45.83
(564, (564, (564, (564, (399, (399, (399, (269, (269,	399) 399) 399) 399) 400) 400) 400) 15) 15)	2 3 4 9 1 2 3 4 1 2	SOV SOV SOV SOV SOV HOV SOV SOV	 0 0 0	 0 0	2 2 2 2 2 0 0 1	982.7 477.6 0.0 486.4 987.3 885.9 456.8 0.0 342.3 833.1	0.0	7.6 7.4 0.0 8.0 4.8 4.6 4.5 0.0 5.8 5.3	7.4 7.2 0.0 7.8 4.5 4.4 0.0 4.5 4.5	0.2 0.2 0.0 0.2 0.3 0.1 0.1 0.0	5.9 5.7 0.0 6.2 3.7 3.5 3.4 0.0 4.5 4.1	5.7 5.6 0.0 6.0 3.5 3.5 3.4 0.0 3.5 3.5	0.2 0.1 0.0 0.1 0.2 0.1 0.1 0.0 1.0 0.6	62.91 64.59 0.00 59.91 60.47 62.64 64.76 0.00 41.50 45.83
(564, (564, (564, (564, (399, (399, (399, (269, (269,	399) 399) 399) 399) 400) 400) 400) 15) 15) 401)	2 3 4 9 1 2 3 4 1 2	SOV SOV SOV SOV SOV HOV SOV SOV	 0 0 0	 0 0	2 2 2 2 2 0 0 1	982.7 477.6 0.0 486.4 987.3 885.9 456.8 0.0 342.3 833.1	0.0	7.6 7.4 0.0 8.0 4.8 4.6 4.5 0.0 5.8 5.3 9.1 9.0	7.4 7.2 0.0 7.8 4.5 4.4 0.0 4.5 4.5 8.6 8.6	0.2 0.2 0.0 0.2 0.3 0.1 0.1 0.0 1.3 0.8	5.9 5.7 0.0 6.2 3.7 3.5 3.4 0.0 4.5 4.1 7.0 6.9	5.7 5.6 0.0 6.0 3.5 3.5 3.4 0.0 3.5 3.5 6.7 6.6	0.2 0.1 0.0 0.1 0.2 0.1 0.1 0.0 1.0 0.6	62.91 64.59 0.00 59.91 60.47 62.64 64.76 0.00 41.50 45.83 52.03 52.61
(564, (564, (564, (564, (399, (399, (399, (269, (269, (10, (10, (400, (400,	399) 399) 399) 399) 400) 400) 400) 15) 15) 401) 401)	2 3 4 9 1 2 3 4 1 2	SOV SOV SOV SOV SOV HOV SOV SOV	 0 0 0	 0 0 0	4 2 0 1 2 2 2 2 0 0 1 2 0 7 3	982.7 477.6 0.0 486.4 987.3 885.9 456.8 0.0 342.3 833.1 813.1 183.4	0.0	7.6 7.4 0.0 8.0 4.8 4.6 4.5 0.0 5.8 5.3 9.1 9.0	7.4 7.2 0.0 7.8 4.5 4.4 0.0 4.5 4.5 8.6 8.6	0.2 0.2 0.0 0.2 0.3 0.1 0.1 0.0 1.3 0.8 0.4 0.4	5.9 5.7 0.0 6.2 3.7 3.5 3.4 0.0 4.5 4.1 7.0 6.9	5.7 5.6 0.0 6.0 3.5 3.5 3.4 0.0 3.5 3.5 6.7 6.6	0.2 0.1 0.0 0.1 0.2 0.1 0.1 0.0 1.0 0.6 0.3 0.3	62.91 64.59 0.00 59.91 60.47 62.64 64.76 0.00 41.50 45.83 52.03 52.61 62.65 65.03
(564, (564, (564, (564, (399, (399, (399, (269, (269, (10, (10,	399) 399) 399) 399) 400) 400) 400) 15) 15) 401) 401)	2 3 4 9 1 2 3 4 1 2	SOV SOV SOV SOV SOV HOV SOV SOV SOV	 0 0 0	0 0 0	4 2 0 1 2 2 2 2 0 0 1 2 7	982.7 477.6 0.0 486.4 987.3 885.9 456.8 0.0 342.3 833.1 813.1 183.4	0.0	7.6 7.4 0.0 8.0 4.8 4.6 4.5 0.0 5.8 5.3 9.1 9.0	7.4 7.2 0.0 7.8 4.5 4.4 0.0 4.5 4.5 8.6 8.6	0.2 0.2 0.0 0.2 0.3 0.1 0.1 0.0 1.3 0.8	5.9 5.7 0.0 6.2 3.7 3.5 3.4 0.0 4.5 4.1 7.0 6.9	5.7 5.6 0.0 6.0 3.5 3.5 3.4 0.0 3.5 3.5 6.7 6.6	0.2 0.1 0.0 0.1 0.2 0.1 0.1 0.0 1.0 0.6	62.91 64.59 0.00 59.91 60.47 62.64 64.76 0.00 41.50 45.83 52.03 52.61

(270,	7)	1	sov	 	0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	613,	7)	1	sov	 	0	548.8	 2.7	2.7	0.1	2.1	2.1	0.1	53.09
	613,	7)	2	SOV	 	0	592.2	 2.7	2.7	0.1	2.1	2.1	0.0	53.86
'	013,	,,	2	501		·	372.2	2.,	2.,	٠				55155
(7,	8)	1	sov	 	0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00
(7,	8)	6	sov	 	0	604.9	 2.8	2.7	0.1	2.2	2.1	0.0	53.28
(7,	8)	7	sov	 	0	536.1	 2.8	2.7	0.0	2.1	2.1	0.0	54.23
(8,	9)	1	sov	 	1	587.0	 2.8	2.7	0.1	2.2	2.1	0.1	52.00
(8,	9)	2	sov	 	1	239.6	 2.8	2.7	0.1	2.1	2.1	0.0	52.78
(8,	9)	6	sov	 	0	314.2	 2.7	2.7	0.0	2.1	2.1	0.0	52.90
(9,	273)	1	sov	 	0	568.7	 3.3	3.3	0.1	2.6	2.5	0.1	50.54
(273,	274)	1	sov	 	1	274.2	 3.6	3.5	0.0	2.8	2.7	0.0	46.95
	273,	-	2	sov	 	0	294.2	 3.8	3.7	0.1	2.9	2.8	0.0	44.00
`	2,5,	_,_,	-	501		·	231.2	3.0	3.7	0.1	2.5	2.0	0.1	11.00
(9,	271)	1	sov	 	0	267.8	 3.9	3.9	0.1	3.0	3.0	0.0	48.75
(9,	271)	2	sov	 	0	308.2	 3.9	3.8	0.0	3.0	2.9	0.0	49.64
,	0.71	050)				•								
	271,		1	sov	 	0	272.2	 3.6	3.6	0.0	2.8	2.8	0.0	46.58
(271,	272)	2	sov	 	0	304.8	 3.6	3.6	0.0	2.8	2.7	0.0	47.20
(415,	276)	1	sov	 	1	997.5	 3.7	3.4	0.3	2.9	2.7	0.2	41.96
	415,		2	sov	 	0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00
	•													
(272,	276)	1	sov	 	0	274.2	 8.2	8.2	0.1	6.3	6.3	0.0	44.33
(272,	276)	2	sov	 	0	305.7	 8.1	8.0	0.1	6.3	6.2	0.1	44.78
	276,	-	1	sov	 	2	823.5	 4.3	4.0	0.3	3.4	3.1	0.3	45.69
-	276,	-	9	sov	 	1	517.9	 4.3	4.1	0.2	3.3	3.1	0.1	46.45
(276,	281)	10	sov	 	1	235.1	 4.2	4.0	0.2	3.3	3.1	0.2	46.96
(937,	277)	1	sov	 	0	1.0	 6.5	2.7	3.7	5.0	2.1	2.9	25.64
(264,	279)	1	sov	 	0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00
ı	274,	275)	1	sov	 	0	37.4	 6.2	4.8	1.3	4.8	3.7	1.0	38.07
	274,		2	sov	 	1	531.4	 5.4	5.2	0.1	4.1	4.0	0.1	43.77
`	,	,	_			_			- • -					
(275,	934)	1	sov	 	2	291.6	 13.6	13.0	0.6	10.5	10.0	0.5	47.14
(275,	934)	2	sov	 	2	274.5	 13.8	13.0	0.8	10.6	10.0	0.6	46.66
(490,	258)	1	sov	 	0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00

(49	0, 2	58)	6	sov			1	1218.5		3.5	3.0	0.5	2.7	2.3	0.4	42.03
/ 20			1	sov			1	410.3		0 0	9.0	0.1	7.0	6.9	0 0	FF 30
(30	•		1				1			9.0			7.0		0.0	55.32
(30	4, 2	(59)	2	sov			1	390.9		9.4	9.2	0.1	7.2	7.2	0.1	53.29
(27	8, 4	90)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(2	7,	28)	1	sov			0	412.3		5.2	5.1	0.1	4.0	3.9	0.1	61.15
	-	28)	2	sov			0	498.7		4.9	4.8	0.1	3.8	3.7	0.1	65.48
(2	27,	28)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(2	8,	29)	1	sov			1	418.1		4.4	4.4	0.1	3.4	3.4	0.0	62.15
(2	8,	29)	2	sov			2	493.1		4.2	4.2	0.1	3.3	3.2	0.0	65.56
(2	8,	29)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(2	9,	30)	1	sov			0	422.6		5.0	5.0	0.1	3.9	3.8	0.0	62.39
(2	9,	30)	2	sov			0	489.4		4.8	4.7	0.1	3.7	3.6	0.0	65.54
(2	9,	30)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
												•••	0.0	0.0	0.0	0.00
•	•	31)	1	sov			0	428.0		4.9	4.8	0.0	3.8	3.7	0.0	62.49
-	-	31)	2	sov			1	483.8		4.7	4.6	0.1	3.6	3.6	0.0	65.42
(3	0,	31)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(2	3,	24)	1	sov			3	1060.4		6.9	6.7	0.2	5.3	5.2	0.1	62.70
(2	3,	24)	2	sov			4	660.6		6.7	6.5	0.2	5.2	5.0	0.1	64.67
(2	3,	24)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(2	3,	24)	9	sov			1	787.9		7.0	6.7	0.2	5.4	5.2	0.2	61.91
(3	1,	32)	1	sov			0	429.7		4.0	3.9	0.0	3.1	3.0	0.0	62.53
(3	1,	32)	2	SOV			0	481.9		3.8	3.7	0.1	2.9	2.9	0.0	65.32
(3	1,	32)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(28	3, 6	32)	1	sov			2	793.6		8.9	8.6	0.3	6.8	6.6	0.2	53.65
(28	3, 6	32)	2	sov		,	4	798.6		9.0	8.8	0.2	6.9	6.8	0.2	52.86
(28	4, 2	283)	1	sov			3	783.5		9.6	9.3	0.3	7.4	7.2	0.2	53.67
(28	4. 2	(83)	2	sov			2	812.5		9.7	9.4	0.3	7.5	7.3	0.2	52.95
,	-, -	,	_				_	01110		,	· · ·	0.5	7.5	,	0.2	32.73
(28	5, 2	284)	1	sov			0	775.6		6.8	6.6	0.2	5.2	5.1	0.1	53.75
(28	5, 2	284)	2	sov			1	822.0		6.9	6.7	0.2	5.3	5.2	0.1	53.00
(28	6 2	985)	1	sov			0	764.8		11.6	11.3	0.3	9.0	8.7	0.2	53.88
(28	-		2	SOV			0	827.1		11.7	11.5	0.3	9.1	8.8	0.2	53.00
(28	0, 2	.03)	4	BUV			U	02/.1		11.7	11.5	0.3	9.1	0.0	0.2	23.16

(27,	286)	2	sov	 	3	850.9	 9.2	9.0	0.2	7.1	6.9	0.2	53.15
(596,	111)	1	sov	 	2	930.5	 7.7	7.5	0.2	5.9	5.8	0.1	55.67
(596,		2	sov	 	6	1500.3	 8.4	8.0	0.4	6.5	6.1	0.3	51.00
(673,	675)	1	sov	 	4	818.8	 5.4	5.0	0.3	4.2	3.9	0.3	51.11
(675,	287)	1	sov	 	1	768.1	 9.6	9.3	0.3	7.4	7.2	0.2	53.08
(675,	287)	9	sov	 	0	586.7	 9.6	9.3	0.3	7.4	7.2	0.2	53.44
(287,	289)	1	sov	 	0	623.9	 9.5	9.3	0.2	7.3	7.1	0.2	53.91
(287,		2	sov	 	2	729.8	 9.6	9.4	0.3	7.4	7.2	0.2	53.11
(289,	294)	1	sov	 	1	635.7	 12.8	12.4	0.3	9.8	9.6	0.2	53.78
(289		2	sov	 	3	715.5	 12.9	12.6	0.4	10.0	9.7	0.3	53.05
(294,	296)	1	sov	 	1	647.6	 11.5	11.2	0.3	8.9	8.7	0.2	53.68
	296)	2	sov	 	2	700.6	 11.7	11.4	0.3	9.0	8.8	0.2	53.04
(296	, 297)	1	sov	 	2	663.1	 17.3	16.8	0.5	13.4	13.0	0.4	53.53
	, 297)	6	sov	 	2	683.2	 17.5	17.0	0.5	13.5	13.1	0.4	53.04
/ 297	, 601)	1	sov	 	0	670.7	 9.7	9.4	0.3	7.5	7.2	0.3	53.21
	, 601)	2	SOV	 	0	677.2	 9.8	9.5	0.3	7.5	7.3	0.2	52.71
	, 346)	1	sov	 	0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00
(297	, 352)	1	sov	 	0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00

2018 ALTERNATIVE A PM Peak

CUMULATIVE FRESIM STATISTICS AT TIME 17 0 0

LINK STATISTICS

								SECOND	S/VEH	ICLE			MIN/				
LINK	VEHI IN	CLES OUT	LANE CHNG	CURR	AVG CONT	VEH- MILES	VEH- MIN	TOTAL TIME	MOVE TIME	DELAY TIME	M/T	TOTAL		VOLUME VPHPL	DENSITY VPMPL	SPEED MILE/HR	LINK
(153, 96)	5464	5470	992	15	22.0	1346.5	1319.6	14.5	13.8	0.7	0.95	0.98	0.04	911.5	14.9	61.22	FRWY
(563, 98)	4088	4091	2207	19	19.3	1162.3	1155.5	16.9	15.8	1.1	0.94	0.99	0.06	818.3	13.6	60.36	FRWY
(154, 101)	3544	3551	613	29	29.9	1907.2	1793.5	30.3	29.8	0.6	0.98	0.94	0.02	709.4	11.1	63.80	FRWY
(103, 104)	5950	5942	2338	16	17.0	900.8	1019.4	10.3	8.5	1.8	0.82	1.13	0.20	1056.9	19.9	53.02	FRWY
(158, 105)	7004	7009	1243	43	35.6	1990.6	2135.6	18.3	15.8	2.5	0.86	1.07	0.15	1401.4	25.1	55.92	FRWY
(128, 97)	3404	3383	412	34	22.2	1410.3	1334.6	23.6	23.0	0.6	0.98	0.95	0.02	678.8	10.7	63.40	FRWY
(156, 102)	5297	5298	1124	26	21.3	1305.1	1278.7	14.5	13.7	0.8	0.95	0.98	0.05	970.6	15.8	61.24	FRWY
(109,7001)	1703	1703	0	0	1.0	55.2	62.2	2.2	2.1	0.1	0.97	1.13	0.03	851.5	16.0	53.20	RAMP
(102, 103)	4583	4585	767	26	31.4	1972.2	1886.9	24.7	23.8	0.9	0.96	0.96	0.03	917.1	14.6	62.71	FRWY
(160,7002)	716	716	0	1	0.5	29.0	31.9	2.7	2.7	0.0	0.99	1.10	0.01	358.0	6.6	54.56	RAMP
(7003, 106)	1363	1364	511	0	3.5	118.4	207.0	8.7	6.7	2.0	0.77	1.75	0.41	710.4	20.7	34.31	RAMP
(106, 103)	1364	1365	281	1	4.7	158.6	282.7	12.4	7.6	4.8	0.61	1.78	0.69	1096.0	32.6	33.66	RAMP
(7004, 107)	1075	1076	118	0	1.3	55.3	77.3	4.0	3.1	0.9	0.78	1.40	0.30	577.5	13.4	42.95	RAMP
(107, 104)	1076	1078	567	0	2.6	101.0	158.6	8.8	6.2	2.7	0.70	1.57	0.48	670.6	17.6	38.20	RAMP
(110, 109)	1703	1703	35	1	1.1	60.0	67.4	2.4	2.3	0.1	0.97	1.12	0.03	851.7	16.0	53.38	RAMP
(96, 110)	1702	1703	35	0	0.8	43.2	48.5	1.7	1.7	0.0	0.97	1.12	0.03	851.4	15.9	53.41	RAMP
(127, 97)	718	712	435	7	2.6	80.1	155.7	13.1	7.4	5.7	0.56	1.94	0.85	610.5	19.8	30.89	RAMP
(96, 128)	3768	3765	884	23	17.0	1070.0	1020.3	16.3	15.8	0.4	0.97	0.95	0.03	753.3	12.0	62.92	FRWY

(128, 129)	361	362	0	2	1.2	62.0	71.2	11.8	11.3	0.5	0.96	1.15	0.05	359.7	6.9	52.25	RAMP
(132, 130)	4958	4957	1200	10	12.5	737.0	748.4	9.1	8.3	0.8	0.91	1.02	0.09	889.5	15.1	59.09	FRWY
(131, 130)	508	508	0	0	0.4	21.9	26.2	3.1	2.8	0.3	0.92	1.20	0.10	508.0	10.1	50.18	RAMP
(151, 132)	4201	4206	487	15	18.9	1186.0	1136.8	16.2	15.6	0.6	0.96	0.96	0.03	840.0	13.4	62.60	FRWY
(105, 137)	5658	5651	1092	25	21.3	1316.1	1276.8	13.5	12.9	0.6	0.95	0.97	0.05	1130.8	18.3	61.85	FRWY
(98, 138)	1244	1245	14	1	2.3	121.2	138.4	6.7	6.4	0.3	0.96	1.14	0.05	1211.8	23.1	52.53	RAMP
(138, 139)	1245	1245	97	0	0.9	47.2	53.1	2.6	2.5	0.1	0.97	1.13	0.04	622.5	11.7	53.26	RAMP
(141, 140)	1763	1759	576	4	4.2	141.1	253.9	8.6	5.2	3.4	0.61	1.80	0.71	880.9	26.4	33.35	RAMP
(140, 101)	1759	1759	0	7	5.6	248.7	333.9	11.4	9.3	2.1	0.81	1.34	0.25	1757.8	39.3	44.69	RAMP
(105, 143)	1351	1351	0	2	1.8	79.4	108.8	4.8	3.8	1.0	0.80	1.37	0.28	1352.3	30.9	43.79	RAMP
(7005, 127)	720	718	28	2	0.7	16.6	39.2	2.8	1.6	1.2	0.56	2.36	1.03	425.9	16.8	25.41	RAMP
(129,7006)	362	362	0	0	0.4	16.2	24.0	4.0	3.4	0.6	0.86	1.48	0.21	181.0	4.5	40.42	RAMP
(147, 148)	838	841	0	0	1.4	65.9	83.8	6.0	5.7	0.3	0.94	1.27	0.07	838.8	17.8	47.18	RAMP
(148, 137)	841	841	0	0	1.0	48.7	57.8	4.1	3.8	0.3	0.92	1.19	0.09	841.0	16.6	50.59	RAMP
(163, 149)	4672	4669	1909	51	43.9	2800.8	2631.9	33.6	33.0	0.6	0.98	0.94	0.02	939.5	14.7	63.85	FRWY
(311, 150)	4806	4803	389	26	17.6	1083.6	1054.4	13.2	12.5	0.7	0.95	0.97	0.05	960.0	15.6	61.66	FRWY
(152, 153)	5465	5464	475	5	3.5	207.0	211.6	2.3	2.1	0.2	0.90	1.02	0.10	993.6	16.9	58.70	FRWY
(130, 152)	5465	5465	5005	19	22.7	1345.8	1361.7	14.9	13.7	1.3	0.91	1.01	0.09	1022.4	17.2	59.30	FRWY
(100, 154)	3545	3544	269	17	17.5	1126.5	1050.8	17.6	17.4	0.2	0.99	0.93	0.01	717.0	11.1	64.32	FRWY
(101, 155)	5310	5297	2629	30	22.3	1305.7	1336.2	15.1	13.7	1.5	0.90	1.02	0.10	991.9	16.9	58.63	FRWY
(155, 156)	5297	5297	977	1	3.3	200.6	195.2	2.2	2.1	0.1	0.95	0.97	0.05	1059.3	17.2	61.68	FRWY
(104, 157)	7020	6998	4331	43	36.9	1989.6	2214.4	19.0	15.8	3.1	0.83	1.11	0.18	1313.1	24.4	53.91	FRWY
(157, 158)	6998	7004	315	3	4.8	265.2	285.8	2.4	2.1	0.3	0.86	1.08	0.15	1400.4	25.2	55.67	FRWY
(137, 159)	6492	6490	2686	19	21.1	1147.4	1263.1	11.7	9.8	1.8	0.84	1.10	0.17	1173.0	21.5	54.51	FRWY
(150, 151)	4803	4809	229	7	10.6	653.6	638.6	8.0	7.6	0.4	0.95	0.98	0.05	961.3	15.7	61.41	FRWY

(325,	95)	5434	5398	1108	59	54.0	3363.3	3242.1	35.9	34.5	1.4	0.96	0.96	0.04	1083.8	17.4	62.24	FRWY
(102,	160)	715	716	8	0	1.0	56.9	62.7	5.3	5.2	0.0	0.99	1.10	0.01	357.7	6.6	54.43	RAMP
(98,	99)	2847	2847	325	11	19.1	1209.0	1146.5	24.2	23.6	0.6	0.97	0.95	0.02	568.9	9.0	63.27	FRWY
(99,	164)	2847	2844	252	10	12.6	798.9	755.5	15.9	15.6	0.4	0.98	0.95	0.02	569.3	9.0	63.45	FRWY
(295,	200)	1342	1346	247	1	3.1	148.9	187.2	8.4	8.3	0.1	0.99	1.26	0.01	534.9	11.2	47.72	FRWY
(203,	201)	1343	1343	30	1	0.7	46.7	44.0	1.8	1.7	0.0	0.98	0.94	0.02	747.2	11.7	63.72	FRWY
(200,	199)	1221	1221	54	2	2.3	100.8	135.3	6.7	6.6	0.0	0.99	1.34	0.01	610.1	13.7	44.69	FRWY
(179,	178)	1557	1561	56	2	2.8	147.7	165.6	6.4	6.2	0.1	0.98	1.12	0.03	779.7	14.6	53.50	FRWY
(180,	179)	1556	1557	202	7	5.5	294.9	330.0	12.7	12.4	0.3	0.98	1.12	0.02	635.5	11.9	53.62	FRWY
(181,	180)	1438	1438	55	2	2.5	135.3	150.9	6.3	6.2	0.1	0.98	1.12	0.02	718.9	13.4	53.81	FRWY
(199,	198)	1221	1220	91	4	2.8	126.7	170.3	8.4	8.3	0.1	0.99	1.34	0.01	610.3	13.7	44.64	FRWY
(198,	197)	1457	1458	419	9	6.4	334.5	384.4	15.8	15.0	0.8	0.95	1.15	0.06	614.5	11.8	52.21	FRWY
(197,	196)	1781	1775	527	11	9.5	505.3	569.6	19.2	18.6	0.6	0.97	1.13	0.03	773.3	14.5	53.23	FRWY
(196,	195)	1775	1774	296	18	16.2	867.7	974.9	33.0	32.1	0.9	0.97	1.12	0.03	887.6	16.6	53.40	FRWY
(182,	181)	1431	1438	153	6	8.6	464.7	517.7	21.6	21.2	0.4	0.98	1.11	0.02	717.8	13.3	53.86	FRWY
(183,	182)	2543	2545	308	13	13.7	723.0	822.3	19.4	18.6	0.7	0.96	1.14	0.04	1272.5	24.1	52.76	FRWY
(184,	183)	2545	2543	640	20	17.3	933.1	1038.3	24.3	23.8	0.4	0.98	1.11	0.02	1283.7	23.8	53.92	FRWY
(205,	204)	324	322	0	2	0.3	11.3	15.3	2.8	2.8	0.0	0.99	1.36	0.02	323.3	7.3	44.20	RAMP
(204,	197)	322	323	0	0	0.4	18.8	25.5	4.8	4.7	0.1	0.99	1.36	0.02	322.1	7.3	44.15	RAMP
(182,	193)	1114	1111	193	4	2.2	123.8	132.6	7.2	6.2	1.0	0.86	1.07	0.15	746.5	13.3	56.06	RAMP
(193,	194)	1111	1111	72	0	1.3	80.2	80.3	4.3	4.0	0.3	0.92	1.00	0.08	533.8	8.9	59.92	RAMP
(208,	209)	118	118	0	0	0.2	10.1	13.0	6.6	6.3	0.3	0.95	1.28	0.07	118.0	2.5	46.78	RAMP
(207,	198)	237	237	0	0	0.3	14.9	21.0	5.3	5.1	0.2	0.95	1.40	0.06	237.0	5.5	42.71	RAMP
(206,	207)	237	237	0	0	0.2	6.7	11.0	2.8	2.6	0.2	0.92	1.64	0.13	237.0	6.5	36.61	RAMP

(200, 210)	125	126	0	0	0.1	6.5	8.8	4.2	4.1	0.1	0.98	1.36	0.03	125.3	2.8	43.97	RAMP
(210, 211)	126	126	0	0	0.1	5.2	7.5	3.6	3.6	0.0	0.99	1.46	0.01	126.0	3.1	41.00	RAMP
(178, 202)	1561	1561	7	0	0.8	45.5	50.3	1.9	1.6	0.3	0.84	1.10	0.18	780.5	14.4	54.34	FRWY
(139,7009)	1245	1245	0	0	0.7	39.1	44.1	2.1	2.1	0.1	0.97	1.13	0.04	622.5	11.7	53.26	RAMP
(7010, 141)	1763	1763	426	0	3.3	151.3	198.2	6.5	5.4	1.1	0.83	1.31	0.22	920.2	20.1	45.80	RAMP
(211,7011)	126	126	0	0	0.2	5.7	9.9	4.7	4.6	0.1	0.98	1.75	0.04	126.0	3.7	34.37	RAMP
(7012, 206)	237	237	0	0	0.2	5.9	10.7	2.3	2.2	0.1	0.95	1.80	0.08	276.8	8.3	33.35	RAMP
(7014, 205)	323	324	0	0	0.4	16.4	23.1	4.0	3.8	0.2	0.95	1.41	0.07	348.2	8.2	42.54	RAMP
(194,7015)	1111	1110	0	1	0.6	35.7	38.8	2.1	1.8	0.3	0.85	1.09	0.16	370.1	6.7	55.25	RAMP
(201, 295)	1343	1342	14	4	3.3	189.4	197.5	8.8	8.8	0.0	1.00	1.04	0.00	671.2	11.7	57.55	FRWY
(149, 298)	4669	4669	385	23	21.0	1325.7	1260.3	16.2	15.7	0.5	0.97	0.95	0.03	933.3	14.8	63.12	FRWY
(533, 299)	5456	5457	2005	10	10.7	573.5	642.4	7.1	5.9	1.2	0.83	1.12	0.19	939.0	17.5	53.56	FRWY
(299, 300)	6072	6088	1589	17	29.1	1728.5	1745.6	17.2	15.7	1.5	0.91	1.01	0.09	1148.0	19.3	59.41	FRWY
(300, 301)	6088	6087	980	36	48.4	2993.6	2902.4	28.6	27.2	1.4	0.95	0.97	0.05	1218.2	19.7	61.89	FRWY
(301, 302)	6087	6091	4273	21	23.4	1440.9	1404.4	13.8	13.1	0.7	0.95	0.97	0.05	1095.4	17.8	61.56	FRWY
(302, 303)	6091	6087	6320	39	28.3	1729.7	1695.1	16.7	15.8	0.9	0.95	0.98	0.05	869.8	14.2	61.22	FRWY
(303, 304)	5259	5251	1729	26	16.2	1004.4	973.7	11.1	10.7	0.4	0.96	0.97	0.04	876.0	14.2	61.89	FRWY
(304, 305)	4369	4370	1409	14	12.3	756.5	736.3	10.1	9.6	0.5	0.95	0.97	0.05	852.7	13.8	61.65	FRWY
(305, 306)	4370	4374	724	14	19.9	1242.0	1195.1	16.4	15.9	0.5	0.97	0.96	0.03	728.6	11.7	62.35	FRWY
(306, 307)	3227	3225	397	14	18.1	1148.4	1087.4	20.2	19.7	0.5	0.98	0.95	0.02	645.4	10.2	63.37	FRWY
(187, 310)	3918	3910	944	11	8.2	501.1	489.3	7.5	7.1	0.4	0.95	0.98	0.05	690.8	11.2	61.45	FRWY
(310, 311)	4810	4806	2444	27	22.5	1365.6	1349.5	16.8	15.8	1.1	0.94	0.99	0.06	879.3	14.5	60.72	FRWY
(159, 312)	6490	6494	338	4	12.1	697.2	723.1	6.7	6.0	0.7	0.89	1.04	0.11	1298.5	22.4	57.85	FRWY
(312, 313)	6494	6499	346	19	19.0	1147.7	1142.0	10.5	9.9	0.7	0.94	1.00	0.06	1299.0	21.5	60.30	FRWY
(248, 314)	5157	5159	406	23	23.8	1465.4	1427.8	16.6	15.8	0.8	0.95	0.97	0.04	1031.6	16.8	61.58	FRWY

(314, 315)	4000	4012	206	6	8.8	551.4	527.2	7.9	7.6	0.3	0.97	0.96	0.03	800.9	12.8	62.76	FRWY
(555, 316)	6031	6013	2214	54	40.6	2525.5	2435.9	24.3	23.3	1.0	0.96	0.96	0.04	872.1	14.0	62.21	FRWY
(316, 317)	6013	6007	1588	20	18.2	1138.2	1094.2	10.9	10.5	0.4	0.96	0.96	0.04	1001.7	16.0	62.42	FRWY
(317, 318)	6007	6024	740	18	27.9	1707.2	1671.3	16.7	15.8	0.9	0.95	0.98	0.05	1126.7	18.4	61.29	FRWY
(318, 319)	6721	6710	1586	32	32.5	1909.0	1950.4	17.4	15.8	1.6	0.91	1.02	0.09	1267.8	21.6	58.73	FRWY
(319, 320)	6710	6713	291	9	15.2	934.6	912.1	8.2	7.7	0.4	0.95	0.98	0.05	1342.7	21.8	61.48	FRWY
(320, 321)	6713	6708	3865	38	37.4	2119.7	2244.2	20.1	17.6	2.5	0.87	1.06	0.13	1341.9	23.7	56.67	FRWY
(321, 322)	6708	6689	1505	39	32.2	1903.0	1933.1	17.3	15.9	1.4	0.92	1.02	0.08	1161.6	19.7	59.06	FRWY
(322, 323)	4663	4665	532	18	24.9	1563.8	1495.9	19.2	18.6	0.6	0.97	0.96	0.03	933.0	14.9	62.72	FRWY
(323, 324)	5143	5150	823	14	14.3	871.2	855.9	10.0	9.4	0.6	0.94	0.98	0.06	934.9	15.3	61.07	FRWY
(324, 325)	5441	5434	840	27	25.0	1543.5	1497.5	16.5	15.8	0.7	0.96	0.97	0.04	1025.1	16.6	61.84	FRWY
(7023, 147)	837	838	0	1	0.9	32.3	51.6	3.4	2.8	0.6	0.84	1.60	0.26	921.5	24.6	37.52	RAMP
(143,7025)	1351	1350	0	1	1.2	38.9	69.4	3.1	2.0	1.1	0.66	1.78	0.61	1350.8	40.2	33.64	RAMP
(144, 131)	508	508	0	0	0.3	14.1	17.6	2.1	2.0	0.1	0.97	1.24	0.04	508.0	10.5	48.29	RAMP
(7022, 144)	508	508	0	0	0.4	18.0	24.8	2.6	2.3	0.3	0.88	1.37	0.17	563.8	12.9	43.68	RAMP
(347, 348)	1345	1344	49	1	1.1	55.5	65.2	2.9	2.9	0.0	0.98	1.17	0.02	672.1	13.2	51.09	RAMP
(348, 349)	1344	1345	124	0	1.8	86.3	106.5	4.8	4.6	0.1	0.97	1.23	0.03	672.3	13.8	48.63	RAMP
(560, 370)	2935	2937	646	3	4.4	278.1	261.5	5.3	5.3	0.1	0.98	0.94	0.02	489.4	7.7	63.81	FRWY
(370, 371)	2937	2926	1706	25	16.7	613.7	1003.1	20.5	11.6	8.9	0.57	1.63	0.71	497.3	13.5	36.71	FRWY
(371, 372)	2926	2927	932	16	13.5	817.4	808.4	16.6	15.5	1.1	0.94	0.99	0.06	626.2	10.3	60.67	FRWY
(372, 373)	3898	3892	1860	11	11.2	678.0	674.5	10.4	9.7	0.7	0.93	0.99	0.07	779.0	12.9	60.31	FRWY
(373, 374)	3892	3890	190	7	6.9	428.2	411.9	6.4	6.1	0.2	0.96	0.96	0.04	778.3	12.5	62.37	FRWY
(374, 375)	3890	3884	232	12	10.9	676.7	655.5	10.1	9.8	0.3	0.97	0.97	0.03	777.6	12.6	61.94	FRWY
(375, 376)	3132	3132	313	10	14.5	908.9	867.2	16.6	16.1	0.5	0.97	0.95	0.03	782.7	12.4	62.88	FRWY

(376,	377)	3668	3657	811	14	8.4	512.7	501.1	8.2	7.8	0.4	0.95	0.98	0.05	794.7	12.9	61.38	FRWY
(377,	378)	4070	4066	1286	16	16.4	1001.0	982.5	14.5	13.7	0.8	0.94	0.98	0.06	935.5	15.3	61.13	FRWY
(381,	382)	1246	1244	34	3	1.3	51.7	75.0	3.6	3.6	0.0	0.99	1.45	0.01	622.9	15.1	41.31	RAMP
(378,	384)	4066	4063	55	6	2.5	153.9	148.8	2.2	2.1	0.1	0.96	0.97	0.04	1016.1	16.4	62.08	FRWY
(384,	385)	4063	4057	342	23	16.1	999.7	965.4	14.3	13.7	0.5	0.96	0.97	0.04	1015.1	16.3	62.13	FRWY
(385,	386)	3630	3633	587	17	28.0	1755.9	1678.1	27.7	26.9	0.9	0.97	0.96	0.03	907.8	14.5	62.78	FRWY
(402,	403)	902	904	414	0	2.7	124.5	164.6	10.9	9.8	1.2	0.89	1.32	0.14	451.3	10.0	45.35	RAMP
(401,	381)	1246	1246	23	0	1.0	48.8	58.7	2.8	2.8	0.0	1.00	1.20	0.01	623.0	12.5	49.96	RAMP
(395,	396)	3187	3175	246	17	11.1	696.0	667.8	12.6	12.2	0.4	0.97	0.96	0.03	795.4	12.7	62.53	FRWY
(394,	395)	4114	4113	125	5	7.1	436.2	428.0	6.2	6.0	0.2	0.96	0.98	0.04	822.6	13.5	61.15	FRWY
(393,	394)	4121	4114	342	15	11.8	733.2	707.9	10.3	9.9	0.4	0.96	0.97	0.04	823.7	13.3	62.14	FRWY
(392,	393)	4116	4121	1268	2	7.3	437.0	435.5	6.3	5.9	0.5	0.93	1.00	0.07	824.1	13.7	60.21	FRWY
(391,	392)	3352	3361	1463	7	11.2	687.9	671.8	12.0	11.4	0.6	0.95	0.98	0.05	760.2	12.4	61.44	FRWY
(390,	391)	3005	3010	317	12	14.2	888.2	853.4	17.0	16.4	0.6	0.96	0.96	0.03	752.5	12.0	62.45	FRWY
(389,	390)	3915	3911	317	22	18.1	1112.0	1086.4	16.7	15.9	0.8	0.95	0.98	0.05	978.6	15.9	61.42	FRWY
(388,	389)	3918	3915	130	8	5.9	364.2	354.2	5.4	5.2	0.3	0.95	0.97	0.05	979.1	15.9	61.69	FRWY
(387,	388)	3921	3918	1862	21	18.1	1113.8	1087.1	16.6	15.8	0.9	0.95	0.98	0.05	911.8	14.8	61.47	FRWY
(166,	404)	3790	3788	154	9	8.6	538.2	514.0	8.1	7.9	0.2	0.97	0.95	0.02	947.3	15.1	62.83	FRWY
(404,	387)	3519	3512	368	20	17.2	1079.9	1031.4	17.6	17.1	0.5	0.97	0.96	0.03	878.8	14.0	62.82	FRWY
(306,	405)	1147	1145	65	3	2.0	107.0	119.6	6.3	6.1	0.1	0.98	1.12	0.03	573.1	10.7	53.68	RAMP
(558,	406)	1144	1144	56	1	1.6	71.5	95.1	5.0	4.9	0.1	0.98	1.33	0.03	496.7	11.0	45.12	FRWY
(351,	408)	1348	1348	359	1	1.9	80.9	116.4	5.2	4.8	0.4	0.93	1.44	0.10	674.0	16.2	41.70	RAMP
(408,	409)	1348	1349	180	5	4.0	159.7	239.5	10.6	9.5	1.2	0.89	1.50	0.16	912.4	22.8	40.00	RAMP
(410,	405)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY
(413,	409)	1144	1142	84	3	3.7	165.3	224.9	11.8	11.6	0.2	0.98	1.36	0.02	571.1	13.0	44.10	FRWY

(349, 350)	1345	1345	175	2	6.0	295.8	362.4	16.2	15.9	0.3	0.98	1.22	0.02	672.1	13.7	48.98	RAMP
(350, 351)	1345	1348	114	7	5.0	223.3	300.5	13.4	13.1	0.3	0.98	1.35	0.03	673.1	15.1	44.60	RAMP
(559, 407)	2489	2484	946	17	15.0	722.0	899.2	21.7	20.9	0.8	0.96	1.25	0.04	828.9	17.2	48.18	FRWY
(407, 411)	427	429	0	0	0.7	33.3	41.0	5.8	5.6	0.1	0.98	1.23	0.03	427.3	8.8	48.70	FRWY
(406, 413)	1144	1144	92	1	2.1	92.3	125.9	6.6	6.5	0.1	0.98	1.36	0.03	571.9	13.0	43.96	FRWY
(161,7031)	702	702	0	1	0.9	41.5	51.5	4.4	4.3	0.1	0.97	1.24	0.04	351.1	7.3	48.36	FRWY
(7032, 435)	970	970	0	0	1.0	46.6	62.9	3.6	3.2	0.4	0.89	1.35	0.15	1046.7	23.5	44.45	RAMP
(435, 436)	970	970	0	0	0.8	40.6	50.6	3.1	3.0	0.1	0.96	1.25	0.05	970.0	20.1	48.16	RAMP
(436, 372)	970	971	0	0	1.1	53.3	63.6	3.9	3.6	0.3	0.92	1.19	0.10	970.9	19.3	50.34	RAMP
(395, 437)	926	926	36	2	1.7	94.4	104.6	6.8	6.7	0.1	0.98	1.11	0.02	463.3	8.6	54.18	RAMP
(437,7033)	926	927	0	0	1.4	68.4	84.6	5.5	5.2	0.3	0.95	1.24	0.07	463.2	9.5	48.52	RAMP
(7034, 440)	832	835	0	0	0.8	36.3	49.8	3.3	2.9	0.4	0.88	1.37	0.17	908.1	20.8	43.76	RAMP
(440, 441)	835	835	0	0	0.6	29.9	37.4	2.7	2.6	0.1	0.96	1.25	0.06	835.0	17.4	47.92	RAMP
(7035, 443)	538	537	0	1	0.6	21.5	38.1	3.9	2.9	0.9	0.76	1.77	0.42	589.2	17.4	33.91	RAMP
(443, 444)	537	536	0	1	0.5	21.1	28.3	3.2	2.9	0.3	0.90	1.34	0.13	536.4	12.0	44.77	RAMP
(444, 376)	536	536	0	1	1.4	71.7	82.0	9.2	8.8	0.4	0.96	1.14	0.05	536.0	10.2	52.46	RAMP
(375, 442)	752	752	16	1	1.0	51.7	57.8	4.6	4.5	0.1	0.98	1.12	0.03	376.0	7.0	53.66	RAMP
(442,7036)	752	753	0	1	0.7	35.6	43.6	3.5	3.3	0.2	0.95	1.22	0.06	376.4	7.7	49.07	RAMP
(7037, 454)	412	413	0	0	0.4	19.4	25.9	3.5	3.1	0.4	0.90	1.33	0.14	445.6	9.9	44.96	RAMP
(454, 455)	413	413	0	0	0.4	19.6	24.1	3.5	3.4	0.1	0.98	1.23	0.03	413.0	8.4	48.97	RAMP
(455, 377)	413	413	0	0	0.6	29.9	34.5	5.0	4.7	0.3	0.94	1.16	0.07	413.0	8.0	51.91	RAMP
(390, 458)	906	904	0	2	2.3	117.9	137.7	9.1	8.5	0.6	0.93	1.17	0.08	904.9	17.6	51.38	RAMP
(456, 457)	342	342	0	0	0.2	10.4	13.6	2.4	2.2	0.2	0.91	1.32	0.11	342.0	7.5	45.62	RAMP
(457, 391)	342	342	0	0	0.2	9.5	11.5	2.0	1.8	0.2	0.90	1.22	0.12	342.0	7.0	49.13	RAMP

(7038, 456)	342	342	0	0	0.2	8.9	13.6	2.1	1.6	0.4	0.79	1.52	0.32	395.9	10.0	39.44	RAMP
(458,7039)	904	903	0	1	1.0	36.1	58.2	3.9	2.8	1.1	0.73	1.61	0.44	903.1	24.3	37.19	RAMP
(7040, 466)	755	755	0	1	0.8	34.2	46.8	3.4	3.0	0.4	0.88	1.37	0.17	820.2	18.7	43.85	RAMP
(466, 467)	755	755	0	0	0.6	31.3	38.9	3.1	3.0	0.1	0.97	1.24	0.04	755.0	15.6	48.35	RAMP
(467, 392)	755	755	0	0	0.8	42.5	50.1	4.0	3.7	0.3	0.92	1.18	0.09	755.0	14.8	50.84	RAMP
(309,7043)	1706	1700	0	6	2.7	127.7	159.0	5.6	5.4	0.2	0.96	1.25	0.04	851.5	17.7	48.19	FRWY
(7044, 483)	699	698	0	2	1.2	54.3	72.1	5.9	5.3	0.6	0.90	1.33	0.13	733.0	16.2	45.16	RAMP
(484, 318)	697	697	0	1	0.9	47.2	56.0	4.8	4.4	0.4	0.92	1.19	0.09	696.1	13.8	50.58	RAMP
(483, 484)	698	697	0	1	0.7	34.2	42.7	3.7	3.5	0.1	0.97	1.25	0.04	697.8	14.5	48.15	RAMP
(303, 487)	828	830	0	0	0.9	46.8	53.0	3.8	3.7	0.2	0.96	1.13	0.05	829.3	15.7	52.99	RAMP
(487, 488)	830	830	0	2	1.6	78.2	95.2	6.9	6.6	0.3	0.96	1.22	0.05	830.5	16.8	49.29	RAMP
(488,7046)	830	830	0	1	1.0	45.9	58.4	4.2	4.0	0.3	0.94	1.27	0.08	829.7	17.6	47.16	RAMP
(489, 490)	1120	1121	99	2	1.8	62.8	107.0	5.7	4.1	1.7	0.71	1.70	0.50	837.8	23.8	35.23	RAMP
(7047, 489)	1120	1120	610	1	1.4	49.2	81.2	4.0	2.9	1.1	0.73	1.65	0.44	609.9	16.8	36.37	RAMP
(7045, 531)	615	615	104	0	0.8	29.6	49.7	4.5	2.5	2.0	0.55	1.68	0.76	332.0	9.3	35.69	RAMP
(531, 532)	615	615	3	0	0.5	24.2	31.4	3.1	2.2	0.9	0.71	1.30	0.37	415.3	9.0	46.29	RAMP
(532, 299)	615	615	0	0	0.5	24.2	27.5	2.7	2.2	0.5	0.82	1.13	0.21	615.0	11.6	52.91	RAMP
(322, 522)	2026	2026	22	0	1.7	90.9	101.6	3.0	2.9	0.1	0.98	1.12	0.02	1013.0	18.9	53.68	RAMP
(7049, 523)	479	478	0	2	0.5	18.1	29.0	3.3	3.1	0.2	0.93	1.61	0.11	526.8	14.1	37.30	RAMP
(523, 524)	478	477	0	3	0.8	37.5	50.3	6.3	5.7	0.7	0.90	1.34	0.14	477.3	10.7	44.71	RAMP
(524, 323)	477	478	0	1	0.7	36.0	42.0	5.3	5.0	0.3	0.94	1.17	0.07	477.6	9.3	51.46	RAMP
(298, 533)	3985	3983	512	22	21.1	1333.6	1266.4	19.1	18.5	0.6	0.97	0.95	0.03	796.5	12.6	63.18	FRWY
(7050, 529)	1471	1471	635	3	1.7	54.5	102.8	3.8	3.0	0.8	0.80	1.89	0.39	812.8	25.6	31.79	RAMP
(529, 530)	1471	1469	94	4	1.4	45.4	85.1	3.5	2.2	1.2	0.64	1.88	0.67	817.9	25.6	31.99	RAMP
(530, 533)	1469	1473	0	4	3.3	139.0	195.6	8.0	6.2	1.8	0.78	1.41	0.31	1471.3	34.5	42.65	RAMP

(7051, 525)	289	291	0	0	0.3	13.1	17.3	3.3	3.0	0.3	0.91	1.33	0.11	315.2	7.0	45.28	RAMP
(525, 526)	291	293	0	1	0.4	22.0	27.0	5.6	5.5	0.1	0.99	1.23	0.02	291.3	6.0	48.81	RAMP
(526, 324)	293	291	0	2	0.6	28.8	33.0	6.8	6.5	0.3	0.96	1.15	0.05	291.4	5.6	52.30	RAMP
(298, 534)	684	685	0	0	1.0	63.1	61.3	5.4	5.1	0.3	0.95	0.97	0.05	684.2	11.1	61.77	RAMP
(534,7052)	685	686	0	0	0.6	34.6	36.0	3.1	2.8	0.3	0.89	1.04	0.12	685.2	11.9	57.82	RAMP
(313, 347)	1349	1345	79	5	2.0	104.1	119.0	5.3	5.1	0.2	0.96	1.14	0.05	1065.2	20.3	52.49	RAMP
(522,7048)	2026	2025	0	1	1.9	95.1	114.0	3.4	3.3	0.1	0.97	1.20	0.04	1012.8	20.2	50.06	RAMP
(405, 558)	1145	1144	11	1	0.9	45.3	52.4	2.7	2.7	0.0	0.99	1.16	0.01	381.6	7.4	51.90	FRWY
(409, 559)	2491	2489	268	5	3.6	155.2	214.9	5.2	5.0	0.2	0.96	1.38	0.05	830.1	19.2	43.33	FRWY
(369, 560)	2931	2935	369	8	9.0	555.1	541.9	11.1	10.5	0.6	0.95	0.98	0.05	488.5	7.9	61.46	FRWY
(97, 563)	4095	4088	1191	17	18.9	1161.6	1133.6	16.6	15.8	0.9	0.95	0.98	0.05	771.5	12.5	61.48	FRWY
(10, 11)	1871	1870	56	4	3.3	209.5	200.1	6.4	6.2	0.2	0.97	0.96	0.03	623.9	9.9	62.80	FRWY
(11, 12)	1870	1868	60	3	3.2	203.5	194.0	6.2	6.1	0.2	0.97	0.95	0.03	622.9	9.9	62.95	FRWY
(12, 13)	1868	1868	26	3	1.9	117.4	112.0	3.6	3.5	0.1	0.97	0.95	0.03	622.3	9.9	62.89	FRWY
(13, 14)	1868	1866	31	3	1.9	118.2	112.9	3.6	3.5	0.1	0.97	0.96	0.03	622.8	9.9	62.80	FRWY
(14, 15)	1866	1867	32	0	1.9	121.3	115.9	3.7	3.6	0.1	0.97	0.96	0.03	622.3	9.9	62.77	FRWY
(15, 16)	3158	3157	413	10	10.0	598.1	597.4	11.4	10.5	0.8	0.93	1.00	0.07	789.4	13.1	60.06	FRWY
(16, 17)	3157	3158	90	6	4.8	299.3	286.5	5.4	5.3	0.2	0.97	0.96	0.03	790.0	12.6	62.68	FRWY
(17, 18)	3158	3165	189	7	9.5	597.8	572.2	10.9	10.5	0.4	0.97	0.96	0.03	789.9	12.6	62.68	FRWY
(18, 19)	3165	3167	190	5	8.6	536.0	513.4	9.7	9.4	0.3	0.97	0.96	0.03	791.4	12.6	62.64	FRWY
(19, 20)	3167	3162	121	12	7.5	467.6	447.8	8.5	8.2	0.3	0.97	0.96	0.03	791.3	12.6	62.65	FRWY
(20, 21)	3162	3162	181	6	7.5	470.6	451.3	8.6	8.3	0.3	0.97	0.96	0.03	790.4	12.6	62.57	FRWY
(21, 22)	3162	3163	101	1	5.3	331.2	317.3	6.0	5.8	0.2	0.97	0.96	0.03	790.6	12.6	62.62	FRWY
(22, 23)	3163	3166	250	9	11.3	708.4	679.1	12.9	12.4	0.4	0.97	0.96	0.03	791.7	12.7	62.59	FRWY

(24,	25)	3167	3168	454	7	7.7	471.0	462.6	8.8	8.3	0.5	0.94	0.98	0.06	792.0	13.0	61.10	FRWY
(25,	26)	3168	3167	115	7	4.8	299.9	288.6	5.5	5.3	0.2	0.96	0.96	0.04	791.8	12.7	62.36	FRWY
(26,	27)	3167	3163	141	17	9.9	599.1	594.9	11.3	10.8	0.5	0.96	0.99	0.04	790.8	13.1	60.43	FRWY
(190,	255)	1109	1111	70	5	3.3	210.4	198.1	10.7	10.5	0.2	0.98	0.94	0.02	555.6	8.7	63.74	FRWY
(255,	257)	1914	1912	1034	5	4.9	289.9	293.5	9.2	8.4	0.8	0.91	1.01	0.09	746.7	12.6	59.26	FRWY
(257,	280)	1912	1908	75	5	2.9	180.8	174.8	5.5	5.3	0.2	0.96	0.97	0.04	954.5	15.4	62.06	FRWY
(280,	282)	2435	2420	719	25	11.2	690.3	673.0	16.6	15.8	0.8	0.95	0.97	0.05	959.2	15.6	61.54	FRWY
(282,	32)	2420	2423	132	4	5.5	345.2	331.5	8.2	7.9	0.3	0.96	0.96	0.03	1210.3	19.4	62.48	RAMP
(32,	33)	3711	3719	261	2	8.4	527.9	503.4	8.1	7.9	0.2	0.97	0.95	0.03	743.3	11.8	62.92	FRWY
(33,	34)	3719	3723	174	4	8.4	528.4	502.9	8.1	7.9	0.2	0.97	0.95	0.03	743.9	11.8	63.03	FRWY
(34,	35)	3723	3718	171	9	8.5	533.5	507.7	8.2	8.0	0.2	0.97	0.95	0.03	744.2	11.8	63.05	FRWY
(35,	36)	3718	3712	200	13	8.8	554.8	528.0	8.5	8.3	0.2	0.97	0.95	0.03	742.5	11.8	63.05	FRWY
(36,	37)	3712	3713	224	7	9.7	610.8	581.2	9.4	9.1	0.3	0.97	0.95	0.03	742.2	11.8	63.05	FRWY
(37,	54)	3713	3712	220	15	11.1	700.6	666.3	10.8	10.5	0.3	0.97	0.95	0.02	742.8	11.8	63.08	FRWY
(54,	55)	3946	3963	446	6	7.8	487.1	467.2	7.1	6.8	0.2	0.97	0.96	0.03	695.0	11.1	62.55	FRWY
(55,	56)	3963	3961	158	9	6.0	375.3	358.1	5.4	5.3	0.2	0.97	0.95	0.03	792.6	12.6	62.89	FRWY
(56,	57)	4358	4356	769	12	13.3	825.3	798.3	11.0	10.5	0.5	0.96	0.97	0.04	799.6	12.9	62.04	FRWY
(57,	58)	4356	4353	147	7	6.6	412.2	393.9	5.4	5.3	0.2	0.97	0.96	0.03	870.5	13.9	62.78	FRWY
(58,	59)	4353	4351	971	7	7.6	478.1	455.8	6.3	6.1	0.2	0.97	0.95	0.03	870.5	13.8	62.94	FRWY
(59,	60)	4351	4349	609	13	11.2	694.8	673.9	9.3	8.9	0.4	0.95	0.97	0.04	870.3	14.1	61.85	FRWY
(60,	61)	4349	4332	2780	31	20.3	1233.2	1217.9	16.8	15.8	1.0	0.94	0.99	0.06	868.2	14.3	60.75	FRWY
(61,	62)	3492	3491	171	11	10.8	661.5	645.7	11.1	10.7	0.4	0.96	0.98	0.04	698.6	11.4	61.47	FRWY
(62,	63)	2340	2341	191	2	7.7	491.7	464.1	11.9	11.7	0.2	0.98	0.94	0.02	585.2	9.2	63.56	FRWY
(63,	64)	2341	2343	172	4	8.0	510.0	481.5	12.3	12.1	0.3	0.98	0.94	0.02	585.9	9.2	63.55	FRWY
(64,	65)	2843	2831	807	14	8.8	537.5	528.7	11.2	10.5	0.7	0.94	0.98	0.06	637.8	10.5	61.00	FRWY

(65,	66)	2831	2828	94	3	4.3	267.9	255.6	5.4	5.3	0.2	0.97	0.95	0.03	707.4	11.2	62.90	FRWY
(66,	67)	2828	2823	1650	12	8.0	501.8	477.2	10.1	9.9	0.3	0.97	0.95	0.03	706.2	11.2	63.10	FRWY
(67,	68)	2823	2824	394	10	11.7	694.9	702.7	14.9	13.7	1.3	0.92	1.01	0.09	705.6	11.9	59.33	FRWY
(68,	69)	2824	2825	748	18	13.1	802.4	785.3	16.7	16.1	0.5	0.97	0.98	0.03	580.4	9.5	61.31	FRWY
(69,	70)	1050	1045	64	8	5.2	336.1	314.1	18.0	17.8	0.2	0.99	0.93	0.01	261.7	4.1	64.20	FRWY
(70,	71)	1045	1046	23	1	2.4	154.1	143.8	8.2	8.2	0.1	0.99	0.93	0.01	261.5	4.1	64.31	FRWY
(71,	72)	1110	1111	144	1	4.9	315.6	295.8	16.0	15.8	0.2	0.99	0.94	0.01	258.3	4.0	64.01	FRWY
(72,	73)	1111	1105	379	6	7.2	465.3	434.5	23.5	23.3	0.2	0.99	0.93	0.01	277.3	4.3	64.25	FRWY
(73,	74)	1105	1099	158	6	4.9	313.4	295.5	16.1	15.8	0.3	0.98	0.94	0.02	300.9	4.7	63.63	FRWY
(74,	75)	1099	1099	108	8	6.8	436.6	410.6	22.4	22.1	0.3	0.99	0.94	0.01	366.1	5.7	63.79	FRWY
(75,	76)	1099	1100	26	0	1.7	109.5	102.9	5.6	5.5	0.1	0.99	0.94	0.01	366.4	5.7	63.84	FRWY
(76,	77)	1100	1102	14	0	1.1	66.9	63.1	3.4	3.4	0.1	0.98	0.94	0.02	367.0	5.8	63.63	FRWY
(568,	569)	884	884	24	0	0.6	33.5	34.4	2.3	2.1	0.2	0.90	1.03	0.10	294.7	5.0	58.42	FRWY
(569,	570)	884	884	39	0	3.3	207.4	198.2	13.5	13.0	0.5	0.97	0.96	0.03	294.7	4.7	62.80	FRWY
(570,	571)	884	882	17	5	2.2	137.9	130.6	8.9	8.6	0.2	0.97	0.95	0.02	294.5	4.6	63.35	FRWY
(571,	572)	882	882	81	4	3.9	250.0	236.7	16.1	15.7	0.4	0.97	0.95	0.02	240.0	3.8	63.37	FRWY
(572,	573)	882	882	189	2	5.8	366.7	345.6	23.5	23.0	0.5	0.98	0.94	0.02	220.5	3.5	63.66	FRWY
(573,	574)	882	882	51	3	3.9	250.5	236.1	16.1	15.8	0.3	0.98	0.94	0.02	220.5	3.5	63.65	FRWY
(574,	575)	811	812	42	0	3.0	194.6	182.8	13.5	13.3	0.2	0.98	0.94	0.02	202.9	3.2	63.90	FRWY
(575,	576)	812	811	62	2	4.2	267.1	250.1	18.5	18.2	0.3	0.99	0.94	0.01	202.7	3.2	64.09	FRWY
(576,	577)	2016	2012	1630	6	9.4	571.9	561.4	16.7	15.7	1.0	0.94	0.98	0.06	468.2	7.7	61.12	FRWY
(577,	578)	2012	2010	153	5	7.6	486.1	457.3	13.6	13.4	0.3	0.98	0.94	0.02	502.8	7.9	63.77	FRWY
(578,	579)	2010	2002	743	9	6.4	403.5	382.8	11.5	11.1	0.3	0.97	0.95	0.03	501.5	7.9	63.24	FRWY
(579,	580)	2002	2000	46	5	3.0	189.5	179.8	5.4	5.2	0.2	0.97	0.95	0.03	500.4	7.9	63.25	FRWY

(580, 5	581)	2000	1991	105	17	6.1	378.4	363.2	10.9	10.6	0.3	0.97	0.96	0.03	499.4	8.0	62.50	FRWY
(581, 5	582)	1485	1488	84	7	4.6	294.1	275.3	11.1	10.9	0.2	0.98	0.94	0.01	371.4	5.8	64.09	FRWY
(582, 5	583)	1488	1491	119	2	5.5	350.7	327.9	13.2	13.0	0.2	0.99	0.93	0.01	372.4	5.8	64.18	FRWY
(583, 5	584)	2185	2185	998	3	6.8	414.0	409.5	11.2	10.5	0.8	0.93	0.99	0.07	491.2	8.1	60.65	FRWY
(584, 5	585)	3135	3137	2089	8	14.6	890.8	874.3	16.7	15.7	1.0	0.94	0.98	0.06	691.7	11.3	61.13	FRWY
(585, 9	586)	3137	3141	175	3	6.9	427.0	411.8	7.9	7.5	0.3	0.96	0.96	0.04	785.1	12.6	62.21	FRWY
(586, 9	587)	3141	3140	106	4	6.2	389.7	371.8	7.1	6.9	0.2	0.97	0.95	0.03	785.3	12.5	62.88	FRWY
(587, 9	588)	3140	3144	94	4	4.7	297.6	283.8	5.4	5.2	0.2	0.97	0.95	0.03	785.7	12.5	62.93	FRWY
(588, 9	589)	3144	3134	202	19	9.6	594.7	573.8	11.0	10.5	0.4	0.96	0.96	0.04	785.0	12.6	62.19	FRWY
(589, !	590)	2574	2581	157	5	6.3	397.4	375.2	8.7	8.5	0.2	0.98	0.94	0.02	622.6	9.8	63.55	FRWY
(590, !	591)	2581	2582	149	4	4.7	300.1	281.6	6.5	6.4	0.1	0.98	0.94	0.02	516.1	8.1	63.95	FRWY
(591, !	592)	2582	2582	113	8	5.2	334.0	312.6	7.3	7.2	0.1	0.99	0.94	0.01	516.4	8.1	64.10	FRWY
(592, !	593)	2582	2590	2082	7	7.7	489.8	459.5	10.7	10.5	0.2	0.98	0.94	0.02	517.2	8.1	63.96	FRWY
(593, !	594)	2590	2587	237	4	3.9	245.1	232.7	5.4	5.2	0.2	0.97	0.95	0.03	517.8	8.2	63.20	FRWY
(594, !	595)	2587	2587	216	5	7.7	489.8	461.3	10.7	10.5	0.2	0.98	0.94	0.02	517.3	8.1	63.71	FRWY
(595, !	596)	2587	2582	28	5	5.4	325.0	325.1	7.5	7.3	0.2	0.97	1.00	0.03	516.8	8.6	59.98	FRWY
(596, !	597)	904	904	25	1	1.9	121.7	113.7	7.5	7.5	0.1	0.99	0.93	0.01	301.3	4.7	64.26	FRWY
(597, !	598)	904	905	33	1	2.2	140.9	131.6	8.7	8.6	0.1	0.99	0.93	0.01	301.4	4.7	64.27	FRWY
(598, !	599)	905	905	26	0	1.2	74.0	69.2	4.6	4.5	0.1	0.99	0.93	0.01	301.7	4.7	64.23	FRWY
(600,	601)	904	904	30	0	1.6	101.4	94.6	6.3	6.2	0.1	0.99	0.93	0.01	301.3	4.7	64.25	FRWY
(601, (602)	2540	2541	1336	3	6.2	360.8	371.4	8.8	7.9	0.9	0.90	1.03	0.10	552.2	9.5	58.28	FRWY
(602,	603)	2541	2538	142	10	5.8	360.8	347.2	8.2	7.9	0.3	0.96	0.96	0.04	635.0	10.2	62.36	FRWY
(603, (604)	2538	2528	77	11	4.9	307.8	292.2	6.9	6.8	0.2	0.98	0.95	0.02	633.0	10.0	63.20	FRWY
(604,	605)	2528	2532	103	6	5.5	348.2	331.0	7.9	7.7	0.2	0.97	0.95	0.02	632.2	10.0	63.11	FRWY
(605,	606)	2532	2529	134	8	7.2	456.2	434.0	10.3	10.0	0.3	0.97	0.95	0.02	632.6	10.0	63.08	FRWY

(606, 607)	2529	2522	122	8	5.7	361.5	344.1	8.2	8.0	0.2	0.97	0.95	0.03	631.3	10.0	63.05	FRWY
(607, 608)	2522	2522	111	3	5.0	314.4	298.9	7.1	6.9	0.2	0.97	0.95	0.02	630.6	10.0	63.10	FRWY
(608, 609)	2522	2520	135	9	6.2	389.2	369.9	8.8	8.6	0.2	0.97	0.95	0.02	629.6	10.0	63.13	FRWY
(609, 610)	2520	2522	146	5	7.0	442.5	420.2	10.0	9.8	0.2	0.98	0.95	0.02	630.2	10.0	63.19	FRWY
(610, 611)	2522	2515	911	8	5.4	340.4	323.5	7.7	7.5	0.2	0.97	0.95	0.02	629.3	10.0	63.13	FRWY
(611, 612)	2515	2516	255	6	5.7	355.6	342.4	8.2	7.9	0.3	0.96	0.96	0.04	629.2	10.1	62.32	FRWY
(612, 613)	2516	2513	342	9	11.6	714.3	696.0	16.6	16.1	0.5	0.97	0.97	0.03	628.6	10.2	61.58	FRWY
(613, 614)	1156	1155	16	1	1.1	68.1	64.9	3.4	3.3	0.1	0.97	0.95	0.03	385.1	6.1	62.91	FRWY
(614, 615)	1155	1153	7	3	1.0	62.7	59.2	3.1	3.0	0.1	0.98	0.94	0.02	384.6	6.1	63.53	FRWY
(615, 616)	1153	1153	19	1	1.7	109.1	102.8	5.4	5.3	0.1	0.98	0.94	0.02	384.2	6.0	63.71	FRWY
(616, 617)	1153	1153	44	2	3.5	218.2	209.0	10.9	10.6	0.2	0.98	0.96	0.02	384.1	6.1	62.63	FRWY
(617, 618)	882	876	31	6	2.6	165.4	155.1	10.6	10.5	0.1	0.99	0.94	0.01	292.8	4.6	63.95	FRWY
(618, 619)	876	875	27	4	2.3	148.9	139.8	9.6	9.5	0.1	0.99	0.94	0.01	291.9	4.6	63.95	FRWY
(619, 620)	875	876	16	1	1.1	69.3	65.1	4.5	4.4	0.1	0.99	0.94	0.01	292.0	4.6	63.90	FRWY
(599, 600)	905	904	28	1	1.0	66.3	61.9	4.1	4.1	0.0	0.99	0.93	0.01	301.5	4.7	64.26	FRWY
(77,7053)	1102	1102	0	1	0.6	38.8	36.9	2.0	2.0	0.1	0.97	0.95	0.03	367.3	5.8	63.10	FRWY
(7054, 568)	884	884	40	0	0.8	41.9	47.7	3.0	2.4	0.6	0.81	1.14	0.22	318.9	6.1	52.63	FRWY
(396, 397)	3175	3177	1156	22	22.0	1374.8	1317.6	24.9	24.0	0.8	0.97	0.96	0.03	794.6	12.7	62.61	FRWY
(397, 398)	4010	4013	1141	11	8.8	531.7	525.1	7.9	7.4	0.5	0.94	0.99	0.06	802.0	13.2	60.75	FRWY
(398, 564)	4013	4010	252	12	9.7	607.5	583.6	8.7	8.4	0.3	0.96	0.96	0.03	801.9	12.8	62.46	FRWY
(620, 369)	876	875	14	2	1.3	81.6	76.6	5.3	5.2	0.1	0.99	0.94	0.01	291.8	4.6	63.86	FRWY
(617, 114)	271	271	0	1	0.6	33.5	37.1	8.2	8.1	0.2	0.98	1.11	0.02	271.4	5.0	54.08	RAMP
(114, 115)	271	272	0	1	0.9	43.2	52.1	11.5	11.3	0.2	0.98	1.21	0.02	271.0	5.5	49.67	RAMP
(117, 416)	270	270	0	0	0.7	32.7	40.4	9.0	8.7	0.3	0.97	1.23	0.04	270.0	5.6	48.65	RAMP

(399,	402)	902	902	78	5	5.2	281.1	310.3	20.7	20.5	0.2	0.99	1.10	0.01	450.2	8.3	54.34	RAMP
(625,	132)	752	752	0	0	0.7	29.3	39.8	3.2	2.6	0.6	0.81	1.36	0.26	752.0	17.0	44.18	RAMP
(626,	627)	1110	1109	19	2	1.4	88.1	83.6	4.5	4.4	0.1	0.97	0.95	0.03	554.8	8.8	63.17	FRWY
(627,	190)	1109	1109	15	2	1.1	67.2	63.1	3.4	3.4	0.1	0.98	0.94	0.01	554.5	8.7	63.92	FRWY
(629,	255)	805	803	0	2	1.1	51.5	65.6	4.9	4.2	0.7	0.86	1.27	0.18	804.1	17.1	47.10	RAMP
(628,	629)	807	805	0	2	1.3	52.8	79.7	5.9	5.3	0.7	0.89	1.51	0.17	806.1	20.3	39.77	RAMP
(631,	280)	527	527	0	0	1.0	49.6	59.2	6.7	6.2	0.6	0.92	1.19	0.10	527.0	10.5	50.30	RAMP
(630,	631)	527	527	0	0	0.9	42.7	54.1	6.2	5.9	0.3	0.95	1.27	0.06	527.0	11.1	47.40	RAMP
(632,	633)	1869	1869	81	5	4.3	230.3	260.4	8.4	8.1	0.3	0.97	1.13	0.04	933.8	17.6	53.06	RAMP
(635,	54)	234	234	0	0	0.5	27.9	32.7	8.4	7.8	0.6	0.93	1.17	0.09	234.0	4.6	51.17	RAMP
(634,	635)	233	234	0	0	0.5	20.7	29.8	7.6	7.0	0.6	0.92	1.44	0.11	233.9	5.6	41.72	RAMP
(637,	56)	396	397	0	0	0.9	48.5	54.2	8.2	8.0	0.2	0.98	1.12	0.03	396.0	7.4	53.70	RAMP
(636,	637)	395	396	0	0	0.6	33.7	37.8	5.7	5.6	0.2	0.97	1.12	0.03	395.8	7.4	53.49	RAMP
(61,	638)	840	841	0	0	1.4	71.3	81.1	5.8	5.6	0.2	0.96	1.14	0.04	840.6	15.9	52.77	RAMP
(638,	639)	841	839	82	2	1.0	53.8	61.6	4.4	4.2	0.2	0.96	1.15	0.05	492.8	9.4	52.39	RAMP
(62,	640)	1151	1150	0	1	1.7	88.2	101.3	5.3	5.0	0.2	0.95	1.15	0.05	1150.3	22.0	52.27	RAMP
(640,	641)	1150	1150	77	0	0.9	47.9	55.1	2.9	2.7	0.1	0.95	1.15	0.06	744.1	14.3	52.17	RAMP
(643,	64)	500	500	0	0	1.1	55.3	63.1	7.6	7.3	0.3	0.96	1.14	0.04	500.0	9.5	52.56	RAMP
(642,	643)	501	500	20	1	0.9	45.3	54.0	6.5	6.0	0.5	0.92	1.19	0.09	353.0	7.0	50.25	RAMP
(69,	644)	1775	1775	42	2	2.2	118.0	132.2	4.5	4.4	0.1	0.98	1.12	0.03	887.6	16.6	53.58	RAMP
(644,	645)	1775	1776	24	0	1.6	83.4	98.1	3.3	3.3	0.1	0.98	1.18	0.02	683.9	13.4	51.01	RAMP
(647,	71)	65	64	0	1	0.2	8.6	10.3	9.5	8.8	0.7	0.93	1.19	0.08	64.8	1.3	50.49	RAMP
(646,	647)	65	65	0	0	0.2	6.2	9.0	8.3	7.7	0.7	0.92	1.47	0.12	65.0	1.6	40.93	RAMP
(574,	660)	71	71	0	0	0.1	3.0	3.3	2.8	2.8	0.1	0.98	1.12	0.02	71.0	1.3	53.75	RAMP
(660,	661)	71	71	0	0	0.1	2.8	3.4	2.8	2.8	0.1	0.97	1.19	0.04	71.0	1.4	50.53	RAMP

1 663	E76\	1204	1205	28	1	2 5	112 0	151.7	7.6	6.2	1 /	0 00	1 22	0 24	1004.2	22.3	45.05	RAMP
(663,	5/6)	1204	1205	20	1	2.5	113.9	151.7	7.6	6.2	1.4	0.82	1.33	0.24	1004.2	22.3	45.05	KAMP
(662,	663)	1203	1204	152	2	1.8	76.1	110.0	5.5	4.5	0.9	0.83	1.45	0.25	601.6	14.5	41.50	RAMP
(581,	664)	506	504	0	2	1.0	55.4	62.3	7.4	7.2	0.2	0.97	1.12	0.03	505.3	9.5	53.40	RAMP
(664,	665)	504	503	0	1	0.4	21.4	24.3	2.9	2.8	0.1	0.96	1.14	0.04	503.2	9.5	52.84	RAMP
(667,	583)	694	694	0	0	2.4	113.4	145.3	12.6	10.6	1.9	0.85	1.28	0.20	694.0	14.8	46.84	RAMP
(666,	667)	694	694	0	0	0.8	28.0	48.9	4.2	4.1	0.1	0.98	1.75	0.04	694.0	20.2	34.37	RAMP
(669,	584)	954	950	10	6	2.1	105.3	123.3	7.8	7.3	0.5	0.93	1.17	0.08	813.0	15.9	51.24	RAMP
(668,	669)	956	954	67	2	1.1	57.5	68.5	4.3	3.9	0.3	0.92	1.19	0.10	477.7	9.5	50.44	RAMP
(589,	670)	560	559	0	1	0.5	24.1	27.3	2.9	2.8	0.1	0.96	1.13	0.04	559.1	10.5	53.13	RAMP
(670,	671)	559	557	0	2	0.4	22.9	25.9	2.8	2.7	0.1	0.96	1.13	0.04	558.0	10.5	53.11	RAMP
(672,	673)	884	886	0	1	1.6	74.1	94.6	6.4	6.0	0.4	0.94	1.28	0.07	885.2	18.8	47.00	FRWY
(674,	675)	746	746	0	0	0.8	42.8	48.6	3.9	3.8	0.1	0.96	1.14	0.04	746.0	14.1	52.80	RAMP
(676,	677)	1681	1683	455	4	8.9	477.5	535.8	19.1	18.6	0.5	0.97	1.12	0.03	681.5	12.7	53.48	FRWY
(677,	680)	893	894	71	2	4.2	226.6	249.7	16.8	16.6	0.2	0.99	1.10	0.01	446.4	8.2	54.45	FRWY
(677,	678)	790	787	5	3	1.1	56.3	68.3	5.2	5.1	0.1	0.99	1.21	0.01	394.1	8.0	49.48	RAMP
(678,	679)	787	787	7	1	1.2	61.1	74.4	5.7	5.6	0.1	0.99	1.22	0.02	393.3	8.0	49.27	RAMP
(680,	681)	894	894	28	2	2.2	122.5	134.8	9.0	9.0	0.1	0.99	1.10	0.01	446.8	8.2	54.55	FRWY
(681,	682)	894	893	32	3	2.3	127.0	139.7	9.4	9.3	0.1	0.99	1.10	0.01	344.0	6.3	54.56	FRWY
(684,	685)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	RAMP
(686,	111)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY
(685,	681)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	RAMP
(682,	683)	893	892	28	2	2.3	126.8	139.5	9.4	9.3	0.1	0.99	1.10	0.01	446.4	8.2	54.57	FRWY
(687,	688)	893	892	28	1	1.7	78.4	103.2	6.9	6.8	0.1	0.99	1.32	0.02	446.3	9.8	45.61	FRWY

(7056, 626)	1107	1110	78	3	1.6	92.8	97.4	5.0	4.4	0.6	0.88	1.05	0.12	579.2	10.1	57.18	FRWY
(679,7058)	787	789	0	1	0.7	33.9	41.9	3.2	3.1	0.1	0.97	1.24	0.04	394.2	8.1	48.55	RAMP
(7059, 684)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	RAMP
(7060, 628)	809	807	0	2	1.0	35.6	62.9	4.3	4.2	0.1	0.97	1.77	0.06	879.0	25.9	33.96	RAMP
(7061, 630)	527	527	0	0	0.8	34.6	45.8	4.9	4.5	0.4	0.91	1.32	0.12	557.6	12.3	45.42	RAMP
(7062, 674)	746	746	0	0	0.5	26.1	32.2	2.3	2.1	0.3	0.89	1.24	0.14	829.3	17.1	48.55	RAMP
(7063, 672)	885	884	0	2	1.9	79.1	115.5	7.5	6.9	0.6	0.91	1.46	0.13	921.6	22.4	41.08	FRWY
(671,7064)	557	557	0	0	0.4	19.2	22.0	2.4	2.3	0.1	0.95	1.15	0.06	557.0	10.6	52.36	RAMP
(633,7065)	1869	1866	0	7	2.2	117.3	133.1	4.3	4.1	0.2	0.96	1.13	0.04	933.0	17.6	52.89	RAMP
(7066, 634)	234	233	0	1	0.3	10.0	17.2	4.1	4.0	0.1	0.98	1.72	0.03	254.4	7.3	34.92	RAMP
(7067, 636)	395	395	0	0	0.6	29.9	35.6	5.1	4.7	0.4	0.91	1.19	0.10	414.9	8.2	50.35	RAMP
(665,7068)	503	502	0	1	0.4	19.5	22.7	2.7	2.5	0.2	0.94	1.16	0.07	502.0	9.7	51.56	RAMP
(7069, 666)	694	694	0	0	0.7	25.6	43.1	3.4	3.3	0.1	0.98	1.68	0.03	768.6	21.5	35.68	RAMP
(7070, 668)	956	956	490	0	1.2	60.1	70.4	4.2	3.9	0.3	0.93	1.17	0.08	506.5	9.9	51.20	RAMP
(639,7071)	839	839	0	0	0.5	26.2	31.3	2.2	2.1	0.2	0.92	1.20	0.10	419.5	8.4	50.20	RAMP
(7072, 642)	501	501	213	0	0.3	16.5	20.7	2.2	1.9	0.3	0.87	1.26	0.16	280.4	5.9	47.63	RAMP
(641,7073)	1150	1149	0	2	0.8	37.9	45.7	2.4	2.4	0.0	0.99	1.21	0.01	574.4	11.6	49.69	RAMP
(661,7074)	71	71	0	0	0.1	2.5	3.3	2.8	2.6	0.2	0.92	1.31	0.10	71.0	1.5	45.93	RAMP
(7075, 662)	1203	1203	517	0	1.5	69.6	91.0	4.3	3.9	0.4	0.92	1.31	0.11	640.6	13.9	45.93	RAMP
(645,7076)	1776	1776	0	2	1.7	79.4	99.2	3.4	3.2	0.1	0.96	1.25	0.05	591.9	12.3	48.00	RAMP
(7077, 646)	65	65	0	0	0.1	2.2	3.8	3.2	3.1	0.1	0.97	1.75	0.04	72.3	2.1	34.26	RAMP
(7084, 857)	194	194	0	0	0.2	7.6	9.2	2.6	2.3	0.3	0.90	1.22	0.12	213.3	4.3	49.31	RAMP
(857, 858)	194	194	0	0	0.2	11.5	12.9	4.0	3.9	0.1	0.97	1.13	0.03	194.0	3.6	53.23	RAMP
(859,7085)	327	327	0	0	0.6	30.0	33.9	6.2	6.0	0.2	0.97	1.13	0.03	327.0	6.2	53.00	RAMP
(7086, 860)	27	27	0	0	0.0	2.5	2.7	5.8	5.7	0.0	0.99	1.09	0.01	28.1	0.5	55.21	RAMP

(860, 861)	27	27	0	0	0.0	2.3	2.5	5.6	5.6	0.0	1.00	1.09	0.00	27.0	0.5	55.21	RAMP
(866,7087)	66	66	0	0	0.1	3.8	4.3	3.9	3.8	0.1	0.97	1.12	0.03	66.0	1.2	53.60	RAMP
(873,7088)	57	57	0	0	0.1	6.0	6.7	7.0	7.0	0.0	0.99	1.11	0.01	57.0	1.1	53.91	RAMP
(7089, 874)	80	79	0	1	0.1	4.6	5.2	3.7	3.6	0.2	0.96	1.14	0.05	84.3	1.6	52.75	RAMP
(874, 875)	79	79	0	0	0.1	4.4	4.8	3.7	3.6	0.0	0.99	1.10	0.01	79.0	1.5	54.41	RAMP
(876,7090)	138	138	0	0	0.2	12.4	13.8	6.0	5.9	0.1	0.99	1.11	0.01	138.0	2.6	53.91	RAMP
(7091, 877)	73	73	0	0	0.1	4.3	6.6	5.1	3.7	1.4	0.73	1.51	0.41	77.7	2.0	39.63	RAMP
(877, 878)	73	73	0	0	0.1	4.8	5.6	4.6	4.3	0.2	0.95	1.16	0.06	73.0	1.4	51.70	RAMP
(879, 880)	2003	2001	143	8	7.8	502.8	470.5	13.9	13.7	0.2	0.99	0.94	0.01	1014.9	15.8	64.12	FRWY
(880, 881)	2001	2004	168	12	11.1	706.3	664.8	19.9	19.5	0.4	0.98	0.94	0.02	1001.4	15.7	63.75	FRWY
(881, 882)	2004	2003	213	10	9.1	577.1	548.9	16.4	16.0	0.5	0.97	0.95	0.03	1001.6	15.9	63.08	FRWY
(882, 883)	2003	2008	208	6	9.1	569.5	544.8	16.3	15.8	0.5	0.97	0.96	0.03	1002.3	16.0	62.72	FRWY
(883, 884)	1951	1944	148	12	7.1	442.8	423.4	13.0	12.6	0.4	0.97	0.96	0.03	973.4	15.5	62.76	FRWY
(883, 873)	57	57	0	0	0.1	6.5	7.2	7.6	7.6	0.0	0.99	1.11	0.01	57.0	1.1	53.91	RAMP
(884, 885)	1944	1942	145	10	6.5	408.6	391.3	12.1	11.6	0.4	0.96	0.96	0.03	973.6	15.5	62.65	FRWY
(885, 886)	1942	1948	170	3	8.1	505.3	484.9	14.9	14.4	0.6	0.96	0.96	0.04	973.6	15.6	62.52	FRWY
(886, 887)	2027	2026	282	10	9.3	575.7	555.3	16.4	15.7	0.7	0.96	0.96	0.04	881.0	14.2	62.21	FRWY
(887, 888)	2026	2030	191	7	9.5	592.1	570.6	16.9	16.2	0.7	0.96	0.96	0.04	1013.0	16.3	62.26	FRWY
(875, 886)	79	79	0	0	0.1	6.4	7.0	5.3	5.3	0.0	0.99	1.10	0.01	79.0	1.4	54.67	RAMP
(888, 889)	2030	2030	218	12	10.4	643.6	621.2	18.4	17.6	0.8	0.96	0.97	0.04	1014.3	16.3	62.16	FRWY
(889, 890)	2030	2023	153	10	6.8	424.4	410.7	12.2	11.6	0.6	0.95	0.97	0.04	1013.0	16.3	62.00	FRWY
(890, 891)	2023	2025	219	8	10.7	667.1	644.9	19.1	18.3	0.9	0.96	0.97	0.04	1011.5	16.3	62.06	FRWY
(891, 892)	2025	2016	182	13	8.1	500.5	484.0	14.4	13.7	0.6	0.96	0.97	0.04	1009.4	16.3	62.05	FRWY
(892, 893)	2016	2013	390	23	18.9	1170.5	1132.3	33.7	32.2	1.5	0.95	0.97	0.04	1008.2	16.3	62.02	FRWY

(893, 8	94)	2013	2015	460	19	22.3	1378.1	1336.0	39.8	37.9	1.9	0.95	0.97	0.05	1006.4	16.3	61.89	FRWY
(894, 8	95)	2015	2012	252	16	13.6	843.1	818.0	24.4	23.2	1.2	0.95	0.97	0.05	1005.3	16.3	61.84	FRWY
(895, 8	96)	2012	2032	430	10	21.4	1322.8	1284.5	38.1	36.2	1.9	0.95	0.97	0.05	1011.9	16.4	61.79	FRWY
(896,8	397)	2032	2013	462	34	22.9	1413.4	1372.8	40.8	38.8	2.0	0.95	0.97	0.05	1009.6	16.3	61.77	FRWY
(897, 8	398)	2013	2017	281	9	12.6	780.3	758.4	22.5	21.4	1.1	0.95	0.97	0.05	1009.9	16.4	61.73	FRWY
(898,8	399)	2017	2008	187	18	9.3	572.3	557.1	16.6	15.8	0.8	0.95	0.97	0.05	1007.2	16.3	61.63	FRWY
(899,9	900)	1942	1945	199	11	9.8	606.4	590.3	18.2	17.3	0.9	0.95	0.97	0.05	971.9	15.8	61.64	FRWY
(899, 8	366)	66	66	0	0	0.1	7.8	8.5	7.8	7.7	0.1	0.99	1.10	0.01	66.0	1.2	54.54	RAMP
(900, 9	901)	1945	1932	213	19	11.5	708.2	688.7	21.4	20.3	1.1	0.95	0.97	0.05	966.3	15.7	61.70	FRWY
(901, 9	902)	2126	2129	402	1	9.9	604.9	594.9	16.8	15.8	1.0	0.94	0.98	0.06	925.7	15.2	61.01	FRWY
(902, 9	903)	2129	2133	187	1	9.9	610.0	594.4	16.7	15.9	0.9	0.95	0.97	0.05	1065.8	17.3	61.58	FRWY
(858, 9	901)	194	194	0	0	0.5	29.3	32.8	10.1	9.9	0.2	0.98	1.12	0.02	194.0	3.6	53.57	RAMP
(903, 9	04)	2133	2131	217	3	11.4	699.2	681.2	19.2	18.2	1.0	0.95	0.97	0.05	1066.4	17.3	61.59	FRWY
(904, 9	905)	2131	2125	180	6	8.8	540.1	526.4	14.8	14.1	0.8	0.95	0.97	0.05	1064.9	17.3	61.57	FRWY
(906, 9	907)	2504	2504	180	11	10.2	649.6	611.6	14.5	14.2	0.3	0.98	0.94	0.02	1269.5	19.9	63.74	FRWY
(907, 9	908)	2504	2505	391	18	15.3	966.5	918.0	22.0	21.4	0.6	0.97	0.95	0.02	1251.4	19.8	63.17	FRWY
(908, 9	909)	2505	2499	243	13	11.5	711.3	688.3	16.5	15.8	0.7	0.96	0.97	0.04	1251.9	20.2	62.01	FRWY
(909, 9	910)	2172	2171	178	9	8.7	544.7	523.3	14.5	13.9	0.5	0.96	0.96	0.04	1086.1	17.4	62.45	FRWY
(909, 8	359)	327	327	0	3	0.9	47.3	52.7	9.6	9.5	0.1	0.99	1.11	0.02	327.8	6.1	53.85	RAMP
(910, 9	911)	2171	2173	196	11	10.5	655.9	630.3	17.4	16.7	0.6	0.96	0.96	0.04	1087.0	17.4	62.44	FRWY
(911, 9	912)	2173	2175	199	10	9.7	601.9	580.9	16.0	15.4	0.7	0.96	0.97	0.04	1086.1	17.5	62.17	FRWY
(861, 9	912)	27	27	0	0	0.0	2.6	2.8	6.2	6.2	0.0	1.00	1.09	0.00	27.0	0.5	55.23	RAMP
(912, 9	913)	2202	2200	230	12	10.1	625.5	605.0	16.5	15.8	0.7	0.96	0.97	0.04	957.3	15.4	62.03	FRWY
(913, 9	914)	2200	2201	193	12	10.6	655.0	634.9	17.3	16.5	0.8	0.95	0.97	0.04	1100.0	17.8	61.90	FRWY
(914, 9	915)	2201	2194	384	21	20.9	1289.8	1255.1	34.2	32.5	1.7	0.95	0.97	0.05	1099.4	17.8	61.66	FRWY

(915, 916)	2194	2203	424	17	21.1	1300.9	1267.6	34.6	32.8	1.8	0.95	0.97	0.05	1100.0	17.9	61.58	FRWY
(916, 917)	2203	2205	346	16	19.3	1187.5	1160.2	31.5	29.8	1.7	0.95	0.98	0.05	1105.0	18.0	61.41	FRWY
(917, 918)	2205	2202	261	16	15.1	924.5	906.3	24.7	23.3	1.4	0.94	0.98	0.06	1099.4	18.0	61.21	FRWY
(918, 919)	2202	2217	357	20	19.5	1197.0	1172.1	31.8	30.0	1.8	0.94	0.98	0.05	1105.3	18.0	61.27	FRWY
(919, 920)	2217	2219	385	13	20.3	1244.2	1220.0	33.0	31.2	1.9	0.94	0.98	0.06	1107.5	18.1	61.19	FRWY
(920, 921)	2219	2211	220	11	12.4	760.4	745.4	20.2	19.1	1.1	0.94	0.98	0.06	1107.2	18.1	61.21	FRWY
(921, 922)	2211	2209	196	15	11.8	722.6	709.0	19.3	18.2	1.1	0.94	0.98	0.06	1104.7	18.1	61.15	FRWY
(922, 923)	2209	2224	197	12	12.0	731.6	718.3	19.4	18.3	1.1	0.94	0.98	0.06	1110.6	18.2	61.11	FRWY
(923, 924)	2224	2205	265	21	13.4	820.4	806.7	21.8	20.5	1.3	0.94	0.98	0.06	1108.4	18.2	61.02	FRWY
(924, 925)	2205	2197	239	11	12.6	768.4	758.6	20.7	19.4	1.3	0.94	0.99	0.06	1100.1	18.1	60.77	FRWY
(925, 926)	2059	2054	236	13	13.6	832.0	813.7	23.7	22.4	1.3	0.95	0.98	0.05	1028.7	16.8	61.35	FRWY
(925, 876)	138	138	0	0	0.4	21.0	23.4	10.2	10.1	0.1	0.99	1.11	0.01	138.0	2.6	53.98	RAMP
(926, 927)	2054	2062	173	8	10.0	612.1	598.1	17.4	16.5	0.9	0.95	0.98	0.05	1029.2	16.8	61.40	FRWY
(878, 927)	73	71	0	2	0.1	4.1	4.5	3.8	3.7	0.0	0.99	1.11	0.01	72.1	1.3	53.82	RAMP
(927, 928)	2133	2122	245	15	9.9	604.8	593.2	16.7	15.8	1.0	0.94	0.98	0.06	925.6	15.1	61.18	FRWY
(928, 929)	2122	2119	140	6	9.1	560.6	548.6	15.5	14.7	0.9	0.94	0.98	0.05	1061.0	17.3	61.31	FRWY
(929, 930)	2119	2118	181	5	11.3	691.7	679.3	19.2	18.1	1.1	0.94	0.98	0.06	1059.2	17.3	61.10	FRWY
(930, 931)	2118	2112	133	7	7.6	460.9	453.2	12.9	12.1	0.8	0.94	0.98	0.06	1058.1	17.3	61.02	FRWY
(683, 687)	892	893	15	1	1.6	80.4	95.2	6.4	6.3	0.1	0.99	1.18	0.01	446.0	8.8	50.71	FRWY
(407, 369)	2057	2056	137	1	2.8	143.3	166.4	4.9	4.6	0.3	0.94	1.16	0.07	685.4	13.3	51.67	RAMP
(411, 416)	429	431	0	0	0.5	22.3	27.2	3.8	3.7	0.1	0.99	1.22	0.02	429.3	8.7	49.16	FRWY
(115, 117)	272	270	0	3	1.1	51.3	63.1	14.0	13.6	0.3	0.98	1.23	0.03	271.0	5.5	48.83	RAMP
(382, 383)	1244	1241	43	3	1.4	46.8	84.9	4.1	3.8	0.3	0.93	1.81	0.12	621.2	18.8	33.09	RAMP
(412, 414)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY

(281,	937)	2036	2036	71	1	1.6	77.5	97.6	2.9	2.7	0.1	0.95	1.26	0.06	678.7	14.2	47.64	FRWY
(383,	414)	1241	1241	103	0	3.1	120.3	184.5	8.9	7.8	1.1	0.87	1.53	0.20	627.9	16.0	39.15	RAMP
(314,	553)	1159	1154	0	7	2.5	132.2	151.8	7.9	7.5	0.4	0.95	1.15	0.06	1157.5	22.2	52.24	RAMP
(553,	933)	1154	1148	0	7	3.3	158.8	198.8	10.4	9.8	0.5	0.95	1.25	0.06	1150.3	24.0	47.93	RAMP
(933,	934)	1148	1153	0	1	3.2	152.6	194.6	10.1	9.5	0.6	0.94	1.27	0.07	1151.3	24.5	47.06	RAMP
(935,	936)	1705	1708	119	2	4.5	218.7	270.7	9.5	9.2	0.3	0.97	1.24	0.04	852.8	17.6	48.47	FRWY
(934,	935)	1708	1705	193	5	2.4	115.3	144.8	5.1	4.9	0.2	0.96	1.26	0.06	852.4	17.9	47.75	FRWY
(936,	309)	1708	1706	81	4	3.7	178.6	221.0	7.8	7.5	0.2	0.97	1.24	0.04	854.0	17.6	48.48	FRWY
(414,	415)	1241	1241	0	3	1.6	64.6	93.2	4.5	4.2	0.3	0.93	1.44	0.10	620.5	14.9	41.60	FRWY
(937,	555)	2033	2028	124	6	2.6	132.7	157.2	4.6	4.3	0.4	0.92	1.18	0.09	1015.5	20.0	50.67	RAMP
(111,	676)	1681	1681	464	1	3.9	210.4	234.1	8.4	8.2	0.2	0.98	1.11	0.02	560.3	10.4	53.94	FRWY
(416,	161)	701	702	61	0	1.5	74.0	90.6	7.8	7.6	0.2	0.98	1.23	0.02	350.5	7.2	48.96	FRWY
(162,	165)	3793	3790	517	12	10.4	660.3	624.2	9.7	9.5	0.2	0.98	0.95	0.02	967.4	15.2	63.48	FRWY
(165,	166)	3790	3790	86	9	8.4	538.5	506.4	8.0	7.9	0.1	0.98	0.94	0.02	947.7	14.9	63.81	FRWY
(386,	167)	4040	4036	650	9	9.3	573.7	559.7	8.3	7.9	0.4	0.95	0.98	0.05	877.9	14.3	61.50	FRWY
(167,	168)	4036	4026	199	13	9.2	572.7	552.0	8.2	7.9	0.3	0.96	0.96	0.04	1007.9	16.2	62.25	FRWY
(168,	169)	4026	4021	175	10	9.8	612.7	588.1	8.8	8.5	0.3	0.96	0.96	0.03	1005.9	16.1	62.51	FRWY
(404,	170)	269	271	0	0	0.3	14.7	16.3	3.6	3.6	0.0	0.99	1.11	0.01	270.2	5.0	54.16	RAMP
(7018,	171)	409	409	0	0	0.4	15.8	21.7	2.9	2.5	0.4	0.88	1.38	0.17	450.4	10.3	43.54	RAMP
(171,	172)	409	409	0	0	0.3	14.3	17.8	2.6	2.5	0.1	0.97	1.24	0.04	409.0	8.5	48.38	RAMP
(172,	387)	409	409	-0	0	0.3	15.3	18.4	2.7	2.5	0.2	0.91	1.20	0.10	409.0	8.2	49.99	RAMP
(7020,	174)	407	407	0	0	0.4	18.3	24.0	3.3	3.0	0.3	0.92	1.31	0.11	441.1	9.7	45.71	RAMP
(174,	175)	407	407	0	0	0.4	18.7	22.7	3.3	3.3	0.0	0.99	1.21	0.02	407.0	8.2	49.39	RAMP
(175,	386)	407	407	0	1	0.4	22.0	25.6	3.8	3.5	0.2	0.94	1.16	0.07	407.1	7.9	51.74	RAMP
(385,	173)	427	427	0	0	0.4	20.8	23.1	3.2	3.2	0.1	0.98	1.11	0.02	427.0	7.9	53.93	RAMP

(173,7019)	427	429	0	0	0.4	19.5	22.8	3.2	3.2	0.1	0.98	1.17	0.02	427.3	8.3	51.27	RAMP
(170,7017)	271	271	0	0	0.3	14.4	16.9	3.7	3.7	0.0	0.99	1.17	0.02	271.0	5.3	51.13	RAMP
(151, 344)	608	608	7	0	1.4	70.0	82.0	8.1	7.5	0.5	0.93	1.17	0.08	600.1	11.7	51.21	RAMP
(344,7026)	608	609	0	0	0.6	24.1	35.9	3.5	2.8	0.7	0.80	1.49	0.31	304.1	7.6	40.25	RAMP
(7007, 208)	118	118	0	0	0.1	4.2	6.6	3.0	2.6	0.4	0.86	1.58	0.23	131.4	3.5	37.95	RAMP
(209, 180)	118	118	0	0	0.1	6.2	7.4	3.8	3.5	0.2	0.93	1.18	0.08	118.0	2.3	50.65	RAMP
(315, 555)	4012	4003	293	19	15.5	975.4	929.3	13.9	13.5	0.4	0.97	0.95	0.03	801.6	12.7	62.98	FRWY
(313, 248)	5150	5157	1915	13	16.7	1035.6	1002.6	11.7	11.1	0.5	0.96	0.97	0.04	1030.8	16.6	61.98	FRWY
(258, 259)	1120	1120	0	1	1.5	67.7	87.5	4.7	4.4	0.3	0.93	1.29	0.09	852.6	18.4	46.39	FRWY
(259, 260)	2003	2003	493	3	5.2	272.7	309.3	9.3	8.9	0.3	0.96	1.13	0.04	667.6	12.6	52.91	FRWY
(260, 261)	2003	2005	8	1	4.8	258.5	290.0	8.7	8.5	0.2	0.97	1.12	0.03	668.1	12.5	53.48	FRWY
(261, 262)	700	700	0	0	3.2	165.1	189.8	16.3	15.5	0.8	0.95	1.15	0.05	700.0	13.4	52.17	FRWY
(262, 263)	700	701	0	1	1.3	67.6	78.3	6.7	6.3	0.4	0.95	1.16	0.06	701.5	13.5	51.81	FRWY
(263, 264)	701	699	0	2	1.4	74.4	86.6	7.4	7.0	0.4	0.94	1.16	0.07	699.9	13.6	51.55	FRWY
(7008, 625)	752	752	0	0	0.8	27.0	48.4	3.5	1.8	1.7	0.52	1.79	0.86	833.7	24.9	33.50	RAMP
(403, 310)	904	900	49	5	1.3	57.4	78.6	5.2	4.2	1.1	0.80	1.37	0.28	695.2	15.9	43.79	RAMP
(307, 187)	3225	3221	84	5	4.0	252.1	239.0	4.4	4.3	0.1	0.97	0.95	0.02	644.5	10.2	63.28	FRWY
(264, 187)	699	697	0	2	0.7	38.5	44.9	3.9	3.6	0.2	0.94	1.17	0.07	698.7	13.6	51.46	RAMP
(261, 189)	1305	1304	68	3	2.8	149.3	166.7	7.7	7.5	0.2	0.98	1.12	0.02	652.5	12.1	53.73	RAMP
(189, 265)	1304	1306	53	1	3.0	146.9	177.3	8.2	8.0	0.2	0.98	1.21	0.03	652.7	13.1	49.69	RAMP
(265, 266)	1306	1306	50	1	2.3	105.9	140.9	6.5	6.3	0.1	0.98	1.33	0.03	653.0	14.5	45.07	RAMP
(266, 267)	1306	1302	58	4	3.1	137.3	187.1	8.6	8.4	0.2	0.98	1.36	0.03	652.0	14.8	44.05	RAMP
(267, 268)	1302	1302	66	1	2.9	128.2	174.8	8.1	7.9	0.2	0.98	1.36	0.03	650.8	14.8	44.01	RAMP
(268, 269)	1302	1293	577	12	4.7	221.1	282.3	13.0	12.3	0.8	0.94	1.28	0.08	649.1	13.8	46.98	RAMP

(441, 397)	835	833	0	2	0.8	40.4	48.7	3.5	3.2	0.3	0.91	1.20	0.11	834.1	16.7	49.84	RAMP
(564, 399)	4010	4007	1901	13	8.7	531.4	522.9	7.8	7.5	0.3	0.96	0.98	0.04	801.6	13.1	60.97	FRWY
(399, 400)	3105	3108	71	4	4.0	248.9	242.2	4.7	4.5	0.2	0.95	0.97	0.05	776.8	12.6	61.66	FRWY
(269, 15)	1293	1291	170	4	2.0	86.4	121.8	5.7	4.4	1.3	0.77	1.41	0.32	698.4	16.4	42.53	RAMP
(10, 401)	1246	1246	90	3	3.2	163.1	190.9	9.2	8.6	0.6	0.94	1.17	0.08	1101.0	21.5	51.26	RAMP
(400, 10)	3108	3117	189	6	14.4	883.9	865.8	16.7	16.0	0.7	0.96	0.98	0.04	777.9	12.7	61.26	FRWY
(270, 7)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY
(613, 7)	1357	1356	29	1	1.0	55.0	61.9	2.7	2.7	0.1	0.97	1.13	0.03	678.2	12.7	53.25	RAMP
(7, 8)	1356	1353	261	3	1.0	56.2	63.0	2.8	2.7	0.1	0.98	1.12	0.03	451.4	8.4	53.50	FRWY
(8, 9)	1353	1352	41	1	1.0	54.6	62.9	2.8	2.7	0.1	0.97	1.15	0.04	547.8	10.5	52.09	FRWY
(9, 273)	555	555	0	0	0.5	26.1	30.8	3.3	3.3	0.1	0.98	1.18	0.03	555.0	10.9	50.77	FRWY
(273, 274)	555	554	25	1	0.6	25.8	33.9	3.7	3.6	0.1	0.98	1.31	0.02	399.0	8.7	45.68	FRWY
(9, 271)	797	796	14	1	0.9	42.5	52.4	3.9	3.9	0.1	0.98	1.23	0.03	398.2	8.2	48.72	RAMP
(271, 272)	796	796	15	0	0.8	37.5	48.7	3.7	3.6	0.0	0.99	1.30	0.01	398.0	8.6	46.29	RAMP
(415, 276)	1241	1242	0	0	1.3	53.9	77.3	3.7	3.5	0.3	0.93	1.44	0.10	864.4	20.7	41.80	FRWY
(272, 276)	796	796	39	2	1.8	80.4	109.4	8.3	8.1	0.1	0.98	1.36	0.02	397.6	9.0	44.11	RAMP
(276, 281)	2038	2036	632	3	2.5	112.3	147.2	4.3	4.0	0.4	0.92	1.31	0.11	679.2	14.8	45.78	FRWY
(937, 277)	3	3	0	0	0.0	0.1	0.2	3.9	2.3	1.6	0.60	1.42	0.58	3.0	0.1	42.12	FRWY
(264, 279)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY
(274, 275)	554	553	27	1	0.8	36.1	49.5	5.4	5.2	0.1	0.97	1.37	0.04	276.8	6.3	43.73	FRWY
(275, 934)	553	555	46	1	2.1	98.8	125.7	13.6	12.8	0.8	0.94	1.27	0.07	361.9	7.7	47.18	FRWY
(490, 258)	1121	1120	0	2	1.0	45.4	61.8	3.3	2.9	0.4	0.89	1.36	0.16	560.1	12.7	44.05	FRWY
(304, 259)	882	883	37	0	2.2	122.2	134.6	9.1	9.0	0.1	0.99	1.10	0.01	441.2	8.1	54.48	RAMP
(278, 490)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY
(27, 28)	1294	1295	28	1	1.8	115.2	110.0	5.1	5.0	0.1	0.97	0.96	0.03	431.2	6.9	62.81	FRWY

(28,	29)	1295	1294	22	1	1.6	99.3	93.8	4.3	4.3	0.1	0.98	0.94	0.02	431.5	6.8	63.50	FRWY
(29,	30)	1294	1289	22	5	1.8	112.0	105.7	4.9	4.8	0.1	0.98	0.94	0.02	430.6	6.8	63.59	FRWY
(30,	31)	1289	1288	26	3	1.7	109.2	103.1	4.8	4.7	0.1	0.98	0.94	0.02	429.8	6.8	63.54	FRWY
(23,	24)	3166	3167	1164	6	6.1	380.3	365.9	6.9	6.7	0.3	0.96	0.96	0.04	791.8	12.7	62.36	FRWY
(31,	32)	1288	1288	12	3	1.4	88.8	84.0	3.9	3.8	0.1	0.98	0.95	0.02	429.6	6.8	63.48	FRWY
(283,	632)	1870	1869	83	2	4.7	246.8	279.1	9.0	8.6	0.3	0.96	1.13	0.04	934.7	17.6	53.05	RAMP
(284,	283)	1871	1870	88	4	5.0	267.3	301.7	9.7	9.4	0.3	0.97	1.13	0.04	936.1	17.6	53.16	RAMP
(285,	284)	1873	1871	68	2	3.6	189.3	213.5	6.8	6.6	0.2	0.97	1.13	0.04	936.0	17.6	53.22	RAMP
(286,	285)	1869	1873	115	6	6.1	324.5	365.2	11.7	11.4	0.4	0.97	1.13	0.03	935.1	17.5	53.30	RAMP
(27,	286)	1869	1869	118	2	4.8	254.0	286.4	9.2	8.9	0.3	0.97	1.13	0.04	935.1	17.6	53.21	RAMP
(596,	111)	1678	1681	148	0	3.7	199.7	224.2	8.0	7.8	0.2	0.97	1.12	0.03	839.6	15.7	53.45	RAMP
(673,	675)	886	885	0	2	1.3	67.8	79.5	5.4	5.0	0.4	0.93	1.17	0.08	885.7	17.3	51.12	FRWY
(675,	287)	1631	1633	147	2	4.4	231.8	261.4	9.6	9.3	0.3	0.97	1.13	0.03	816.1	15.3	53.21	FRWY
(287,	289)	1633	1635	106	3	4.4	232.0	261.7	9.6	9.3	0.3	0.97	1.13	0.03	816.8	15.4	53.21	FRWY
(289,	294)	1635	1633	107	11	5.9	311.7	351.9	12.9	12.5	0.4	0.97	1.13	0.03	817.0	15.4	53.13	FRWY
(294,	296)	1633	1632	104	8	5.3	281.4	318.0	11.7	11.3	0.4	0.97	1.13	0.03	817.2	15.4	53.09	FRWY
(296,	297)	1632	1635	111	0	8.0	421.5	477.7	17.5	17.0	0.6	0.97	1.13	0.04	816.9	15.4	52.94	FRWY
(297,	601)	1635	1636	125	0	4.4	234.4	266.6	9.8	9.4	0.4	0.96	1.14	0.04	817.5	15.5	52.75	RAMP
(282,	346)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY
(297,	352)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY

NETWORK STATISTICS

VEHICLE-MILES = 202775.4, VEHICLE-MINUTES = 204267.5, MOVING/TOTAL TRIP TIME = 0.946,

AVERAGE CONTENT = 3404.5, CURRENT CONTENT = 3411.0, SPEED(MPH) = 59.56,

TOTAL DELAY (VEH-MIN) = 11014.86, TRAVEL TIME (MIN)/VEH-MILE = 1.01, DELAY TIME (MIN)/ VEH-MILE = 0.05

LINK STATISTICS BY LANE

(SOME STATISTICS APPLY TO HOV LANES ONLY)

SEC./VEHICLE SEC./PERSON

										KBOM							
				VE	HICLES	CURR	VOLUME	VOL	UME OF	TOTAL M	OVE DELA	Y TOTA	AT. MOVE	E DELAY	SPE	ED.	
	L	INK		LANE	TYPE				VEH/HR	VIOLATOR		TIME	TIME	TIME	TIME		MILES/HR
-	· - -																MIDES/IIK
	()	153,	96)	1	sov			1	699.	4	14.5	13.5	1.0	11.2	10.4	0.8	8 61.18
	()	153,	96)	2	sov			6	1695.	3	14.8	14.1	0.7	11.5	10.9		
	(1	153,	96)	3	sov			4	1088.	5	13.8	13.4	0.3	10.6	10.3		
	()	153,	96)	4	sov			1	590.	0	13.5	13.3	0.2	10.4	10.2		
		153,	96)	5	HOV	0	0	0	0.	0 0	0.0	0.0	0.0	0.0	0.0	0.0	
	(]	153,	96)	9	sov			3	1395.	5	15.0	14.3	0.7	11.6	11.1	0.5	5 58.92
		563,	98)	1				8			17.6	16.0	1.6	13.6	12.4	1.3	3 57.99
		563,	98)	2	sov			4	985.	5	17.3	16.1	1.1	13.4	12.5	0.9	9 59.28
	-	563,	98)	3	sov			4		_	15.9	15.6	0.4	12.3	12.0	0.3	3 64.20
	(:	563,	98)	4	sov			3	538.	3	15.5	15.2	0.3	11.9	11.7	0.2	2 65.93
	(!	563,	98)	5	HOV	0	0	0	0.	0 0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	(]	L54,	101)	1	sov			4	538.	7	29.6	29.2	0.5	23.0	22.7	0.4	4 65.34
	()	154,	101)	2	sov			10	1064.	7	30.7	30.0	0.7	23.8	23.3	0.5	5 63.15
	()	154,	101)	3	sov			9	968.	4	29.9	29.4	0.5	23.1	22.8	0.4	4 64.81
	()	154,	101)	4	sov			6	975.	2	30.9	30.2	0.6	23.7	23.2	0.5	5 62.73
	()	154,	101)	5	HOV	0	0	0	0.	0 0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	(:	103,	104)	1	sov			11	2032.	7	12.4	8.4	4.0	9.6	6.5	3.3	1 43.90
	(:	103,	104)	2	sov			4	1721.	0	9.4	8.4	1.0	7.3	6.5	0.8	8 58.20
	(:	103,	104)	3	sov			0	1191.	6	8.5	8.2	0.3	6.6	6.4	0.2	2 63.94
	(:	103,	104)	4	sov			1	818.	0	8.7	8.4	0.2	6.7	6.5	0.2	2 63.02
	(:	103,	104)	5	HOV	0	0	0	0.	0 0	.0 0.0	0.0	0.0	0.0	0.0	0.0	0.00
	(:	103,	104)	9	sov			0	180.	3	14.0	11.9	2.1	10.8	9.2	1.	7 38.90
	()	158,	105)	1	sov			22	2867.	7	20.7	16.0	4.7	16.0	12.4	3.6	6 49.41
	()	158,	105)	2	sov			13	1902.	1	17.4	15.9	1.5	13.4	12.3	1.:	1 58.92
	()	158,	105)	3	sov			4	1431.	8	16.0	15.5	0.5	12.3	11.9	0.4	4 63.95
	(:	158,	105)	4	sov			4	805.	2	16.0	15.6	0.4	12.3	12.0	0.3	3 64.02
	(:	158,	105)	5	HOV	0	0	0	0.	0 0	.0 0.0	0.0	0.0	0.0	0.0	0.0	0.00
	•	128,	97)		sov			9				22.4	0.5	17.7	17.3		
	(:	128,	97)	2	sov			11	1153.	9	24.8	24.0	0.8	19.3	18.7	0.0	60.24

(128, 97)	3	SOV			10	978.8		23.1	22.7	0.4	17.8	17.5	0.3	64.75
(128, 97)	4	sov			4	663.2		22.7	22.3	0.4	17.5	17.2	0.3	65.80
(128, 97)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(== ,														
(156, 102)	1	sov			9	1996.5		15.1	13.8	1.3	11.7	10.7	1.0	58.84
(156, 102)	2	sov			7	1329.8		14.2	13.6	0.6	11.0	10.5	0.5	62.41
(156, 102)	3	sov			3	998.2		13.7	13.4	0.3	10.6	10.4	0.3	64.47
(156, 102)	4	SOV			5	779.9		14.1	13.8	0.3	10.9	10.6	0.3	62.79
(156, 102)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	9													
(156, 102)	9	sov			2	196.5		15.4	14.6	0.8	11.9	11.3	0.6	57.58
(109,7001)	1	sov			0	1228.0		2.2	2.2	0 1	1			
(109,7001)	2	SOV			0	475.0				0.1	1.7	1.7	0.0	52.09
(109,7001)	2	201			U	4/5.0		2.1	2.0	0.0	1.6	1.6	0.0	56.33
(102, 103)	1	sov			6	1325.6		25.5	24.0	1 4	10.7	10.6		
(102, 103)	2	SOV			7	1325.6		24.6		1.4	19.7	18.6	1.1	60.82
(102, 103)	3	SOV			9	1085.6			23.8	0.8	19.1	18.4	0.6	62.92
	4							23.9	23.4	0.5	18.5	18.1	0.4	64.68
(102, 103)		sov			4	792.8		24.6	24.0	0.6	18.9	18.5	0.4	63.01
(102, 103)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
/ 160 7000)						400.0								
(160,7002)	1	sov			1	402.0		2.7	2.7	0.0	2.1	2.1	0.0	54.64
(160,7002)	2	sov			0	314.0		2.7	2.7	0.0	2.1	2.1	0.0	54.46
(5000 100)	_													
(7003, 106)	1	sov			0	681.0		8.9	6.5	2.3	6.8	5.0	1.8	33.87
(7003, 106)	2	sov			0	739.7		8.6	6.4	2.2	6.7	4.9	1.7	34.72
	_													
(106, 103)	1	sov			1	1111.1		11.3	7.8	3.5	8.7	6.0	2.7	37.18
(106, 103)	2	sov			0	245.7		18.1	8.7	9.4	14.0	6.7	7.3	23.10
(7004, 107)	1	sov			0	560.1		4.2	3.0	1.2	3.3	2.3	1.0	40.88
(7004, 107)	2	sov			0	595.0		3.8	3.1	0.7	3.0	2.4	0.5	45.09
(107, 104)	1	sov			0	649.0		8.9	6.3	2.6	6.9	4.9	2.0	37.85
(107, 104)	2	sov			0	426.9		8.7	6.2	2.5	6.7	4.8	1.9	38.66
(110, 109)	1	SOV			1	1242.0		2.4	2.3	0.1	1.9	1.8	0.1	52.37
(110, 109)	2	SOV			0	461.4		2.3	2.2	0.0	1.7	1.7	0.0	56.32
(96, 110)	1	SOV			0	1281.5		1.7	1.7	0.1	1.3	1.3	0.0	52.48
(96, 110)	2	SOV			0	421.3		1.6	1.6	0.0	1.2	1.2	0.0	56.45
(127, 97)	1	SOV			6	630.4		11.9	7.8	4.1	9.2	6.0	3.2	33.97
(127, 97)	2	sov			1	73.1		25.1	8.2	16.9	19.4	6.3	13.1	16.10
(96, 128)	1	sov			6	808.9		16.4	15.8	0.6	12.7	12.2	0.4	62.41
(96, 128)	2	sov			8	1346.2		16.9	16.3	0.6	13.1	12.6	0.5	60.56
(96, 128)	3	sov			3	1005.0		15.7	15.5	0.3	12.1	11.9	0.2	65.03
(96, 128)	4	sov			6	606.4		15.5	15.3	0.2	12.0	11.8	0.2	65.84
(96, 128)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00

(128,	129)	1	sov			2	345.6		11.8	11.3	0.4	9.1	8.7	0.3	52.48
-	128,		2	sov			0	16.0		12.9	10.7	2.2	10.0	8.3	1.7	47.70
`	120,	1231		501			•	10.0		12.5	10.,		20.0	0.5		27.070
,	100	1001	-					1680 6				1.6			1.0	F2 00
-	132,		1	sov			4	1673.6		9.9	8.3	1.6	7.7	6.4	1.2	53.98
-	132,	-	2	SOV			2	1385.8		8.8	8.3	0.5	6.8	6.5	0.4	60.69
(132,	130)	3	sov			2	1086.4		8.3	8.1	0.2	6.4	6.3	0.1	64.46
(132,	130)	4	sov			1	737.9		8.2	8.1	0.2	6.3	6.2	0.1	64.92
(132,	130)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	132,	-	9	sov			1	73.4		13.4	10.2	3.2	10.3	7.9	2.5	39.94
`	132,	130,	,	504			-	73.4		13.1	10.2	3.2	10.5	1.3	2.5	33.34
,	131,	1201	-	sov			•	500.0								
'	131,	130)	1	500			0	508.0		3.1	2.9	0.2	2.4	2.2	0.2	50.18
(151,	132)	1	sov			6	1179.6		16.8	15.8	1.0	13.0	12.2	0.7	60.60
(151,	132)	2	sov			6	1307.8		16.4	15.8	0.6	12.8	12.3	0.5	61.82
(151,	132)	3	sov			3	1020.2		15.7	15.4	0.3	12.1	11.9	0.2	64.56
(151,	132)	4	sov			0	692.4		15.7	15.3	0.3	12.1	11.8	0.3	64.89
-	151,	-	5	HOV	0	0	Ö	0.0	0.0							
`	131,	132)	3	HOV	U	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	105	105)					_									
	105,		1	sov			7	1329.0		14.1	13.1	0.9	10.9	10.2	0.7	59.58
	105,		2	sov			9	1888.2		13.8	13.1	0.7	10.7	10.1	0.6	60.73
(105,	137)	3	SOV			7	1534.3		13.1	12.7	0.4	10.1	9.8	0.3	64.02
(105,	137)	4	sov			2	902.7		13.0	12.7	0.4	10.0	9.8	0.3	64.21
(105,	137)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
•	,	,	•		•	•	•				0.0	0.0	0.0	0.0	0.0	0.00
(98	138)	1	sov			1	1244.7		6.7	6.4	0.3	5.2	4.9	0.2	52.53
ì	•	138)	2	sov			ō	0.1		6.7	-5.8	12.5	5.2	-4.5	9.7	
'	30,	130)	2	504			U	0.1		0.7	-5.6	12.5	5.2	-4.5	9.7	52.31
,	100	1001					•	1150 0								
-	138,		1	sov			0	1178.9		2.6	2.5	0.1	2.0	1.9	0.1	53.28
(138,	139)	2	sov			0	66.1		2.6	2.3	0.3	2.0	1.8	0.2	52.83
(141,	140)	1	sov			1	303.3		11.3	6.0	5.3	8.7	4.6	4.1	25.57
(141,	140)	2	sov			3	1440.3		8.2	5.2	3.1	6.3	4.0	2.4	35.16
•		,														
(140,	101)	1	sov			7	1689.7		11.3	9.3	2.1	8.8	7.2	1.6	44.92
	140,		2				Ó	68.1		12.8	12.8	0.0	9.9	9.9	0.0	39.68
(140,	101)	2	sov			U	66.1		12.0	12.0	0.0	9.9	9.9	0.0	39.00
			_													
(105,	143)	1	sov			2	1299.7		5.0	4.0	1.0	3.9	3.1	0.8	42.08
('	7005,	127)	1	sov			1	519.9		3.0	1.3	1.7	2.3	1.0	1.3	23.17
(,	7005,	127)	2	sov			1	331.1		2.4	1.4	1.0	1.8	1.1	0.8	29.88
	,															
(129,	7006)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
•	129,	•	2	sov			0	362.0		4.0	3.4	0.5	3.1	2.7	0.4	40.42
'	143,	, 500)	4	504	-		U	302.0	-	4.0	J. 1	0.5	J. I	4.1	0.7	10.12
,		1.40					_									4
(147,	148)	1	sov			0	838.8		6.0	5.7	0.3	4.6	4.4	0.3	47.18
(148,	137)	1	sov			0	841.0		4.1	3.9	0.3	3.2	3.0	0.2	50.59

(163,	149)	1	SOV			13	1003.7		33.2	32.5	0.7	25.8	25.3	0.5	64.64
(163,	149)	2	SOV			11	1316.7		34.0	33.2	0.8	26.3	25.7	0.6	63.20
(163,	149)	3	sov			14	1144.6		33.3	32.8	0.5	25.8	25.4	0.4	64.39
(163,	149)	4	sov			13	1232.8		33.8	33.2	0.6	26.0	25.5	0.5	63.43
(163,	149)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	•														
(311,	150)	1	sov			11	1968.7		13.7	12.6	1.1	10.6	9.7	0.8	59.47
(311,	-	2	sov				1251.6		13.2	12.7	0.5	10.2	9.8	0.4	61.71
(311,	-	3	sov			4	934.6		12.6	12.4	0.2	9.7	9.5	0.2	64.54
(311,		4	sov			5	645.0		12.6	12.3	0.3	9.7	9.5	0.2	64.65
(311,		5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0				
(311,	130,	,	1101	Ū	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(152,	153)	1	sov			0	734.8		2.5	2.3	0.2	2 2	1 0		5 2 00
(152,		2	sov			1	1811.9		2.5		0.3	2.0	1.8	0.2	53.99
(152,		3	sov							2.1	0.3	1.8	1.6	0.2	57.08
_	-					0	909.5		2.2	2.0	0.1	1.7	1.6	0.1	62.73
(152,	-	4	HOV	0	542	0	393.8	393.8	2.1	2.0	0.0	1.6	1.6	0.0	65.25
(152,	153)	9	sov			4	1614.6		2.3	2.1	0.2	1.8	1.6	0.1	59.35
/ 120	150\	-					1000								
(130,		1	sov			4	1755.9		15.8	13.8	2.0	12.2	10.6	1.6	56.06
(130,		2	sov			10	1881.4		15.2	13.8	1.4	11.7	10.7	1.1	58.40
(130,		3	SOV			3	1107.8		13.9	13.4	0.5	10.7	10.3	0.3	63.93
(130,	-	4	sov			2	688.2		13.7	13.3	0.3	10.5	10.3	0.2	64.92
(130,	-	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(130,	152)	9	sov			0	32.7		19.1	14.3	4.8	14.7	11.0	3.7	46.37
(100,		1	sov			2	477.1		17.3	17.2	0.1	13.5	13.4	0.1	65.46
(100,		2	sov			5	1176.3		17.6	17.4	0.2	13.7	13.5	0.2	64.11
(100,	154)	3	sov			4	867.6		17.4	17.3	0.2	13.5	13.4	0.1	64.84
(100,	154)	4	SOV			6	1064.1		17.8	17.6	0.2	13.7	13.5	0.2	63.63
(100,	154)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(101,	155)	1	SOV			14	1865.1		16.4	13.6	2.7	12.7	10.5	2.1	54.16
(101,	155)	2	sov			6	1308.6		14.6	13.7	1.0	11.3	10.6	0.7	60.63
(101,	155)	3	sov			5	1103.2		13.8	13.4	0.4	10.7	10.4	0.3	64.18
(101,	155)	4	sov			4	937.4		14.3	13.9	0.4	11.0	10.7	0.3	62.17
(101,	155)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(101,		9	sov			1	87.4		21.9	16.9	5.1	17.0	13.0	3.9	40.45
	•					-	_								
(155,	156)	1	sov			0	1941.9		2.3	2.1	0.2	1.8	1.6	0.1	59.78
(155,	-	2	sov			1	1434.1		2.2	2.1	0.1	1.7	1.6	0.1	62.20
(155,		3	sov			0	1103.6		2.1	2.1	0.1	1.6	1.6	0.0	64.05
(155,	-	4	sov			Ö	817.0		2.2	2.1	0.1	1.7	1.6	0.0	62.35
(155,		5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
, 155,	-50,	3		Ŭ	v	J	0.0	0.0	3.0	3.0	3.0	3.0	3.0		0.00
(104,	157)	1	sov	·		15	2475.1		21.9	15.9	6.1	17.0	12.3	4.7	46.62
(104,		2	sov			14	2099.1		18.1	15.9	2.2	14.0	12.3	1.7	56.47
(104,	-	3	SOV			7	1463.9		16.3	15.5	0.8	12.6	11.9	0.6	62.70
(104,	-	4	SOV			7	866.1		16.3	15.7	0.6	12.5	12.1	0.5	62.70
-	-	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.00
(104,	T2/)	5	пОV	U	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00

(10	04,	157)	9	sov			0	98.5		26.1	22.7	3.4	20.2	17.6	2.6	39.13
/ 15	57	158)	1	sov			2	3050.3		2.7	2.1	0.6	2.1	1.6	0.5	50.00
-	-	158)	2	sov			0	1882.5		2.3	2.1	0.2	1.8	1.6	0.2	58.36
	-	158)	3	sov			1	1324.3		2.1	2.1	0.1	1.7	1.6	0.1	63.67
•	-	158)	4	sov			0	744.7		2.1	2.1	0.1	1.6	1.6	0.0	63.63
-		158)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(1.	<i>,</i>	130)	5	HOV	U	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(13	37,	159)	1	sov			9	2599.3		13.5	9.8	3.7	10.4	7.6	2.8	47.20
(13	37,	159)	2	sov			5	1723.5		10.9	9.9	1.0	8.4	7.6	0.8	58.45
(13	37,	159)	3	sov			4	1307.1		10.0	9.6	0.3	7.7	7.4	0.3	63.79
(1:	37,	159)	4	sov			1	761.5		9.8	9.6	0.2	7.5	7.4	0.2	64.88
(1:	37,	159)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(13	37,	159)	9	sov			0	101.0		14.8	12.3	2.5	11.4	9.5	2.0	42.98
	-	151)	1	sov			5	1882.7		8.3	7.7	0.7	6.5	6.0	0.5	58.63
	-	151)	2	sov			1	1285.5		7.9	7.6	0.3	6.1	5.9	0.2	61.80
•		151)	3	sov			1	979.1		7.6	7.4	0.2	5.8	5.7	0.1	64.54
		151)	4	sov			0	659.0		7.6	7.4	0.2	5.8	5.7	0.1	64.70
(1!	50,	151)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(32		95)	1	sov			12	1493.7		37.0	35.1	1.9	28.6	27.2	1.5	60.40
(32	-	95)	2	sov			14	1401.9		36.8	35.4	1.4	28.4	27.3	1.1	60.74
(32	-	95)	3	sov			18	1356.0		35.1	34.1	1.0	27.1	26.4	0.8	63.61
(32	25,	95)	4	sov			15	1150.9		34.3	33.2	1.1	26.4	25.6	0.8	65.10
(32	25,	95)	5	HOV	17	17	0	17.0	17.0	34.0	33.7	0.3	26.4	26.1	0.3	65.70
•		160)	1	sov			0	400.0		5.2	5.2	0.0	4.1	4.0	0.0	54.55
(10	02,	160)	2	sov			0	315.3		5.3	5.2	0.1	4.1	4.0	0.1	54.28
(9	98,	99)	1	sov			1	718.7		24.5	23.5	0.9	18.9	18.2	0.7	62.46
(9	98,	99)	2	sov			2	875.5		24.9	24.2	0.7	19.4	18.8	0.5	61.35
(9	98,	99)	3	sov			5	730.7		23.7	23.4	0.3	18.3	18.0	0.3	64.49
(!	98,	99)	4	sov			3	519.8		23.1	22.8	0.3	17.8	17.5	0.3	66.19
(!	98,	99)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	-	164)	1	sov			2	729.0		16.1	15.6	0.5	12.4	12.0	0.4	62.88
(!	99,	164)	2	sov			3	844.7		16.4	16.0	0.4	12.8	12.4	0.3	61.43
(!	99,	164)	3	sov			3	744.3		15.6	15.4	0.2	12.0	11.9	0.2	64.57
(9	99,	164)	4	sov			2	528.4		15.3	15.1	0.2	11.8	11.6	0.2	66.15
(!	99,	164)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(29	95,	200)	1	sov			1	648.4		8.3	8.2	0.1	6.4	6.4	0.0	48.18
•	•	200)	2	sov			0	626.9		8.4	8.3	0.1	6.5	6.4	0.1	47.60
(29	95,	200)	9	sov			0	68.8		8.9	8.7	0.2	6.9	6.7	0.2	44.78
(2(03,	201)	1	sov			0	748.9		1.8	1.7	0.0	1.4	1.3	0.0	63.57
(20	03,	201)	2	sov			1	745.5		1.8	1.7	0.0	1.4	1.3	0.0	63.88

(200,	199)	1	sov	 	0	577.8	 6.6	6.6	0.1	5.1	5.1	0.0	44.95
	200,		2	sov	 	2	642.3	 6.7	6.6	0.0	5.2	5.1	0.0	44.46
`		,	_											
-	179,	178)	1	sov	 	1	783.1	 6.3	6.1	0.2	4.9	4.7	0.2	53.75
	179,	-	2	sov	 	1	776.4	 6.4	6.2	0.2	4.9	4.8	0.2	53.26
'	113,	1/0)	2	50 V	 	_	770.4	0.4	0.2	0.2	4.7	1.0	0.2	33.20
((180,	179)	1	sov	 	5	767.6	 12.7	12.4	0.2	9.8	9.6	0.2	53.87
	180,		2	sov	 	2	783.4	 12.8	12.5	0.3	9.9	9.6	0.2	53.38
	180,	-	9	sov	 	0	6.1	 12.8	12.5	0.3	9.9	9.6	0.2	53.44
	,	_,,		201		•	0.1	12.0	12.5	0.5	3.3	3.0	0.2	33.11
((181,	180)	1	sov	 	1	653.9	 6.3	6.2	0.1	4.8	4.8	0.1	54.20
((181,	180)	2	sov	 	1	783.8	 6.3	6.2	0.1	4.9	4.8	0.1	53.48
	•							• • • • • • • • • • • • • • • • • • • •	V.2	٠. ـ		1.0	0.1	33.40
((199,	198)	1	sov	 	1	553.6	 8.3	8.1	0.2	6.4	6.3	0.1	44.92
((199,	198)	2	sov	 	3	667.0	 8.4	8.3	0.2	6.5	6.4	0.1	44.40
((198,	197)	1	sov	 	6	731.8	 15.8	15.0	0.8	12.2	11.6	0.6	52.24
((198,	197)	2	sov	 	3	716.2	 15.8	15.2	0.6	12.2	11.7	0.5	52.29
((198,	197)	9	sov	 	0	9.1	 18.7	17.7	0.9	14.5	13.7	0.7	44.30
((197,	196)	1	sov	 	5	981.9	 19.3	18.6	0.7	14.9	14.4	0.5	52.92
((197,	196)	2	sov	 	6	785.9	 19.0	18.6	0.4	14.7	14.4	0.3	53.78
((197,	196)	9	sov	 	0	11.0	 23.1	21.3	1.8	17.9	16.5	1.4	44.22
((196,	195)	1	sov	 	8	939.1	 33.2	32.2	1.0	25.6	24.9	0.8	53.05
((196,	195)	2	sov	 	10	836.1	 32.7	31.9	0.8	25.3	24.7	0.6	53.81
((182,	181)	1	sov	 	2	611.0	 21.6	21.3	0.3	16.7	16.4	0.3	53.87
((182,	181)	2	SOV	 	4	824.7	 21.6	21.2	0.4	16.7	16.4	0.3	53.86
((183,	182)	1	sov	 	8	1675.9	 19.6	18.7	1.0	15.2	14.4	0.8	52.10
((183,	182)	2	sov	 	5	869.2	 18.9	18.5	0.4	14.6	14.3	0.3	54.07
((184,	183)	1	sov	 	10	1398.1	 24.4	23.9	0.5	18.8	18.4	0.4	53.64
((184,	183)	2	sov	 	10	1169.3	 24.1	23.8	0.4	18.6	18.3	0.3	54.26
((205,	204)	1	sov	 	2	323.3	 2.8	2.8	0.0	2.2	2.2	0.0	44.20
. ((204,	197)	1	sov	 	0	322.1	 4.8	4.7	0.1	3.7	3.6	0.0	44.15
((182,	193)	1	sov	 	3	551.3	 7.5	6.3	1.1	5.8	4.9	0.9	53.69
((182,	193)	2	sov	 	1	560.8	 6.8	6.2	0.7	5.3	4.8	0.5	58.60
((193,	194)	1	sov	 	0	223.5	 4.4	3.8	0.7	3.5	2.9	0.5	58.44
((193,	194)	2	sov	 	0	887.0	 4.3	4.0	0.3	3.3	3.1	0.2	60.31
((193,	194)	3	sov	 	0	0.4	 5.0	1.4	3.6	3.8	1.1	2.8	52.41
((208,	209)	1	sov	 	0	118.0	 6.6	6.3	0.3	5.1	4.9	0.3	46.78

(207, 198)	1	sov			0	237.0		5.3	5.1	0.2	4.1	4.0	0.1	42.71
(206, 207)	1	sov			0	237.0		2.8	2.6	0.2	2.2	2.0	0.2	36.61
(200, 201,	_				•									
(200, 210)	1	sov			0	125.3		4.2	4.2	0.1	3.3	3.2	0.1	43.97
(210, 211)	1	sov			0	126.0		3.6	3.6	0.0	2.8	2.8	0.0	41.00
(178, 202)	1	sov			0	791.7		1.9	1.7	0.2	1.5	1 2	0.2	E4 40
					-				-			1.3		54.48
(178, 202)	2	sov			0	769.3		1.9	1.7	0.2	1.5	1.3	0.2	54.19
(139,7009)	1	sov			0	1134.0		2.1	2.1	0.1	1.6	1.6	0.0	53.05
(139,7009)	2	sov			0	111.0		2.0	2.0	0.1	1.6	1.5	0.1	55.50
(7010, 141)	1	0011			•	005.0			- 4					
	1	sov			0	925.2		6.5	5.4	1.2	5.1	4.1	0.9	45.22
(7010, 141)	2	sov			0	915.1		6.4	5.2	1.1	4.9	4.0	0.9	46.41
(211,7011)	1	sov			0	126.0		4.7	4.6	0.1	3.7	3.6	0.1	34.37
(7012, 206)	1	sov			0	276.8		2.3	2.1	0.2	1.8	1.7	0.1	22.25
(7012, 200)	-	501			U	270.0		2.3	2.1	0.2	1.0	1.7	0.1	33.35
(7014, 205)	1	sov			0	348.2		4.0	3.8	0.2	3.1	2.9	0.2	42.54
(194,7015)	1	sov			0	252.0		2.1	1.8	0.3	1.6	1.4	0.3	54.60
(194,7015)	2	sov			1	851.3		2.1	1.9	0.2	1.6	1.4	0.2	55.51
(194,7015)	3	sov			0	7.0		2.4	1.9	0.5	1.8	1.5	0.3	49.09
(201, 295)	1	sov			2	677.5		8.8	0 0	0 0	<i>c</i> 0			F7 F6
	2				2	665.0			8.8	0.0	6.8	6.8	0.0	57.56
(201, 295)	2	sov			2	003.0		8.8	8.8	0.0	6.8	6.8	0.0	57.53
(149, 298)	1	sov			8	1449.5		16.3	15.6	0.7	12.6	12.1	0.5	62.85
(149, 298)	2	sov			4	1092.6		16.3	15.9	0.4	12.6	12.3	0.3	62.73
(149, 298)	3	sov			4	1120.7		15.9	15.6	0.3	12.3	12.0	0.3	64.37
(149, 298)	4	sov			7	1003.8		16.3	15.9	0.4	12.6	12.2	0.3	62.56
(149, 298)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(522 000)					•	1754 0		0.4		0.7	6 5		0 1	45 07
(533, 299)	1	sov			3	1754.2		8.4	5.7	2.7	6.5	4.4	2.1	45.07
(533, 299)	2	sov			2	1306.3		6.5	5.8	0.6	5.0	4.5	0.5	58.62
(533, 299)	3	sov			2	1182.6		6.0	5.8	0.2	4.6	4.5	0.2	63.55
(533, 299)	4	sov			2	994.8		6.1	5.9	0.2	4.7	4.5	0.2	62.22
(533, 299)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(533, 299)	9	sov			1	213.5		10.7	8.4	2.3	8.3	6.5	1.8	35.24
(299, 300)	1	sov			4	2036.7		18.3	15.8	2.4	14.1	12.2	1.9	56.02
(299, 300)	2	sov			3	1660.4		17.1	15.8	1.3	13.3	12.2	1.0	59.76
(299, 300)	3	sov			3	1327.8		16.2	15.6	0.7	12.5	12.0	0.5	63.11
(299, 300)	4	sov			7	1021.3		16.5	15.9	0.6	12.7	12.2	0.5	62.12
(299, 300)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(299, 300)	9	sov			Ō	38.1		21.2	17.4	3.8	16.4	13.4	3.0	48.24
,,	-				-	-								-

(3	300,	301)	1	sov			9	1896.7		29.2	27.3	1.9	22.6	21.2	1.4	60.60
•	•	301)	2	sov			10	1706.9		28.6	27.3	1.3	22.2	21.1	1.0	61.86
-	-	301)	3	sov			10	1428.1		27.9	26.9	1.0	21.6	20.8	0.8	63.44
		301)	4	sov			7	1059.8		28.4	27.4	1.1	21.9	21.0	0.8	62.26
•			5		0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(3	300,	301)	5	HOV	U	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(3	301,	302)	1	sov			2	944.4		13.8	13.0	0.8	10.7	10.1	0.6	61.61
(3	301,	302)	2	sov			5	1458.5		13.7	13.1	0.6	10.6	10.1	0.4	62.31
(3	301,	302)	3	sov			5	1451.9		13.8	13.0	0.8	10.6	10.0	0.6	61.92
(3	301,	302)	4	HOV	0	943	3	563.1	563.1	13.6	13.1	0.5	10.5	10.1	0.4	62.53
(3	301,	302)	9	sov			6	1673.3		14.1	13.3	0.9	10.9	10.3	0.7	60.28
	•														• • •	00.20
(3	302,	303)	1	sov			14	1866.4		17.1	15.7	1.4	13.3	12.2	1.1	59.69
(3	302,	303)	2	sov			7	1289.1		16.5	15.8	0.7	12.8	12.2	0.5	61.94
		303)	3	sov			5	1068.4		16.1	15.6	0.5	12.5	12.1	0.4	63.40
	-	303)	4	sov			3	808.0		16.3	15.7	0.6	12.6	12.1	0.4	62.70
-		303)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
•	•	303)	9	sov			3	443.5		16.6	15.8	0.8	12.8	12.2	0.6	61.66
	-	303)	10	sov			7	613.2		17.4	16.3	1.1	13.5	12.6	0.8	58.76
` `	302,	303,	10	504			,	013.2		17.4	10.3	1.1	13.3	12.0	0.0	30.76
(3	303,	304)	1	sov			7	1675.7		11.5	10.8	0.7	8.9	8.4	0.5	60.00
(3	303,	304)	2	sov			6	1288.7		11.0	10.6	0.3	8.5	8.2	0.3	62.65
	-	304)	3	sov			6	1047.7		10.7	10.5	0.3	8.3	8.1	0.2	64.19
-		304)	4	sov			4	803.4		10.9	10.6	0.3	8.4	8.2	0.3	62.86
		304)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
		304)	9	sov			3	440.5		11.4	11.1	0.3	8.8	8.6	0.2	60.17
, ,	,	,	-												• • •	
(3	304,	305)	1	sov			4	1444.0		10.4	9.7	0.7	8.1	7.5	0.5	59.87
(3	304,	305)	2	sov			4	1027.9		9.9	9.5	0.4	7.7	7.3	0.3	62.80
(3	304,	305)	3	sov			2	695.4		9.8	9.5	0.3	7.6	7.3	0.2	63.54
(3	304,	305)	4	HOV	0	641	1	112.9	112.9	9.8	9.5	0.3	7.5	7.3	0.2	63.62
(:	304,	305)	9	sov			3	1089.9		10.1	9.6	0.5	7.8	7.4	0.4	61.64
•																
(3	305,	306)	1	sov			2	418.0		16.2	15.3	0.8	12.5	11.9	0.6	63.23
(:	305,	306)	2	sov			4	1341.6		16.6	16.1	0.5	12.9	12.5	0.4	61.43
(:	305,	306)	3	sov			3	984.1		15.8	15.5	0.3	12.2	12.0	0.2	64.71
(:	305,	306)	4	sov		-,	2	649.8		16.1	15.6	0.4	12.4	12.0	0.3	63.71
-	-	306)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
		306)	9	sov			3	978.2		17.0	16.5	0.5	13.1	12.7	0.4	60.18
` `	,															
(:	306,	307)	1	sov			0	409.8		19.3	19.0	0.3	14.9	14.7	0.3	66.42
(:	306,	307)	2	sov			5	1148.4		21.0	20.3	0.7	16.3	15.8	0.5	61.03
(:	306,	307)	3	sov			7	978.1		19.8	19.5	0.4	15.3	15.0	0.3	64.67
	-	307)	4	sov			2	690.6		20.1	19.5	0.5	15.4	15.0	0.4	63.88
•		307)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	- /		-													
(:	187,	310)	1	sov			5	1029.6		7.8	7.0	0.8	6.0	5.4	0.6	59.16
•		310)	2	sov			3	1102.7		7.6	7.3	0.3	5.9	5.7	0.2	60.54
, ,	/		_				_									

(187,	310)	3	sov			2	991.2		7.2	7.0	0.2	5.5	5.4	0.1	64.25
-	187,		4	sov			0	731.9		7.2	7.0	0.2	5.5	5.4	0.1	64.14
-	187,	-	5	HOV	0	0	Ö	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
-	187,		9	sov			1	58.4		9.7	8.2	1.5	7.5	6.3	1.2	47.35
(10/,	310)	9	50V				30.4		9.1	0.2	1.5	7.5	0.5	1.2	47.33
(310,	311)	1	sov			11	1823.6		17.6	15.7	1.9	13.6	12.1	1.4	58.17
	310,	•	2	sov			7	1228.9		16.9	16.1	0.8	13.1	12.5	0.6	60.69
	310,		3	sov			6	999.8		16.0	15.6	0.4	12.3	12.0	0.3	64.11
		-														
	310,	-	4	sov			3	702.3		16.0	15.5	0.4	12.3	11.9	0.3	64.12
	310,		5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(310,	311)	9	sov			0	52.4		20.0	17.9	2.1	15.5	13.9	1.6	51.10
-	159,	312)	1	sov			3	2609.0		7.3	6.0	1.3	5.7	4.7	1.0	52.80
	159,		2	sov			0	1698.7		6.5	6.0	0.5	5.1			
	159,		3	sov			1	1373.1		6.1				4.7	0.4	59.02
	159,		4	SOV			0	811.6			5.9	0.2	4.7	4.5	0.2	63.76
			5	HOV			-			6.0	5.8	0.1	4.6	4.5	0.1	64.96
'	159,	312)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(312,	313)	1	sov			9	2515.0		11.2	10.1	1.2	8.7	7.8	0.9	56.62
(312,	313)	2	sov			5	1711.4		10.4	9.9	0.5	8.1	7.7	0.4	60.92
	312,		3	sov			3	1404.4		9.9	9.7	0.3	7.6	7.4	0.2	64.15
	312,	-	4	sov			2	864.4		9.8	9.5	0.2	7.5	7.3	0.2	64.94
	312,	-	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,		,	_		•	•	•		0.0	0.0	•••	0.0	0.0	0.0	0.0	0.00
(248,	314)	1	sov			11	1974.9		17.4	16.1	1.3	13.5	12.5	1.0	58.82
(248,	314)	2	SOV			4	1284.6		16.6	16.0	0.6	12.8	12.4	0.5	61.62
(248,	314)	3	sov			5	1148.9		15.9	15.5	0.3	12.2	12.0	0.3	64.38
(248,	314)	4	sov			3	749.9		15.7	15.3	0.4	12.1	11.8	0.3	65.20
(248,	314)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
((314,	315)	1	sov			1	831.4		8.2	7.8	0.4	6.4	6.0	0.3	60.41
	314,		2	sov			3	1226.0		8.0	7.8	0.3	6.2	6.0	0.2	61.61
	314,	-	3	sov			1	1144.9		7.7	7.6	0.2	5.9	5.8	0.1	64.20
	314,		4	sov			1	802.4		7.6	7.4	0.2	5.9	5.7	0.2	65.14
	314,		5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	(311,	313,	3	1101	ŭ	·	·	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
((555,	316)	1	sov			2	466.8		24.5	23.4	1.1	18.9	18.1	0.8	61.69
((555,	316)	2	sov			11	1380.8		24.6	23.7	0.9	19.0	18.3	0.7	61.49
	555,		3	sov			11	1154.0		23.6	23.0	0.6	18.2	17.7	0.5	64.03
	555,		4	sov			9	785.0		23.3	22.6	0.7	17.9	17.4	0.5	64.92
	555,		5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	(555,		9	sov			11	1232.3		24.7	23.4	1.2	19.1	18.1	1.0	61.22
	(555,		10	SOV			10	1001.5		24.9	23.7	1.2	19.2	18.3	1.0	60.66
,	(555,	310)	10	504	-		10	1001.5	-	24.3	23.7	1.2	19.2	10.5	1.0	00.00
((316,	317)	1	sov			0	323.1		10.7	10.4	0.3	8.3	8.0	0.3	63.72
	(316,		2	sov			5	1836.8		11.2	10.7	0.5	8.7	8.3	0.4	60.79
	(316,		3	sov			6	1288.0		10.7	10.4	0.3	8.2	8.0	0.2	63.99
	(316,		4	sov			4	936.7		10.5	10.2	0.4	8.1	7.8	0.3	64.81
	(316,	-	5	HOV	18	18	0	18.0	18.0	10.4	10.3	0.1	8.1	8.0	0.1	65.72
	,,	/	_	'			•									

(316,	317)	9	sov		-	5	1607.3		11.1	10.6	0.5	8.6	8.2	0.4	61.47
(317,	318)	1	sov			3	1271.7		17.1	16.1	1.0	13.2	12.4	0.8	59.79
	317,		2	sov			4	1576.5		16.4	15.8	0.7	12.7	12.2	0.5	62.17
-	317,		3	sov			3	1119.8		15.9	15.4	0.5	12.2	11.8	0.4	64.34
	317,	-	4	sov			2	304.6		15.8	15.2	0.5	12.1	11.7	0.4	64.83
	-			HOV	18	0		5.4	5.4	15.5	15.4	0.1	12.1	11.9	0.1	66.10
-	317,		5				0									
(317,	318)	9	sov			6	1731.3		17.3	15.9	1.4	13.3	12.3	1.0	59.22
(318,	319)	1	sov			7	2139.3		19.1	15.9	3.2	14.8	12.3	2.5	53.51
(318,	319)	2	sov			10	1885.0		17.3	16.2	1.2	13.4	12.5	0.9	58.96
(318,	319)	3	sov			9	1558.2		16.1	15.5	0.5	12.4	12.0	0.4	63.68
(318,	319)	4	sov			5	1071.3		15.8	15.2	0.6	12.2	11.7	0.4	64.68
(318,	319)	5	HOV	18	17	1	17.4	17.4	15.6	15.4	0.2	12.1	12.0	0.1	65.74
(318,	319)	9	sov			0	47.9		25.1	19.9	5.2	19.4	15.4	4.0	40.77
,	319,	3201	1	sov			4	2063.4		8.4	7.8	0.6		6.0	0.5	E0 25
	319,	-	2	SOV			2	1861.3		8.3	7.8		6.5	6.0	0.5	59.37
							_					0.4	6.4	6.1	0.3	60.08
	319,		3	SOV			2	1638.8		7.9	7.6	0.2	6.1	5.9	0.2	63.79
	319,	-	4	sov			1	1133.1		7.7	7.5	0.3	6.0	5.7	0.2	64.68
(319,	320)	5	HOV	17	17	0	17.0	17.0	7.6	7.6	0.1	5.9	5.9	0.1	65.66
(320,	321)	1	sov			17	2576.3		22.7	17.6	5.1	17.5	13.6	3.9	50.09
(320,	321)	2	sov			10	1709.8		19.4	17.9	1.5	15.0	13.8	1.2	58.52
(320,	321)	3	sov			7	1422.2		17.9	17.3	0.6	13.8	13.3	0.4	63.68
•	320,		4	sov			4	984.7		17.5	16.9	0.6	13.5	13.0	0.4	64.96
		321)	5	HOV	17	17	0	17.0	17.0	17.3	17.2	0.2	13.4	13.3	0.1	65.66
`	320,	321,	•		-,	_,	·	27.00	27.00	-/	_,,_	0.2		13.3		03.00
(321,	322)	1	sov			16	2253.0		18.8	16.2	2.5	14.5	12.6	2.0	54.52
(321,	322)	2	SOV			8	1507.4		17.1	16.1	0.9	13.2	12.5	0.7	59.87
(321,	322)	3	SOV			8	1313.8		16.0	15.6	0.4	12.3	12.0	0.3	63.92
(321,	322)	4	SOV			4	900.9		15.6	15.2	0.4	12.0	11.7	0.3	65.46
(321,	322)	5	HOV	17	17	0	17.0	17.0	15.6	15.4	0.2	12.1	12.0	0.1	65.64
(321,	322)	9	sov			3	706.3		17.9	16.7	1.2	13.8	12.9	0.9	57.26
(322,	323)	1	sov			4	945.4		19.8	18.9	0.9	15.4	14.7	0.7	60.88
-	-	323)	2	sov			5	1411.0		19.8	19.1	0.7	15.3	14.8	0.5	61.03
-	-	323)	3	sov			6	1320.1		18.9	18.4	0.4	14.6	14.2	0.3	64.00
		323)	4	sov			3	971.2		18.4	17.9	0.5	14.2	13.8	0.4	65.45
		323)	5	HOV	17	17	0	17.0	17.0	18.4	18.2	0.2	14.3	14.1	0.1	65.66
`	322,	323,	J				•		_,,,							
(323,	324)	1	sov			3	1324.2		10.7	9.5	1.2	8.3	7.4	0.9	57.07
(323,	324)	2	sov			4	1400.4		10.1	9.7	0.5	7.8	7.5	0.4	60.18
(323,	324)	3	sov			4	1335.8		9.6	9.3	0.3	7.4	7.2	0.2	63.77
(323,	324)	4	sov			3	1027.9		9.3	9.1	0.3	7.2	7.0	0.2	65.46
-	-	324)	5	HOV	17	17	0	17.0	17.0	9.3	9.2	0.1	7.2	7.1	0.1	65.65
		324)	9	sov			0	39.9		13.3	10.7	2.6	10.2	8.3	2.0	45.98
(324,	325)	1	sov			8	1532.0		17.2	16.0	1.2	13.3	12.4	0.9	59.52

(324,	325)	2	sov			7	1451.0		16.9	16.2	0.7	13.1	12.5	0.6	60.47
(324,		3	sov			5	1345.2		16.1	15.6	0.4	12.4	12.1	0.3	63.66
												12.0	11.7	0.4	65.30
(324,	-	4	sov			6	1073.9		15.7	15.2	0.5				
(324,	325)	5	HOV	17	17	0	17.0	17.0	15.6	15.4	0.2	12.1	12.0	0.1	65.55
(324,	325)	9	SOV			1	14.0		20.8	17.8	3.0	16.0	13.7	2.3	49.22
(7023,	147)	1	sov			1	921.5		3.4	2.8	0.6	2.6	2.1	0.5	37.52
(143,	7025)	1	sov			1	1258.8		3.3	2.3	1.0	2.6	1.8	0.8	31.35
(144,	131)	1	sov			0	508.0		2.1	2.0	0.1	1.6	1.5	0.1	48.29
(7022,	144)	1	sov			0	563.8		2.6	2.3	0.3	2.0	1.8	0.3	43.68
(347,	348)	1	sov			0	98.8		2.8	2.7	0.1	2.2	2.1	0.1	52.58
(347,	-	2	sov			1	1245.3		2.9	2.9	0.1				
(347,	340)	2	50V			_	1245.5		2.9	2.9	0.1	2.3	2.2	0.0	50.98
(348,	349)	1	sov			0	196.4		4.5	4.3	0.2	3.5	3.3	0.1	51.54
(348,		2	sov			0	1148.2		4.8	4.7	0.1	3.7	3.6	0.1	48.16
(010)	0 - 2 7	_	201			·	111012		1.0		0.1	3.,	3.0	0.1	40.10
(560,	370)	1	sov			0	205.4		5.1	5.1	0.0	4.0	3.9	0.0	66.74
(560,	370)	2	sov			1	863.9		5.4	5.3	0.1	4.2	4.1	0.1	62.98
(560,	370)	3	sov			1	502.4		5.4	5.4	0.1	4.2	4.1	0.1	62.72
(560,		4	sov			0	483.4		5.2	5.1	0.1	4.0	4.0	0.1	65.62
(560,		5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	-					1									
(560,	3/0)	9	sov			1	881.3		5.4	5.3	0.1	4.1	4.1	0.1	63.66
(370,	371)	1	sov			7	57.9		128.3	68.9	59.5	101.3	54.4	46.9	5.86
(370,	371)	2	sov			11	737.0		36.4	16.6	19.9	28.1	12.8	15.3	20.64
(370,	371)	3	sov			4	588.9		15.4	11.6	3.8	11.9	9.0	3.0	48.78
(370,	-	4	sov			2	446.7		12.0	11.2	0.8	9.3	8.7	0.6	62.48
(370,		5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(370,	-	9	SOV			1	945.3		12.1	11.6	0.5	9.4	8.9	0.4	62.12
(370,	3/1)	9	500			_	343.3		12.1	11.0	0.5	3.4	0.9	0.4	02.12
(371,	372)	1	sov			2	469.9		16.4	15.5	1.0	12.7	12.0	0.8	61.09
(371,	372)	2	SOV			5	1177.9		16.4	15.6	0.9	12.7	12.0	0.7	61.06
(371,	372)	3	SOV			4	810.0		16.9	15.6	1.3	13.1	12.1	1.0	59.36
(371,	372)	4	sov			5	463.8		16.3	15.2	1.1	12.6	11.8	0.8	61.56
(371,	-	5	HOV	13	0	0	8.5	8.5	15.6	15.4	0.3	12.0	11.8	0.2	64.27
(372,	373)	1	sov			6	2088.6		10.7	9.7	1.0	8.3	7.5	0.7	58.55
(372,	373)	2	SOV			3	939.7		10.1	9.7	0.4	7.8	7.5	0.3	62.28
(372,	373)	3	sov			1	614.2		9.7	9.4	0.2	7.5	7.3	0.2	64.71
(372,	373)	4	HOV	13	13	0	13.0	13.0	9.7	9.6	0.1	7.5	7.4	0.1	64.56
(372,		9	SOV			1	239.6		10.8	9.8	1.0	8.4	7.6	0.8	57.91
. 5.27	3.57	-				-					•	- · · -			
(373,	374)	1	sov			3	1849.1		6.5	6.2	0.3	5.0	4.8	0.2	60.73
(373,		2	sov			2	1054.8		6.3	6.1	0.2	4.8	4.7	0.1	63.28
(373,		3	sov			2	664.6		6.1	6.0	0.1	4.7	4.6	0.1	65.01
,		_	,			-									

(373,	374)	4	HOV	13	13	0	13.0	13.0	6.1	6.1	0.1	4.7	4.7	0.1	64.53
-	373,	374)	9	sov			0	310.0		6.2	6.0	0.2	4.8	4.6	0.2	63.91
,	,	,					-									
	274	275\	1	0017			_	1722 0		10.5	10.0	0.5	8.1	7.7	0.4	59.78
	374,		1	sov			5	1723.0								
	374,		2	sov			3	1115.7		9.8	9.6	0.2	7.6	7.4	0.2	63.72
(374,	375)	3	sov			4	700.3		9.6	9.4	0.2	7.4	7.3	0.1	65.29
(374,	375)	4	HOV	13	13	0	13.0	13.0	9.7	9.6	0.1	7.5	7.4	0.1	64.57
-	374,	375)	9	sov			0	336.0		10.3	10.1	0.2	8.0	7.8	0.1	60.99
	, ,	,										• • •				
	375,	376)	1	sov			7	1174.1		17 0	16 5	0.7	12 2	10.7	0 6	60 63
			2							17.2	16.5	0.7	13.3	12.7	0.6	60.63
	375,	-		sov			2	1166.8		16.4	16.0	0.4	12.7	12.4	0.3	63.68
	(375,		3	sov			1	776.7		16.0	15.6	0.4	12.4	12.1	0.3	65.31
	(375,	376)	4	HOV	13	13	0	13.0	13.0	16.2	16.0	0.2	12.5	12.3	0.2	64.53
	(376,	377)	1	sov			6	1538.0		8.6	7.9	0.7	6.6	6.1	0.5	58.46
	(376,		2	sov			4	1224.5		8.0						
	(376,		3	sov			_				7.7	0.2	6.2	6.0	0.2	63.18
							4	844.6		7.7	7.5	0.2	6.0	5.8	0.2	65.26
	(376,		4	HOA	13	13	0	13.0	13.0	7.8	7.7	0.1	6.0	5.9	0.1	64.55
	(376,	377)	9	sov			0	42.8		9.9	8.8	1.1	7.6	6.8	0.8	50.74
	(377,	378)	1	sov			9	1903.6		15.1	13.9	1.2	11.7	10.7	0.9	58.61
	(377,	378)	2	sov			4	1267.1		14.1	13.6	0.5	10.9	10.5	0.4	62.87
	(377,		3	sov			3	860.1		13.6	13.2	0.4	10.5			
	(377,		4				-							10.2	0.3	65.07
			_	HOV	13	13	0	13.0	13.0	13.7	13.6	0.2	10.6	10.4	0.1	64.54
	(377,	378)	9	sov			0	21.8		18.5	15.5	3.0	14.2	11.9	2.3	48.03
	(381,	382)	1	SOV			1	119.6		3.3	3.3	0.0	2.6	2.5	0.0	44.81
	(381,	382)	2	sov			2	1126.1		3.6	3.6	0.0	2.8	2.8	0.0	40.97
	(378,	384)	1	sov			2	1867.6		2.3	2.1	0.1	1.8	1.7	0.1	59.85
			2	sov			2	1292.7		2.2						
	(378,										2.1	0.1	1.7	1.6	0.0	63.31
	(378,	-	3	sov			2	891.0		2.1	2.0	0.1	1.6	1.6	0.0	65.32
	(378,	384)	4	HOV	13	13	0	13.0	13.0	2.1	2.1	0.0	1.6	1.6	0.0	64.65
	(384,	385)	1	sov			8	1790.7		14.9	14.1	0.8	11.5	10.9	0.6	59.61
	(384,		2	sov			8	1323.0		14.0	13.6	0.3	10.8	10.5	0.3	63.46
	(384,		3	sov			7	933.6		13.5	13.2	0.4	10.5	10.2	0.3	65.45
			4				ó	13.0		13.7	13.6	0.2	10.6	10.4		64.56
	(384,	303)	*	HOV	13	13	U	13.0	13.0	13.7	13.6	0.2	10.6	10.4	0.1	04.50
	(385,	386)	1	sov			6	1230.9		28.9	27.8	1.1	22.3	21.4	0.8	60.26
	(385,	386)	2	sov			4	1346.8		27.5	26.8	0.7	21.2	20.7	0.6	63.20
	(385,	386)	3	sov			7	1040.8		26.6	25.8	0.8	20.5	20.0	0.6	65.42
	(385,		4	HOV	13	13	0	13.0	13.0	27.0	26.6	0.4	20.7	20.5	0.3	64.55
	,	,	-				•					- • •				
	(402,	4031	1	sov			0	366.9		11.2	9.5	1.7	8.6	7.4	1.3	44.46
	(402,	403)	2	sov			0	535.7		10.8	9.8	1.0	8.3	7.6	0.8	45.99
								-								
	(401,	381)	1	sov			0	97.7		2.8	2.8	0.0	2.1	2.1	0.0	51.05
	(401,	381)	2	sov			0	1148.3		2.8	2.8	0.0	2.2	2.2	0.0	49.87

						_									61 10
(395,		1	sov			7	1064.3		12.9	12.3	0.5	10.0	9.5	0.4	61.12
(395,	396)	2	SOV			7	1202.2		12.4	12.1	0.3	9.6	9.3	0.3	63.51
(395,	396)	3	sov			3	915.1		12.5	12.1	0.4	9.7	9.3	0.3	62.93
(395,	396)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(394,	395)	1	sov			1	1668.1		6.5	6.1	0.3	5.0	4.7	0.3	58.92
(394,	-	2	sov			2	1176.3		6.0	5.8	0.2	4.6	4.5	0.1	63.51
(394,	-	3	sov			2	877.9		6.1	5.9	0.2	4.7	4.5	0.2	62.77
(394,		4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0			
(394,	-	9	SOV			0							0.0	0.0	0.00
(334,	393)	9	200			U	390.9		6.3	6.2	0.1	4.9	4.8	0.1	60.66
/ 202	2041	-	0011			_	1000								
(393,		1	sov			6	1772.0		10.5	10.0	0.5	8.1	7.7	0.4	60.84
(393,		2	sov			6	1138.1		10.2	9.8	0.3	7.8	7.6	0.3	63.14
(393,	-	3	sov			2	847.5		10.2	9.9	0.3	7.9	7.6	0.2	62.77
(393,	-	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(393,	394)	9	sov			1	360.8		10.0	9.5	0.5	7.7	7.4	0.4	64.18
(392,	393)	1	SOV			1	2033.3		6.5	5.9	0.6	5.0	4.6	0.5	58.62
(392,	393)	2	sov			0	1008.7		6.1	5.9	0.2	4.7	4.5	0.2	62.51
(392,	393)	3	SOV			1	813.1		6.1	5.9	0.2	4.7	4.6	0.1	62.70
(392,	393)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(392,	393)	9	SOV			0	265.2		6.7	5.9	0.8	5.2	4.6	0.6	57.14
(391,	392)	1	sov			2	1255.2		12.3	11.4	0.9	9.5	8.8	0.7	60.18
(391,		2	sov			3	1102.0		11.8	11.4	0.4	9.1	8.8	0.3	62.49
(391,	-	3	sov			2	980.5		11.8	11.4	0.4	9.1	8.8	0.3	62.31
(391,		4	HOV	0	0	ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(391,		9	SOV			0	19.1		15.8	12.9	2.9	12.2	10.0	2.2	
(391,	3921	9	50V			U	19.1		15.0	12.9	2.9	12.2	10.0	2.2	46.82
/ 200	2011	-	2011			-	000 0		17 1	16.4	0.6	12.0	10 7	۰.	60.20
(390,	-	1	sov			3	800.8		17.1	16.4	0.6	13.2	12.7	0.5	62.30
(390,		2	sov			5	1144.6		16.9	16.4	0.5	13.1	12.7	0.4	62.73
(390,	-	3	sov			4	1064.6		17.1	16.4	0.7	13.2	12.6	0.5	62.26
(390,	391)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(389,		1	sov			7	1739.4		17.0	16.0	1.0	13.2	12.3	0.8	60.06
(389,	390)	2	SOV			7	1133.6		16.3	15.8	0.5	12.6	12.2	0.4	62.79
(389,	390)	3	SOV			8	1041.4		16.4	15.8	0.6	12.7	12.2	0.5	62.29
(389,	390)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(388,	389)	1	sov			5	1795.7		5.5	5.2	0.4	4.3	4.0	0.3	60.69
(388,	389)	2	sov			1	1093.9		5.3	5.2	0.2	4.1	4.0	0.1	62.63
(388,	389)	3	sov			2	1026.8		5.4	5.2	0.2	4.1	4.0	0.1	62.49
(388,	389)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	,			_		-		-							
(387,	388)	1	sov			11	1373.4		16.8	15.6	1.2	13.0	12.1	0.9	60.90
(387,		2	sov			4	1259.8		16.5	15.9	0.6	12.7	12.2	0.5	62.04
(387,		3	sov			6	1268.9		16.5	15.8	0.7	12.8	12.2	0.5	61.85
(387,		4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(38/,	200)	4	пΟν	U	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00

			•				•	10.6		22.3	10 0	4.3	17.3	13.9	3.3	45.88
(387,	388)	9	sov			0	18.6		22.3	18.0	4.3	17.3	13.9	3.3	43.00
,	166,	404)	1	sov			3	1044.9		8.2	8.0	0.2	6.3	6.2	0.2	62.42
-	166,		2	SOV			3	1347.0		8.1	7.9	0.2	6.3	6.1	0.1	63.13
	166,		3	SOV			3	1397.4		8.1	7.9	0.2	6.3	6.1	0.2	62.85
	166,		4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
`	100,	101,	•		Ū	·	Ū	0.0	0.0				• • • •			• • • • • • • • • • • • • • • • • • • •
(404,	387)	1	sov			4	830.5		17.2	16.8	0.4	13.3	13.0	0.3	64.17
-	404,	-	2	sov			9	1304.4		17.6	17.2	0.5	13.6	13.2	0.4	62.67
(404,	387)	3	sov			7	1380.4		17.8	17.1	0.7	13.7	13.2	0.5	62.18
	404,		4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(306,	405)	1	sov			2	854.0		6.4	6.2	0.1	4.9	4.8	0.1	52.73
(306,	405)	2	sov			1	292.2		5.9	5.8	0.1	4.6	4.5	0.1	56.67
-	558,	-	1	sov			1	661.6		5.2	5.0	0.2	4.0	3.9	0.1	43.38
-	558,	-	2	sov			0	420.0		4.8	4.7	0.1	3.7	3.6	0.0	47.26
(558,	406)	3	sov			0	62.3		4.4	4.4	0.0	3.4	3.4	0.0	51.44
,	251	400)	-				_		•							
	351,		1	sov			1	370.8		5.3	4.5	0.8	4.1	3.5	0.6	40.69
(351,	408)	2	sov			0	977.2		5.1	4.9	0.3	4.0	3.8	0.2	42.10
,	408,	400)	1	sov			5	802.7		10.7	9.5	1.2			0 0	20.05
-	408,	-	2	SOV			0	548.4		10.7	9.5	1.2	8.2	7.3	0.9	39.87
'	400,	403)	2	201			U	340.4		10.6	9.0	1.0	8.2	7.4	0.8	40.19
(410,	405)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
•	,		_									• • • •	•••	•••	•••	0.00
(413,	409)	1	sov			3	791.8		12.1	11.8	0.3	9.3	9.1	0.2	43.03
	413,		2	sov			0	350.3		11.1	11.0	0.1	8.6	8.5	0.1	46.73
(349,	350)	1	sov			0	347.6		15.1	14.9	0.2	11.7	11.6	0.1	52.40
(349,	350)	2	sov			2	996.6		16.5	16.2	0.3	12.8	12.5	0.3	47.89
	350,		1	sov			3	473.2		12.6	12.4	0.2	9.7	9.6	0.1	47.58
(350,	351)	2	sov			4	873.0		13.8	13.5	0.3	10.7	10.4	0.3	43.14
				_			_									
	559,		1	sov			7	915.2		22.1	21.3	0.8	17.1	16.4	0.6	47.30
	559,		6	SOV			4	614.3		20.6	20.0	0.5	15.9	15.5	0.4	50.85
(559,	407)	7	sov			6	957.3		22.0	21.3	0.8	17.0	16.4	0.6	47.42
,	407	4111	-				•	407.3		- 0		0 1	4.4	4 2	0 1	40 70
(407,	4 11)	1	sov			0	427.3		5.8	5.6	0.1	4.4	4.3	0.1	48.70
,	406,	4121	1	sov			1	812.9		6.8	6.6	0.2	5.2	5.1	0.1	42.96
-	406,		2	SOV			0	330.9		6.2	6.2	0.1	4.8	4.8	0.1	46.63
'	±00,	413/	4	D0 4			J	550.5		J. Z	J.2	0.1	4.0		0.1	10.03
(161,	7031)	1	sov			1	285.3		4.4	4.3	0.2	3.4	3.3	0.1	48.18
-	161,	-	2	sov			ō	417.0		4.4	4.3	0.1	3.4	3.3	0.1	48.49
`	,	,	_				-	,		- · -		- • -	J	- • •	- • -	
(7032,	435)	1	sov			0	1046.7		3.6	3.2	0.4	2.8	2.5	0.3	44.45

(435, 436)	1	sov	 	0	970.0	 3.1	3.0	0.2	2.4	2.3	0.1	48.16
(436, 372)	1	sov	 	0	970.9	 3.9	3.7	0.3	3.0	2.8	0.2	50.34
(395, 437)	1	sov	 	1	404.8	 6.5	6.4	0.1	5.1	5.0	0.1	56.16
(395, 437)	2	sov	 	1	521.8	 7.0	6.9	0.1	5.4	5.3	0.1	52.74
(333, 437)	2	500	 	-	321.0	 7.0	0.5	0.1	3.4	3.3	0.1	32.71
(437,7033)	1	sov	 	0	414.0	 5.3	5.0	0.3	4.1	3.9	0.2	50.46
				-								
(437,7033)	2	sov	 	0	512.4	 5.7	5.3	0.3	4.4	4.1	0.2	47.05
(7034, 440)	1	sov	 	0	908.1	 3.3	2.9	0.4	2.5	2.2	0.3	43.76
(440, 441)	1	sov	 	0	835.0	 2.7	2.5	0.2	2.1	2.0	0.1	47.92
(7035, 443)	1	sov	 	1	589.2	 3.9	2.9	1.0	3.0	2.2	0.8	33.91
(443, 444)	1	sov	 	1	536.4	 3.2	2.9	0.3	2.4	2.2	0.2	44.77
(444, 376)	1	sov	 	1	536.0	 9.2	8.9	0.3	7.1	6.8	0.2	52.46
(375, 442)	1	sov	 	1	342.6	 4.4	4.4	0.1	3.4	3.4	0.0	55.63
(375, 442)	2	sov	 	0	409.3	 4.7	4.6	0.2	3.7	3.5	0.1	52.11
(442,7036)	1	sov	 	1	349.8	 3.3	3.2	0.1	2.5	2.5	0.0	52.26
(442,7036)	2	sov	 	0	403.0	 3.7	3.4	0.2	2.8	2.6	0.2	46.61
,,												
(7037, 454)	1	sov	 	0	445.6	 3.5	3.1	0.4	2.7	2.4	0.3	44.96
(454, 455)	1	sov	 	0	413.0	 3.5	3.4	0.1	2.7	2.6	0.1	48.97
(455, 377)	1	sov	 	0	413.0	 5.0	4.8	0.2	3.9	3.7	0.2	51.91
(390, 458)	1	sov	 	2	904.9	 9.1	8.5	0.6	7.0	6.6	0.5	51.38
(456, 457)	1	sov	 	0	342.0	 2.4	2.2	0.2	1.8	1.7	0.2	45.62
(457, 391)	1	sov	 	0	342.0	 2.0	1.9	0.1	1.6	1.4	0.1	49.13
(7038, 456)	1	sov	 	0	395.9	 2.1	1.6	0.5	1.6	1.2	0.4	39.44
(458,7039)	1	sov	 	1	893.6	 3.9	2.9	1.0	3.0	2.2	0.8	36.80
(7040, 466)	1	sov	 	1	820.2	 3.4	3.0	0.4	2.6	2.3	0.3	43.85
(466, 467)	1	sov	 	. 0	755.0	 3.1	2.9	0.1	2.4	2.3	0.1	48.35
(467, 392)	1	sov	 	0	755.0	 4.0	3.7	0.2	3.1	2.9	0.2	50.84

(309,7043)	1	sov			3	820.8		5.5	5.3	0.2	4.2	4.1	0.1	49.23
(309,7043)	2	sov			3	882.3		5.7	5.5	0.2	4.4	4.2	0.2	47.27
,														
(7044, 483)	1	sov			2	733.0		5.9	5.3	0.6	4.6	4.1	0.4	45.16
(484, 318)	1	sov			1	696.1		4.8	4.5	0.3	3.7	3.5	0.2	50.58
					_									
(483, 484)	1	sov			1	697.8		3.7	3.5	0.2	2.8	2.7	0.1	48.15
(202 407)	1	sov			0	000 3		2.0	2 7		2 0		. 1	F0 00
(303, 487)	1	SOV			U	829.3		3.8	3.7	0.2	3.0	2.9	0.1	52.99
(487, 488)	1	sov			2	830.5		6.9	6.6	0.3	5.3	5.1	0.2	49.29
,,,	_				-	050.5		0.5	0.0	0.5	3.3	3.1	0.2	49.29
(488,7046)	1	sov			1	829.7		4.2	4.0	0.2	3.3	3.1	0.2	47.16
(489, 490)	1	sov			2	845.9		5.6	4.2	1.4	4.3	3.3	1.1	36.13
(489, 490)	2	sov			0	255.1		6.6	4.5	2.2	5.1	3.5	1.7	30.36
(5045 400)	_				_									
(7047, 489)	1	sov			0	350.2		4.2	2.8	1.3	3.2	2.2	1.0	34.91
(7047, 489)	2	sov			1	869.7		3.9	2.8	1.1	3.0	2.2	0.9	36.99
(7045, 531)	1	sov			0	621.4		4.4	2.3	2.1	3.4	1.8	1.6	36.20
(7045, 531)	2	SOV			0	42.6		5.4	2.3	3.1	4.2	1.8	2.4	29.66
(7043, 331)		501			U	42.0		3.4	2.3	3.1	4.2	1.0	2.4	29.00
(531, 532)	1	sov			0	614.9		3.1	2.2	0.8	2.4	1.7	0.6	46.31
(531, 532)	2	sov			0	0.1		9.4	9.4	0.0	7.3	7.3	0.0	15.04
(532, 299)	1	sov			0	615.0		2.7	2.3	0.4	2.1	1.8	0.3	52.91
(322, 522)	1	sov			0	909.9		3.0	3.0	0.0	2.3	2.3	0.0	53.86
(322, 522)	2	sov			0	1116.1		3.0	2.9	0.1	2.3	2.3	0.1	53.54
(_				_									
(7049, 523)	1	sov			2	526.8		3.3	3.0	0.3	2.6	2.3	0.3	37.30
(523, 524)	1	sov			3	477.3		6.3	5.7	0.6	4.9	4.4	0.5	44.71
(323, 324)		50V			3	4//.3		0.3	3.7	0.0	4.3	7.7	0.5	44.71
(524, 323)	1	sov			1	477.6		5.3	5.0	0.3	4.1	3.9	0.2	51.46
(321, 323,	_	20.			_					• • • •				
(298, 533)	1	sov			4	718.3		18.9	18.2	0.8	14.7	14.1	0.6	63.62
(298, 533)	2	sov			6	1123.7		19.3	18.7	0.6	15.0	14.5	0.5	62.57
(298, 533)	3	sov			4	1146.0		18.8	18.3	0.4	14.5	14.2	0.3	64.15
(298, 533)	4	sov			8	994.7		19.3	18.7	0.6	14.8	14.4	0.4	62.47
(298, 533)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
					_									
(7050, 529)	1	sov			0	412.0		4.0	2.9	1.1	3.1	2.3	8.0	30.19
(7050, 529)	2	sov			3	1213.7		3.7	2.9	0.9	2.9	2.2	0.7	32.38
/ E20 E20\	1	9077			1	578.0		3.5	2.0	1.5	2.7	1.5	1.2	32.19
(529, 530)	1 2	sov			3	578.0 882.6		3.5	2.0	1.1	2.7	1.5	0.8	32.19
(529,530)	4	SUV			3	002.0		3.3	2.5		2.7	1.9	0.0	31.32

(530,	533)	1	sov			4	1471.3		8.0	6.3	1.6	6.2	4.9	1.3	42.65
		_				•			2 2	2.0	0 0	٥	2.2	0 0	45.00
(7051,	525)	1	sov			0	315.2		3.3	3.0	0.3	2.5	2.3	0.2	45.28
(525,	526)	1	sov			1	291.3		5.6	5.4	0.1	4.3	4.2	0.1	48.81
(526,	324)	1	sov			2	291.4		6.8	6.6	0.2	5.3	5.1	0.2	52.30
(298,	534)	1	sov			0	684.2		5.4	5.1	0.3	4.2	3.9	0.2	61.77
(534,	7052)	1	sov			0	685.2		3.1	2.8	0.3	2.4	2.2	0.2	57.82
(313,	347)	1	sov			4	874.2		5.3	5.1	0.2	4.1	3.9	0.2	52.30
(313,	-	2	sov			1	473.0		5.3	5.1	0.2	4.1	3.9	0.2	52.86
/ F22	7040)	1	0011			•	016.0		2.4						
(522, (522,		1 2	sov			0 1	916.0 1109.7		3.4 3.4	3.3	0.1	2.6	2.5	0.1	49.74
(322,	7040)	2	500				1109.7		3.4	3.3	0.1	2.6	2.5	0.1	50.34
(405,	558)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(405,	558)	6	sov			1	822.9		2.8	2.8	0.0	2.2	2.1	0.0	50.66
(405,	558)	7	sov			0	322.0		2.6	2.6	0.0	2.0	2.0	0.0	55.36
(409,	559)	1	sov			4	778.9		5.2	5.1	0.2	4.0	3.9	0.1	43.00
(409,		2	sov			ō	474.8		4.9	4.7	0.2	3.8	3.7	0.1	45.92
(409,	•	6	sov			1	1236.6		5.3	5.0	0.2	4.1	3.9	0.2	42.60
(-557	002,	•				_					0.2		3.5	0.2	12.00
(369,	560)	1	sov			2	481.4		11.0	10.8	0.3	8.5	8.3	0.2	61.76
(369,	560)	2	sov			2	479.0		10.4	10.2	0.2	8.0	7.9	0.1	65.62
(369,	560)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(369,	560)	9	sov			2	657.1		11.5	10.9	0.7	8.9	8.4	0.5	59.21
(369,	560)	10	sov			0	657.6		10.9	10.2	0.7	8.4	7.9	0.6	62.43
(369,	560)	11	sov			2	655.8		11.4	10.7	0.7	8.8	8.3	0.5	59.82
(97,	563)	1	sov			3	1173.9		17.3	15.6	1.7	13.4	12.0	1.3	59.11
(97,	563)	2	sov			4	1161.7		17.1	16.4	0.7	13.3	12.7	0.5	59.90
(97,	563)	3	sov			5	1015.6		15.9	15.6	0.3	12.2	12.0	0.2	64.36
(97,	563)	4	sov			5	710.8		15.6	15.2	0.4	12.0	11.7	0.3	65.62
(97,	563)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(97,	563)	9	sov			0	26.9		24.3	19.3	5.0	18.9	15.0	3.9	42.03
(10,	11)	1	sov			. 3	1056.1		6.6	6.4	0.2	5.1	4.9	0.2	61.42
(10,	-	2	sov			1	815.5		6.2	6.1	0.2	4.8	4.7	0.1	64.69
(10,		3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(10,	/	•	1107	•	•	·									
(11,	12)	1	sov			1	1024.6		6.4	6.2	0.2	4.9	4.8	0.1	61.54
(11,	-	2	sov			2	844.1		6.1	5.9	0.2	4.7	4.6	0.1	64.76
(11,	12)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00

																10
(13)	1	sov			2	1010.3		3.7	3.6	0.1	2.8	2.8	0.1	61.40
(12,	13)	2	sov			1	856.6		3.5	3.4	0.1	2.7	2.6	0.1	64.75
(12,	13)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(13,	14)	1	sov			1	1003.0		3.7	3.6	0.1	2.9	2.8	0.1	61.29
Ċ	13,	14)	2	sov			2	865.3		3.5	3.4	0.1	2.7	2.6	0.1	64.65
Ċ	13,	14)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	•	-														
(14,	15)	1	sov			0	988.6		3.8	3.7	0.1	2.9	2.9	0.1	61.25
(14,	15)	2	sov			0	878.3		3.6	3.5	0.1	2.8	2.7	0.1	64.57
(14,	15)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(15,	16)	1	sov			3	1107.1		11.2	10.7	0.5	0.6			50 01
(15,	16)	2	SOV			3	915.1		10.6	10.7	0.3	8.6 8.2	8.3	0.4	60.81
(15,	16)	3	HOV	0	0	0	0.0	0.0	0.0	0.0			7.9	0.3	64.30
(15,	16)	9	SOV			4	1135.5				0.0	0.0	0.0	0.0	0.00
'	13,	10)	9	50V			*	1135.5		12.1	10.7	1.4	9.3	8.2	1.1	56.40
(16,	17)	1	sov			3	1103.3		5.5	5.4	0.1	4.2	4.1	0.1	61.97
(16,	17)	2	sov			1	942.3		5.3	5.1	0.2	4.1	4.0	0.1	64.33
(16,	17)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(16,	17)	9	sov			2	1114.5		5.5	5.3	0.2	4.2	4.1	0.2	62.03
(17,	18)	1	sov			3	1092.4		11.0	10.7	0.3	8.5		0 0	60 10
,	17,	18)	2	SOV			2	955.8		10.6	10.7	0.3		8.2	0.2	62.12
(17,	18)	3	HOV	0	0	0	0.0	0.0	0.0	0.0		8.2	7.9	0.3	64.27
(17,	18)	9	SOV			2	1111.5		11.0	10.5	0.0 0.5	0.0 8.5	0.0	0.0	0.00
'	17,	10)	9	500			2	1111.5		11.0	10.5	0.5	. 0.5	8.2	0.4	61.93
(18,	19)	1	sov			3	1084.2		9.8	9.5	0.2	7.5	7.4	0.2	62.26
(18,	19)	2	sov			1	975.5		9.5	9.2	0.3	7.4	7.1	0.2	64.04
(18,	19)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(18,	19)	9	sov			1	1106.0		9.9	9.4	0.4	7.6	7.3	0.3	61.82
(19,	20)	1	sov			3	1093.3		8.5	8.3	0.2	6.6	6.4	0.2	62.33
(19,	20)	2	SOV			7	982.1		8.3	8.0	0.3	6.4	6.2	0.2	64.10
(19,	20)	3	HOV	0	0	Ó	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(19,	20)	9	sov			2	1089.8		8.6	8.2	0.4	6.7	6.4	0.3	61.70
'	19,	20)	,	504			2	1009.0		0.0	0.2	0.4	0.7	0.4	0.5	01.70
(20,	21)	1	sov			1	1083.2		8.6	8.4	0.2	6.6	6.5	0.2	62.42
Ċ	20,	21)	2	sov			2	994.3		8.4	8.1	0.3	6.5	6.2	0.2	63.93
į.	20,	21)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(20,	21)	9	sov			3	1084.0		8.7	8.3	0.4	6.7	6.4	0.3	61.51
(21,	22)	1	sov			0	1095.5		6.0	5.9	0.1	4.6	4.5	0.1	62.58
(21,	22)	2	sov			0	1003.2		5.9	5.7	0.2	4.6	4.4	0.2	63.83
(21,	22)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(21,	22)	9	sov			1	1063.6		6.1	5.9	0.3	4.7	4.5	0.2	61.57
(22,	23)	1	sov			3	1107.9		12.9	12.6	0.3	9.9	9.7	0.2	62.52
(-	23)	2	SOV			4	1012.1		12.6	12.0	0.5	9.7	9.4	0.4	63.79
١,	~ ~ ,	29,	-	231								0.5	2.,	J. T		55.75

(-		3	ноч	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(22,	23)	9	sov			2	1046.9		13.1	12.5	0.6	10.1	9.7	0.4	61.53
(24,	25)	1	sov			5	1888.5		8.9	8.3	0.6	6.9	6.4	0.4	60.09
(24,	25)	2	sov			0	536.7		8.4	8.1	0.3	6.5	6.2	0.3	63.63
(24,	25)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(24,	25)	9	sov			2	742.9		8.6	8.2	0.4	6.7	6.4	0.3	61.97
(-	26)	1	sov			4	1703.7		5.6	5.3	0.2	4.3	4.1	0.2	61.21
(26)	2	sov			1	622.9		5.3	5.1	0.1	4.1	4.0	0.1	64.68
(-		3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(25,	26)	9	sov			2	840.6		5.4	5.2	0.2	4.2	4.0	0.1	63.09
(1	sov			5	1608.9		11.5	11.0	0.6	8.9	8.5	0.4	59.09
(•	•	2	sov			5	681.5		10.5	10.2	0.3	8.1	7.9	0.2	65.03
(-	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(26,	27)	9	sov			7	872.9		11.4	11.0	0.4	8.8	8.5	0.3	59.63
(190,	255)	1	sov			2	591.8		11.1	10.9	0.2	8.5	8.4	0.2	61.45
(190,	255)	2	sov			3	519.4		10.2	10.1	0.1	7.9	7.8	0.1	66.57
															• • •	
	255,	-	1	sov			3	1185.3		9.5	8.6	0.9	7.3	6.6	0.7	57.26
	255,		2	sov			2	672.3		8.4	8.1	0.3	6.5	6.3	0.3	64.76
(255,	257)	9	sov			0	55.7		11.8	9.8	2.1	9.2	7.6	1.6	46.07
(257,	280)	1	sov			4	1101.9		5.7	5.4	0.3	4.4	4.2	0.2	60.13
(257,	280)	2	sov			1	807.0		5.3	5.1	0.2	4.1	3.9	0.1	64.91
(280,	282)	1	sov			15	1451.6		17.2	16.1	1.1	13.3	12.4	0.8	59.48
(280,	282)	6	sov			10	946.8		15.7	15.3	0.4	12.1	11.8	0.3	65.29
(280,	282)	9	sov			0	31.5		18.8	17.7	1.1	14.5	13.7	0.8	54.41
(282,	32)	1	sov			2	1389.3		8.5	8.1	0.3	6.5	6.3	0.3	60.48
	282,	32)	2	sov			2	1031.4		7.9	7.7	0.2	6.1	5.9	0.3	65.38
•	,	0_,	_	201			_	1031.1		,.,	,.,	0.2	0.1	3.9	0.1	03.30
(32,	33)	1	sov			1	626.9		8.2	8.0	0.2	6.3	6.2	0.1	62.14
(32,	33)	2	sov			1	702.6		7.9	7.7	0.2	6.1	6.0	0.1	64.81
(32,	33)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(32,	33)	9	SOV			0	1097.7		7.8	7.7	0.2	6.0	5.9	0.1	65.36
(32,	33)	10	sov			0	1289.4		8.5	8.1	0.3	6.5	6.3	0.3	60.41
(33,	34)	1	sov			0	1229.4		8.5	8.1	0.3	6.5	6.3	0.3	60.25
(33,	34)	2	sov			0	1115.4		7.8	7.7	0.1	6.0	5.9	0.1	65.45
(33,	34)	3	sov			3	671.8		8.1	8.0	0.1	6.3	6.2	0.1	62.85
(33,	34)	4	sov			1	703.0		7.9	7.7	0.2	6.1	6.0	0.1	64.64
(33,	34)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(34,	35)	1	sov			5	1171.7		8.6	8.2	0.4	6.6	6.4	0.3	60.05
	34,		2	sov			2	1147.4		7.9	7.8	0.1	6.1	6.0	0.3	65.35
'	32,	55,	_	201			_	/.7		,	, . 0	U. I	J. 1	0.0	V. T	03.33

(34,	35)	3	sov			1	708.2		8.2	8.0	0.1	6.3	6.2	0.1	63.25
(34,	35)	4	sov			1	693.5		8.0	7.8	0.2	6.2	6.0	0.2	64.51
(34,	35)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(35,	36)	1	sov			5	1119.5		9.0	8.6	0.4	6.9	6.6	0.3	59.97
(35,	36)	2	sov			4	1168.2		8.3	8.1	0.2	6.4	6.2	0.1	65.18
(35,	36)	3	sov			3	739.7		8.5	8.4	0.1	6.5	6.4	0.1	63.52
(35,	36)	4	sov			1	685.2		8.4	8.1	0.2	6.5	6.3	0.2	64.34
(35,	36)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(36,	37)	1	sov			4	1071.0		9.9	9.5	0.4	7.6	7.3	0.3	59.89
(36,	37)	2	sov			2	1179.5		9.1	8.9	0.2	7.0	6.9	0.1	65.03
(36,	37)	3	sov			1	771.7		9.3	9.2	0.1	7.2	7.1	0.1	63.62
(36,	37)	4	sov			0	688.7		9.2	9.0	0.3	7.1	6.9	0.2	64.33
(36,	37)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,		- 43	_				_									
(37,	54)	1	sov			7	1012.0		11.3	10.9	0.4	8.7	8.4	0.3	59.91
(37,	54)	2	sov			4	1199.1		10.5	10.3	0.2	8.1	7.9	0.2	64.76
(37,	54)	3	sov			3	801.9		10.6	10.5	0.2	8.2	8.1	0.1	63.77
(37,	54)	4	sov			1	700.9		10.6	10.3	0.3	8.2	7.9	0.2	64.36
(37,	54)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(54,	55)	1	0077			•	1160 0								
,	54, 54,	55)	1 2	sov			3	1160.3		7.5	7.1	0.4	5.8	5.5	0.3	59.09
,	54,	55) 55)	3	SOV			1 1	1228.1		6.9	6.7	0.2	5.3	5.2	0.1	64.40
,	54, 54,	55) 55)	3 4	sov			1	832.6 711.1		6.9	6.8	0.1	5.4	5.2	0.1	63.90
(54, 54,	55) 55)	5	HOV	0		0			6.9	6.7	0.2	5.3	5.2	0.1	64.34
(54,	55)	9	SOV			0	0.0 24.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
'	J4,	337	,	500			U	24.4		8.5	7.6	1.0	6.6	5.8	0.8	51.85
(55,	56)	1	sov			2	1119.6		5.7	5.5	0.2	4.4	4.2	0.2	59.82
ì	55,	56)	2	sov			4	1267.0		5.3	5.2	0.1	4.1	4.0	0.1	64.25
ì	55,	56)	3	sov			1	846.4		5.3	5.2	0.1	4.1	4.0	0.1	64.05
ì	55,	56)	4	sov			2	730.1		5.3	5.2	0.1	4.1	4.0	0.1	64.22
ì	55,	56)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
•	,	,	_				•					• • • •		•••	•••	0.00
(56,	57)	1	sov			2	1305.1		10.7	10.4	0.3	8.2	8.0	0.2	64.01
(56,	57)	2	sov			4	882.0		10.6	10.4	0.2	8.2	8.0	0.2	64.16
(56,	57)	3	sov			3	744.5		10.6	10.3	0.3	8.2	8.0	0.2	64.17
(56,	57)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(56,	57)	9	sov			3	1398.2		11.7	10.8	0.8	9.0	8.4	0.6	58.41
(56,	57)	10	sov			0	28.0		13.8	11.6	2.2	10.7	9.0	1.7	49.28
(57,	58)	1	sov			1	1349.8		5.3	5.2	0.1	4.1	4.0	0.1	64.06
(57,	58)	2	sov			1	921.2		5.3	5.2	0.1	4.1	4.0	0.1	64.29
(57,	58)	3	sov			5	740.1		5.3	5.2	0.1	4.1	4.0	0.1	64.26
(57,	58)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(57,	58)	9	sov			0	1341.4		5.7	5.4	0.3	4.4	4.2	0.2	59.86
(58,	59)	1	sov			1	1354.4		6.2	6.0	0.1	4.8	4.6	0.1	64.20

(58,	59)	2	sov			2	928.1		6.1	6.0	0.1	4.7	4.6	0.1	64.35
(58,	59)	3	sov			0	713.0		6.1	6.0	0.2	4.8	4.6	0.1	64.33
(58,	59)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(58,	59)	9	sov			4	1357.2		6.6	6.3	0.3	5.1	4.9	0.2	60.19
,	59,	60)	1	sov			3	1168.4		9.0	8.7	0.3	6.9	6.7	0.2	63.92
(•						_									
(59,	60)	2	sov			3	761.5		8.9	8.7	0.2	6.9	6.7	0.1	64.57
(59,	60)	3	sov			1	597.4		8.9	8.7	0.2	6.9	6.7	0.1	64.77
(59,	60)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(59,	60)	9	sov			6	1824.4		9.8	9.1	0.7	7.5	7.0	0.5	58.74
(60,	61)	1	sov			12	1907.2		17.6	16.0	1.6	13.6	12.4	1.2	58.17
ì	60,	61)	2	sov			12	1383.2		16.6	16.0	0.7	12.8	12.3	0.5	61.47
ì	60,	61)	3	sov			6	655.2		15.8	15.4	0.4	12.2	11.9	0.3	64.83
(60,	61)	4	SOV			1	395.2		15.7	15.4	0.2	12.1			
(60,	61)	5	HOV	0	0	0	0.0						11.9	0.2	65.28
(60,	01)	5	ноч	U	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(61,	62)	1	sov			3	1173.2		11.1	10.7	0.3	8.5	8.3	0.3	61.66
(61,	62)	2	sov			3	741.5		10.4	10.3	0.1	8.0	7.9	0.1	65.51
(61,	62)	3	sov			2	427.5		10.4	10.2	0.2	8.0	7.9	0.1	65.69
(61,	62)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(61,	62)	9	sov			3	1150.6		11.8	11.0	0.8	9.1	8.5	0.6	57.62
•	•															02
(62,	63)	1	sov			1	1063.4		12.3	12.0	0.4	9.5	9.2	0.3	61.24
(62,	63)	2	SOV			0	822.6		11.6	11.4	0.2	8.9	8.8	0.1	65.43
(62,	63)	3	sov			1	454.8		11.5	11.3	0.1	8.8	8.7	0.1	66.00
(62,	63)	4	HOV	. 0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(63,	64)	1	sov			2	959.9		12.9	12.5	0.4	9.9	9.6	0.3	60.82
(63,	64)	2	SOV			2	897.3		12.0	11.8	0.2	9.3	9.1	0.1	65.31
(63,	64)	3	sov			0	486.3		11.8	11.7	0.2	9.1	9.0	0.1	66.13
(63,	64)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(64,	65)	1	sov			7	1264.3		11.9	10.8	1.0	9.1	8.4	0.8	57.51
(64,	65)	2	sov			4	994.1		10.6	10.3	0.3	8.2	8.0	0.2	64.17
(64,	65)	3	sov			3	542.7		10.4	10.1	0.2	8.0	7.8	0.2	65.81
	64,	65)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(-						0			14.9		2.8		9.3	2.2	45.72
(64,	65)	9	sov			U	36.9		14.5	12.1	2.0	11.5	9.3	2.2	45.72
(65,	66)	1	sov			0	1189.2		5.7	5.4	0.2	4.4	4.2	0.2	60.19
ì	65,	66)	2	sov			2	1039.8		5.3	5.2	0.1	4.1	4.0	0.1	64.51
(65,	66)	3	sov			1	600.4		5.2	5.1	0.1	4.0	3.9	0.1	65.92
(65,	66)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	00,	00,	-		•	·	J	•••		3.0	2.0		2.0	- • •	- • •	
(66,	67)	1	sov			6	1264.7		10.5	10.1	0.4	8.1	7.8	0.3	60.63
(66,	67)	2	sov			3	1000.0		9.9	9.7	0.2	7.6	7.5	0.2	64.71
(66,	67)	3	sov			3	560.0		9.7	9.5	0.2	7.5	7.3	0.1	66.26
ì		67)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
•	/	,	_		-	-	-									

(67,	68)	1	sov			9	2154.4		15.3	13.8	1.5	11.8	10.6	1.2	57.82
(67,	68)	2	SOV			1	467.2		13.8	13.4	0.5	10.7	10.3	0.4	64.00
-	67,	68)	3	SOV			0	200.7		13.3	13.1	0.2	10.2	10.1	0.1	66.81
(68)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(67,	68)	4	HOV	U	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(68,	69)	1	sov			11	1498.2		17.2	16.4	0.7	13.2	12.7	0.6	59.62
ì	68,	69)	2	sov			3	509.1		15.7	15.5	0.2	12.1	12.0	0.1	65.14
ì	68,	69)	3	sov			1	229.1		15.2	15.1	0.1	11.7	11.7	0.1	67.23
ì	68,	69)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
ì	68,	69)	9	SOV			3	588.0		16.9	16.5	0.4	13.0	12.7	0.3	60.52
`	00,	03,	_	501			•	300.0		10.5	10.5	V.1	13.0	12.7	0.5	00.52
(69,	70)	1	sov			3	296.3		19.1	18.9	0.2	14.7	14.5	0.2	60.54
(69,	70)	2	SOV			3	497.9		17.8	17.7	0.1	13.7	13.6	0.1	65.01
(69,	70)	3	sov			2	252.7		17.2	17.0	0.2	13.3	13.1	0.1	67.30
(69,	70)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(70,	71)	1	sov			1	292.6		8.7	8.6	0.1	6.7	6.7	0.0	60.91
(70,	71)	2	sov			0	486.6		8.2	8.1	0.1	6.3	6.3	0.0	64.88
(70,	71)	3	sov			0	266.6		7.9	7.8	0.1	6.1	6.0	0.1	67.38
(70,	71)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
			_				_									
(71,	72)	1	sov			1	343.7		16.8	16.6	0.3	13.0	12.7	0.2	60.70
(71,	72)	2	sov			0	486.9		15.8	15.7	0.1	12.2	12.1	0.1	64.70
(71,	72)	3	sov			0	278.4		15.2	15.0	0.1	11.7	11.6	0.1	67.39
(71,	72')	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(71,	72)	9	sov			0	2.0		19.6	18.4	1.2	15.1	14.2	0.9	52.06
(72,	73)	1	sov			3	287.0		24.6	24.4	0.3	19.0	18.8	0.2	61.34
(72,	73)	2	sov			2	527.8		23.5	23.3	0.2	18.1	18.0	0.1	64.24
(72,	73)	3	sov			1	294.3		22.4	22.2	0.2	17.3	17.1	0.1	67.38
į	72,	73)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(73,	74)	1	sov			2	271.4		16.4	16.1	0.3	12.6	12.4	0.2	62.33
(73,	74)	2	sov			4	618.2		16.2	15.9	0.3	12.5	12.2	0.2	63.25
(73,	74)	3	sov			0	213.6		15.4	15.1	0.3	11.9	11.7	0.2	66.56
(73,	74)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	7.4	751	1	sov			7	668.1		23.1	22.7	0.4	17.8	17.5	0.3	62.05
(74,	75)					1	423.1		21.4	21.2	0.4	16.5	16.3	0.3	66.75
(74,	75)	2	sov												
(74,	75)	3	HOV	7	7	0	7.0	7.0	22.5	22.3	0.2	17.7	17.5	0.2	63.59
(75,	76)	1	sov			0	624.2		5.8	5.7	0.1	4.5	4.4	0.1	61.98
ì	75,	76)	2	sov			0	468.1		5.4	5.3	0.1	4.2	4.1	0.1	66.50
ì	75,	76)	3	HOV	7	7	0	7.0	7.0	5.6	5.6	0.0	4.4	4.4	0.0	64.05
	-	-														
(76,	77)	1	sov			0	617.7		3.5	3.5	0.1	2.7	2.7	0.0	61.86
(76,	77)	2	sov			0	476.3		3.3	3.2	0.1	2.6	2.5	0.1	66.07
(76,	77)	3	HOV	7	7	0	7.0	7.0	3.4	3.4	0.0	2.7	2.7	0.0	64.27
-	-	-														

(568,	569)	1	sov			0	450.0		2.3	2.1	0.2	1.8	1.6	0.1	58.77
(568,	-	2	sov			Ö	434.0		2.3	2.1	0.2	1.8	1.6	0.2	58.05
(568,		3	HOV	0	0	Ö	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
, , , , ,				_											
(569,	570)	1	sov			0	453.2		13.4	13.0	0.4	10.3	10.1	0.3	62.99
(569,		2	sov			0	430.8		13.5	13.0	0.5	10.4	10.0	0.4	62.61
(569,		3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(000)	,				-										
(570,	571)	1	sov			2	450.6		8.9	8.7	0.2	6.8	6.7	0.2	63.40
(570,	571)	2	sov			3	432.8		8.9	8.6	0.3	6.9	6.6	0.2	63.30
(570,	, 571)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(571,	, 572)	1	sov			1	159.9		16.1	15.7	0.4	12.4	12.1	0.3	63.38
(571,	, 572)	2	sov			2	424.1		16.1	15.8	0.3	12.4	12.2	0.2	63.54
(571,	, 572)	3	HOV	0	425	1	295.9	295.9	16.2	15.7	0.5	12.5	12.1	0.4	63.14
(572,	•	1	sov			0	106.1		22.7	22.3	0.4	17.6	17.3	0.3	65.83
(572,		2	sov			1	387.6		23.5	23.2	0.3	18.1	17.9	0.2	63.64
(572,		3	sov			1	388.3		23.7	23.0	0.7	18.3	17.8	0.5	63.12
(572,	, 573)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(573,	E74\	1	sov			1	164.3		15.9	15.7	0.2	12.3	12.1	0.2	64.35
(573)	•	2	SOV			1	363.9		16.1						
	•									15.9	0.2	12.4	12.2	0.1	63.63
(573,	•	3	sov			1	353.7		16.1	15.7	0.4	12.5	12.2	0.3	63.36
(573,	, 5/4)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(574,	, 575)	1	sov			0	107.8		12.9	12.7	0.2	10.0	9.8	0.2	66.92
(574	, 575)	2	sov			0	359.3		13.6	13.4	0.1	10.4	10.3	0.1	63.68
(574	575)	3	sov			0	344.6		13.7	13.3	0.3	10.5	10.3	0.3	63.23
(574		4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(575,	, 576)	1	sov			0	115.0		17.6	17.5	0.2	13.6	13.5	0.1	67.28
(575,	, 576)	2	SOV			1	356.5		18.6	18.5	0.2	14.3	14.2	0.1	63.73
(575,	, 576)	3	sov			1	339.1		18.7	18.3	0.4	14.4	14.1	0.3	63.44
(575,	, 576)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(576,		1	sov			1	1050.8		17.1	15.8	1.3	13.2	12.2	1.0	59.77
(576		2	sov			4	563.4		16.1	15.6	0.5	12.4	12.0	0.4	63.48
(576,		3	sov			1	363.8		16.1	15.7	0.4	12.4	12.1	0.3	63.58
	, 577)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(576,	, 577)	9	sov			0	34.9		22.3	19.7	2.6	17.2	15.2	2.0	45.96
/ 577	E70\	1	sov			2	928.6		13.9	13.5	0.4	10.7	10.4	0.3	62.54
(577)						2	689.9		13.3	13.3	0.4	10.7	10.4	0.3	65.26
(577,		2	sov			1						10.5	10.2	0.1	64.19
	, 578)	3	sov				392.9		13.6	13.3	0.3				0.00
(577	, 578)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(578	, 579)	1	sov			7	1181.5		11.7	11.3	0.5	9.1	8.7	0.4	61.65
(578		2	sov			1	585.0		11.0	10.9	0.2	8.5	8.4	0.1	65.75
, 5.0	,,	_				_									

(578,	579)	3	sov			1	239.6		11.1	11.0	0.1	8.5	8.4	0.1	65.45
(578,	579)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
		_													
(579,		1	sov			3	1178.3		5.5	5.3	0.2	4.3	4.1	0.2	61.47
(579,	-	2	sov			2	582.9		5.2	5.1	0.1	4.0	3.9	0.0	65.95
(579,		3	sov			0	240.2		5.2	5.1	0.0	4.0	3.9	0.0	66.10
(579,	580)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(580,	581)	1	sov			10	1131.1		11.3	10.9	0.5	8.8	8.4	0.4	60.10
(580,	581)	2	sov			4	611.1		10.4	10.2	0.1	8.0	7.9	0.1	65.83
(580,	581)	3	sov			3	255.6		10.3	10.2	0.1	7.9	7.9	0.1	66.23
(580,	581)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
						_			0.0	0.0	0.0	0.0	0.0	0.0	0.00
(581,	-	1	sov			3	579.8		11.6	11.3	0.3	8.9	8.8	0.2	61.38
(581,		2	sov			2	631.7		10.8	10.7	0.1	8.4	8.3	0.1	65.72
(581,	-	3	sov			2	274.2		10.7	10.6	0.1	8.3	8.2	0.1	66.50
(581,	582)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(582,	583)	1	sov			1	552.4		13.8	13.5	0.3	10.6	10.4	0.2	61.40
(582,	583)	2	sov			1	623.3		12.9	12.8	0.1	10.0	9.9	0.1	65.53
(582,	583)	3	sov			0	314.1		12.7	12.6	0.1	9.8	9.7	0.1	66.78
(582,	583)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
				_	-	-				0.0	0.0	0.0	0.0	0.0	0.00
(583,	584)	1	sov			1	1055.7		11.9	10.7	1.2	9.2	8.2	0.9	57.39
(583,	584)	2	sov			2	727.6		10.6	10.3	0.3	8.2	7.9	0.2	64.22
(583,	584)	3	sov			0	357.6		10.2	10.1	0.2	7.9	7.8	0.1	66.67
(583,	584)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(583,	584)	9	sov			0	44.9		14.5	11.9	2.6	11.2	9.2	2.0	47.09
(584,	585)	1	sov			7	1746.2		17.4	16.0	1.4	13.4	12.4	1.1	58.75
(584,		2	SOV			1	921.4		15.9	15.4	0.5	12.3	11.9	0.4	64.12
(584,		3	SOV			0	411.2		15.3	15.1	0.3	11.8	11.6	0.4	66.72
(584,		4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	
(584,		9	SOV			0	56.8								0.00
(304,	303)	9	500			U	30.0		18.6	17.9	0.7	14.4	13.8	0.6	54.84
(585,	586)	1	sov			2	1764.5		8.2	7.7	0.5	6.3	5.9	0.4	59.79
(585,	586)	2	SOV			1	950.2		7.5	7.4	0.1	5.8	5.7	0.1	64.89
(585,	586)	3	sov			0	425.6		7.3	7.2	0.1	5.6	5.5	0.1	67.34
(585,	586)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(586,	5871	1	sov			4	1684.6		7.4	7.0	0.4	5.7	5.4	0.3	60.43
(586,		2	sov			0	998.7		6.8	6.8	0.1	5.3	5.2	0.1	65.21
(586,	-	3	SOV			0	457.8		6.6	6.5	0.1	5.1	5.0	0.1	67.67
	-	4	HOV	0	0		0.0								
(586,	5011	*	HOV	U	U	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(587,	-	1	sov			2	1635.6		5.6	5.4	0.3	4.4	4.1	0.2	60.35
(587,	588)	2	sov			1	1017.9		5.2	5.2	0.1	4.0	4.0	0.1	65.17
(587,	588)	3	sov			1	489.2		5.0	5.0	0.1	3.9	3.8	0.0	67.73
(587,	588)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00

(588,	589)	1	sov			10	1558.8		11.6	10.9	0.7	8.9	8.4	0.5	58.90
(588,	589)	2	sov			6	1049.3		10.5	10.3	0.2	8.1	8.0	0.1	64.83
(588,	589)	3	sov			3	532.0		10.1	10.0	0.1	7.8	7.7	0.1	67.80
(588,	589)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
`	,	,	_		-		_									
1	589,	590)	1	sov			2	749.7		9.3	8.9	0.3	7.1	6.9	0.2	59.91
	589,	-	2	sov			3	1026.1		8.7	8.5	0.2	6.7	6.6	0.1	63.90
-	_		_													
-	589,		3	sov			0	678.7		8.3	8.2	0.1	6.4	6.3	0.1	66.73
(589,	590)	4	HOV	0	610	0	123.0	123.0	8.2	8.1	0.1	6.3	6.2	0.1	67.75
		591)	1	sov			0	67.6		6.7	6.2	0.5	5.2	4.8	0.4	62.92
(590,	591)	2	sov			1	861.3		6.9	6.8	0.1	5.3	5.2	0.1	60.86
(590,	591)	3	sov			1	1026.2		6.5	6.4	0.1	5.0	4.9	0.1	64.62
(590,	591)	4	sov			2	625.5		6.2	6.1	0.1	4.8	4.7	0.1	67.64
(590,	591)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
`	0,00,	JJ /	•	1101	Ū	·	·	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	591,	5021	1	sov			0	127.5		7.2	7.0			- 4		64.06
-			2				_					0.2	5.6	5.4	0.2	64.86
	591,			sov			4	814.0		7.7	7.5	0.1	5.9	5.8	0.1	60.87
-	591,	-	3	sov			3	990.3		7.2	7.1	0.1	5.6	5.5	0.1	64.62
	-	592)	4	sov			1	650.1		6.9	6.8	0.1	5.3	5.2	0.1	67.63
(591,	592)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(592,	593)	1	sov			0	165.7		10.5	10.2	0.2	8.1	7.9	0.2	65.22
(592,	593)	2	sov			2	945.5		11.1	10.8	0.2	8.5	8.3	0.2	61.64
(592,	593)	3	sov			4	921.3		10.6	10.4	0.2	8.2	8.0	0.1	64.21
	592,		4	sov			1	553.5		10.1	10.0	0.1	7.8	7.7	0.1	67.45
-	592,	-	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	332,	3331	5	1104	Ū	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	E02	E04\	1	sov			- 1	250 5		5.4	- 1	0 0	4.0	2 0		62 42
	593,	-					1	259.5			5.1	0.3	4.2	3.9	0.2	63.43
	593,		2	sov			2	1422.4		5.4	5.3	0.2	4.2	4.1	0.1	62.76
-	593,	-	3	sov			1	647.7		5.4	5.4	0.1	4.2	4.1	0.1	62.64
(593,	594)	4	SOV			0	259.1		5.1	5.0	0.1	3.9	3.9	0.1	67.03
(593,	594)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(594,	595)	1	sov			0	414.6		10.4	10.1	0.3	8.0	7.8	0.2	65.73
•		595)	2	sov			3	1266.7		10.9	10.6	0.3	8.4	8.2	0.2	62.79
		595)	3	sov			2	614.0		10.9	10.7	0.1	8.4	8.3	0.1	62.81
•		595)	4	sov			0	291.2		10.2	10.0	0.1	7.8	7.7	0.1	67.11
-						0	-									
(594,	595)	5	HOV	0	U	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
			_				_									
-	595,	-	1	sov			1	584.4		7.2	7.1	0.1	5.6	5.5	0.1	62.76
(595,	596)	2	sov			1	320.7		6.8	6.6	0.2	5.2	5.1	0.1	67.06
(595,	596)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(595,	596)	9	sov			2	1196.9		8.0	7.6	0.4	6.1	5.8	0.3	56.85
Ċ	595.	596)	10	sov			1	482.2		7.5	7.3	0.1	5.8	5.7	0.1	60.74
•							_						- • •			
1	596,	5971	1	sov			1	564.4		7.7	7.6	0.1	6.0	5.9	0.1	62.67
		597)	2	SOV			0	339.6		7.2	7.0	0.1	5.6	5.5	0.1	67.09
(230,	331)	4	200			U	339.0		1.2	1.2	0.1	5.0	5.5	0.1	07.09

(596,	597)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	597,	5981	1	sov			1	546.6		9.0	8.9	0.1	6.9	6.8	0.1	62.61
	597,		2	sov			0	357.5		8.4	8.3	0.1	6.5	6.4	0.1	66.98
	597,		3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
`	331,	330,	3		·	Ū	Ū	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(598,	599)	1	sov			0	521.2		4.7	4.7	0.1	3.6	3.6	0.0	62.46
(598,	599)	2	sov			0	383.8		4.4	4.4	0.1	3.4	3.4	0.0	66.78
(598,	599)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	600,		1	SOV			0	493.4		6.5	6.4	0.1	5.0	4.9	0.1	62.38
	600,		2	sov			0	410.6		6.1	6.0	0.1	4.7	4.6	0.0	66.65
(600,	601)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	601,	6021	1	sov			•	600.0								
	601,	-	2	SOV			0	698.0		8.5	8.0	0.5	6.5	6.1	0.4	60.27
	601,		3	HOV		0	0	451.3		7.8	7.6	0.1	6.0	5.9	0.1	65.95
	601,	-	9	SOV			0 2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	601,		10	SOV			1	1318.1		9.2	8.0	1.2	7.1	6.2	0.9	55.60
'	001,	002)	10	504			_	72.5		10.2	9.0	1.2	7.9	7.0	0.9	50.00
(602,	603)	1	sov			5	814.4		8.2	8.0	0.2	6.3	6.1	0.2	62.62
(602,	603)	2	sov			1	512.8		7.7	7.6	0.1	6.0	5.9	0.1	66.09
(602,	603)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(602,	603)	9	sov			4	1212.9		8.4	8.0	0.4	6.5	6.2	0.3	60.74
		50.4\	_													
	603,	-	1	sov			4	831.2		6.9	6.8	0.1	5.3	5.2	0.1	63.53
	603,		2	sov			3	540.4		6.6	6.5	0.1	5.1	5.0	0.1	66.42
	603,		3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(603,	604)	9	sov			4	1160.3		7.1	6.8	0.3	5.5	5.3	0.2	61.59
(604,	605)	1	sov			3	858.9		7.8	7.7	0.1	6.0	5.9	0.1	63.58
	604,		2	sov			0	561.4		7.5	7.4	0.1	5.8	5.7	0.1	66.45
(604,	605)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(604,	605)	9	sov			3	1108.3		8.1	7.8	0.3	6.2	6.0	0.3	61.21
(605,	606)	1	SOV			2	891.4		10.2	10.0	0.2	7.9	7.7	0.1	63.54
(605,	606)	2	SOV			3	583.7		9.8	9.6	0.1	7.5	7.4	0.1	66.42
	605,		3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(605,	606)	9	sov			3	1055.3		10.6	10.2	0.4	8.2	7.9	0.3	61.01
,	606,	6071	1	sov			2	908.9		8.1	8.0	0.1	6.3	6.2	0.1	63.46
	606,		2	sov			3	605.7		7.8	7.6	0.1	6.0	5.9		
	606,		3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.1	66.44
	606,	-	9	sov			3	1010.5		8.5	8.1	0.0	6.5	6.3		0.00
`	,	0077	9	504			3	1010.5		0.5	0.1	0.3	0.5	0.3	0.3	60.83
(607,	608)	1	sov			1	900.1		7.1	7.0	0.1	5.5	5.4	0.1	63.42
(607,	608)	2	sov			1	642.1		6.8	6.7	0.1	5.2	5.1	0.1	66.45
(607,	608)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(607,	608)	9	sov			1	980.4		7.4	7.1	0.3	5.7	5.5	0.2	60.82

(6	508,	609)	1	sov			3	907.6		8.8	8.6	0.2	6.8	6.6	0.1	63.34
•	-	609)	2	sov			2	664.2		8.4	8.2	0.1	6.5	6.4	0.1	66.54
	-	609)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
•		609)	9	sov			4	946.6		9.2	8.8	0.4	7.1	6.8	0.3	60.76
, ,	,,,	,														
(6	509.	610)	1	sov			2	922.0		10.0	9.8	0.2	7.7	7.6	0.1	63.32
•		610)	2	sov			2	690.4		9.5	9.4	0.1	7.3	7.2	0.1	66.48
•	-	610)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
		610)	9	sov			1	908.2		10.4	10.0	0.4	8.0	7.7	0.3	60.76
, ,	,	020,		201			_	50012				• • • •	•••		• • • •	
((610.	611)	1	sov			2	1124.9		7.7	7.5	0.2	6.0	5.8	0.2	63.02
	_	611)	2	sov			2	621.3		7.3	7.2	0.1	5.7	5.6	0.1	66.41
		611)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	-	611)	9	sov			4	771.2		8.0	7.7	0.3	6.2	6.0	0.2	60.86
•	010,	011,	_	501			•	,,,		0.0	, . ,	0.5	0.2	0.0	0.2	00.00
()	611.	612)	1	sov			3	1509.9		8.2	7.9	0.3	6.4	6.1	0.3	61.67
	-	612)	2	sov			1	443.5		7.8	7.5	0.2	6.0	5.8	0.2	65.56
		612)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
•		612)	9	sov			2	563.5		8.2	8.0	0.3	6.4	6.2	0.2	61.66
, ,	·,	011,	_	501			-	303.3		0.2	0.0	0.5	0.4	0.2	0.2	01.00
()	612	613)	1	sov			5	1356.1		16.8	16.2	0.6	13.0	12.5	0.5	60.74
	-	613)	2	sov			1	503.4		15.4	15.2	0.3	11.9	11.7	0.3	66.27
-	-	613)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	-	613)	9	SOV			3	654.9		17.0	16.5	0.5	13.1	12.7	0.4	60.04
, ,	012,	013)	9	SOV			3	034.9		17.0	10.5	0.5	13.1	12.7	0.4	60.04
	613	614)	1	sov			0	699.7		3.5	3.4	0.1	2.7	2.6	0.1	61.02
-	-	614)	2	sov			1	455.7		3.2	3.2	0.1	2.5	2.4	0.0	66.04
-	-	614)	3	HOV	0	0	ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
, ,	013,	014)	,	110 4	Ū	v	Ū	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	614	615)	1	sov			2	693.3		3.2	3.1	0.1	2.4	2.4	0.1	61.79
•		615)	2	sov			1	460.6		2.9	2.9	0.0	2.3	2.2	0.0	66.35
•		615)	3	HOV	0	0	ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	OI4,	0137	,	1104	Ū	Ü	Ū	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	615	616)	1	sov			0	692.2		5.5	5.4	0.1	4.2	4.2	0.1	62.03
		616)	2	sov			1	460.4		5.1	5.1	0.1	4.0	3.9	0.0	66.42
	-	616)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	015,	010)	3	ноч	· ·	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	616	617)	1	sov			2	680.5		11.3	11.0	0.3	8.7	8.5	0.2	60.36
•		617)	2	sov			0	471.6		10.3	10.2	0.1	7.9	7.8	0.1	66.24
	-	617)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(ото,	01/)	3	HOV	U	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	617	6101	1	sov			5	407.3		11.0	10.9	0.1	8.5	8.4	0.1	61.60
•	-	618)	1				1	471.0		10.2	10.9	0.1	7.9	7.8	0.1	66.13
•		618)	2	sov					0.0		0.0	0.1	0.0	0.0	0.0	0.00
(ο17,	618)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	c10	C10\	4				-	400 F		9.9	9.8	0.1	7.6	7.5	0.1	61.75
•		619)	1	sov			1	409.5								
	-	619)	2	sov			3	466.3		9.3	9.2	0.1	7.2	7.1	0.1	66.02
(618,	619)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00

(619,620)	1	sov			0	410.9		4.6	4.6	0.1	3.6	3.5	0.0	61.88
	2	sov			1	465.0		4.3	4.3	0.1	3.3	3.3	0.0	65.81
(619, 620)													0.0	0.00
(619, 620)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(599, 600)	1	sov			1	507.3		4.2	4.2	0.1	3.3	3.2	0.0	62.43
(599, 600)	2	sov			0	397.2		4.0	3.9	0.0	3.0	3.0	0.0	66.75
(599,600)	3	HOV	0	0	Ö	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(333, 000)	,	110 V	v	Ū	Ū	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.00
(77,7053)	1	sov			1	617.9		2.1	2.0	0.0	1.6	1.6	0.0	61.60
(77,7053)	2	sov			0	477.0		1.9	1.9	0.1	1.5	1.5	0.0	65.13
(77,7053)	3	HOV	7	7	0	7.0	7.0	2.0	2.0	0.0	1.6	1.6	0.0	64.19
														01125
(7054, 568)	1	sov			0	487.3		3.0	2.4	0.6	2.3	1.8	0.5	52.99
(7054, 568)	2	sov			0	469.4		3.0	2.4	0.7	2.3	1.8	0.5	52.26
(7054, 568)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
					•					•••	0.0	0.0	0.0	0.00
(396, 397)	1	sov			7	1044.7		25.3	24.4	1.0	19.6	18.8	0.7	61.46
(396, 397)	2	sov			9	1184.1		24.6	23.9	0.7	19.0	18.5	0.6	63.20
(396, 397)	3	sov			6	949.5		24.7	23.8	0.8	19.0	18.4	0.6	63.17
(396, 397)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0			
(330, 337)	•	поч	U	O	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(397, 398)	1	sov			4	1843.2		8.1	7.5	0.7	6.3	5.8	0.5	58.89
(397, 398)	2	sov			2	1026.3		7.6	7.3	0.3	5.9	5.6	0.2	62.99
(397, 398)	3	sov			2	800.3		7.5	7.3	0.2	5.8	5.6	0.2	63.78
(397, 398)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(397, 398)	9	sov			3	340.4		8.2	7.4	0.8	6.4	5.8	0.6	57.99
(331, 330)	9	BOV			,	340.4		0.2	7.4	0.0	0.4	3.6	0.0	57.33
(398, 564)	1	sov			6	1642.4		9.0	8.6	0.4	6.9	6.6	0.3	60.69
(398, 564)	2	sov			4	1122.4		8.6	8.3	0.2	6.6	6.4	0.2	63.55
(398, 564)	3	sov			1	826.5		8.6	8.3	0.2	6.6	6.4	0.2	63.78
	_					0.0				0.0				
(398, 564)	4	HOV	0	0	0		0.0	0.0	0.0		0.0	0.0	0.0	0.00
(398, 564)	9	sov			1	418.4		8.5	8.2	0.3	6.6	6.4	0.2	64.22
(620, 369)	1	sov			1	407.2		5.4	5.4	0.1	4.2	4.1	0.0	61.93
(620, 369)	2	sov			1	468.1		5.1	5.0	0.1	3.9	3.9	0.1	65.64
(620, 369)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(620, 369)	3	HOV	U	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(617, 114)	1	sov			1	271.4		8.2	8.1	0.1	6.3	6.2	0.1	54.08
(114, 115)	1	sov			1	271.0		11.5	11.3	0.2	8.9	8.7	0.2	49.67
(117, 416)	1	sov			0	270.0		9.0	8.7	0.2	6.9	6.7	0.2	48.65
,,,	_	_••			•							2.4.		
(399, 402)	1	sov			2	449.0		20.2	20.0	0.2	15.6	15.5	0.2	55.70
(399, 402)	2	sov			3	451.5		21.2	20.9	0.2	16.3	16.1	0.2	53.05
/ (05 130)		go - -			•	750.0		2.0	2.7	0.5	2.5	0 1	0.4	44 10
(625, 132)	1	sov			0	752.0		3.2	2.7	0.5	2.5	2.1	0.4	44.18

(626,	627)	1	sov		 1	626.7	 4.7	4.6	0.1	3.6	3.5	0.1	61.21
(626,	-	2	sov		 1	482.9	 4.3	4.2	0.1	3.4	3.3	0.1	65.91
(626,	02/)	4	50 V		 -	402.5	1.5		0.1	5			
					_						0.7		61 04
(627,	190)	1	sov		 1	616.1	 3.5	3.5	0.1	2.7	2.7	0.0	61.84
(627,	190)	2	sov		 1	492.8	 3.3	3.2	0.0	2.5	2.5	0.0	66.73
(629,	2551	1	sov		 2	804.1	 4.9	4.3	0.6	3.8	3.3	0.5	47.11
(023,	2337	-	DOV		-	001.1							
		_			_						4 4		20 55
(628,	629)	1	sov		 2	806.1	 5.9	5.3	0.7	4.6	4.1	0.5	39.77
(631,	280)	1	sov		 0	527.0	 6.7	6.2	0.5	5.2	4.8	0.4	50.30
							• • •	**-	• • • •	3.2		•••	30.30
(630,	6311	1	sov		 0	E27 0	 6 2	- 0	0 0	4.0	4 -	0 0	45 40
(030,	031)	_	500		 U	527.0	 6.2	5.8	0.3	4.8	4.5	0.3	47.40
(632,	633)	1	sov		 3	941.2	 8.3	8.0	0.3	6.4	6.2	0.2	53.42
(632,	633)	2	sov		 2	926.5	 8.4	8.1	0.3	6.5	6.3	0.2	52.70
(635,	54)	1	sov		 0	234.0	 8.4	7.8	0.5	6.5	6.1	0.4	51.17
(055,	34)	-	501		 U	254.0	 0.1	7.0	0.5	0.5	0.1	0.4	51.17
		_			_								
(634,	635)	1	sov		 0	233.9	 7.6	7.1	0.6	5.9	5.5	0.4	41.72
(637,	56)	1	sov		 0	396.0	 8.2	8.0	0.2	6.3	6.2	0.1	53.70
(636,	6271	1	sov	·	 0	395.8	 5.7	5.6	0.1	4.4	4.3	0.1	53.49
(636,	637)	_	500		 U	393.6	 5.7	5.0	0.1	4.4	4.3	0.1	53.49
(61,	638)	1	sov		 0	840.6	 5.8	5.6	0.2	4.5	4.3	0.2	52.77
(638,	639)	1	sov		 1	188.6	 4.4	4.2	0.2	3.4	3.2	0.2	52.17
(638,		2	sov		 1	651.2	 4.4	4.2	0.2	3.4	3.2	0.2	52.46
(050,	0331		504		 -	031.2	 1.1	4.2	0.2	3.4	3.2	0.2	32.40
					_								
(62,	640)	1	sov		 1	1150.3	 5.3	5.0	0.3	4.1	3.9	0.2	52.27
(640,	641)	1	sov		 0	341.5	 2.9	2.8	0.1	2.2	2.2	0.1	52.04
(640,		2	sov		 0	808.5	 2.9	2.7	0.1	2.2	2.1	0.1	52.22
(010,	·,	_			•								
	64				•	E00 0	7.6	7 3	0 2	F 0	5.6	0 0	E2 E6
(643,	64)	1	sov		 0	500.0	 7.6	7.3	0.3	5.8	5.0	0.2	52.56
(642,	643)	1	sov		 1	334.4	 6.4	5.9	0.5	4.9	4.6	0.4	50.73
(642,	643)	2	sov		 0	166.5	 6.6	6.1	0.5	5.1	4.7	0.4	49.32
· -•	•												
(69,	644)	1	sov		 1	686.7	 4.4	4.3	0.0	3.4	3.3	0.0	54.95
-						1088.6					3.4	0.1	52.75
(69,	644)	2	sov		 1	1000.0	 4.5	4.4	0.1	3.5	3.4	0.1	54.75
(644,	645)	1	sov		 0	176.0	 3.1	3.1	0.0	2.4	2.4	0.0	54.39
(644,	645)	2	sov		 0	808.0	 3.3	3.2	0.0	2.5	2.5	0.0	51.95
(644,		3	sov		 0	791.9	 3.4	3.3	0.1	2.6	2.5	0.1	49.41
, 011/	,	-			•		- • •	- • •	- • -		_ • •	- • -	
,	F4.				4	64.0	0 =	0 0	0 -	7 3	6 0	0.4	E0 40
(647,	71)	1	sov		 1	64.8	 9.5	8.9	0.6	7.3	6.9	0.4	50.49

(646,	647)	1	sov	 	0	65.0	 8.3	7.7	0.6	6.4	6.0	0.5	40.93
(574,	660)	1	sov	 	0	71.0	 2.8	2.8	0.1	2.2	2.1	0.0	53.75
(660,	661)	1	sov	 	0	71.0	 2.8	2.7	0.1	2.2	2.1	0.1	50.53
(663,	576)	1	sov	 	1	1046.0	 7.3	6.2	1.2	5.7	4.8	0.9	46.29
-	-	-												
(663,	5/6)	2	sov	 	0	158.9	 8.9	7.0	1.9	6.9	5.4	1.5	38.18
-	662,	-	1	sov	 	0	100.4	 7.1	4.5	2.6	5.5	3.5	2.0	32.05
(662,	663)	2	sov	 	2	1102.8	 5.3	4.5	0.9	4.1	3.4	0.7	42.64
(581,	664)	1	sov	 	2	505.3	 7.4	7.2	0.2	5.7	5.5	0.2	53.40
(664,	665)	1	sov	 	1	503.2	 2.9	2.8	0.1	2.2	2.1	0.1	52.84
(667,	583)	1	sov	 	0	694.0	 12.6	10.8	1.7	9.7	8.4	1.3	46.84
(666,	667)	1	sov	 	0	694.0	 4.2	3.9	0.3	3.3	3.0	0.2	34.37
(669,	584)	1	sov	 	5	850.4	 7.7	7.3	0.5	6.0	5.6	0.4	51.54
	669,		2	sov	 	1	101.9	 8.1	7.5	0.6	6.3	5.8	0.5	48.88
(668,	669)	1	sov	 	0	40.4	 6.8	4.1	2.7	5.3	3.2	2.1	31.82
(668,	669)	2	sov	 	2	915.0	 4.2	3.9	0.2	3.2	3.0	0.2	51.77
(589,	670)	1	sov	 	1	559.1	 2.9	2.8	0.1	2.3	2.2	0.1	53.13
(670,	671)	1	sov	 	2	558.0	 2.8	2.7	0.1	2.1	2.1	0.1	53.11
(672,	673)	1	sov	 	1	885.2	 6.4	6.0	0.4	4.9	4.7	0.3	47.00
(674,	675)	1	sov	 	0	746.0	 3.9	3.8	0.1	3.0	2.9	0.1	52.80
(676,	677)	1	sov	 	3	912.3	 19.1	18.5	0.6	14.7	14.3	0.4	53.60
(676,	677)	2	sov	 	1	622.1	 19.2	18.8	0.4	14.8	14.5	0.3	53.23
(676,	677)	3	sov	 	0	25.5	 19.3	19.1	0.2	14.8	14.7	0.1	53.08
	676,		9	sov	 	0	121.2	 18.9	18.6	0.3	14.6	14.4	0.3	53.99
,	677,	680)	1	sov	 	1	333.5	 16.1	16.0	0.2	12.5	12.3	0.1	56.61
			2	SOV		1	559.3	 17.2	16.9	0.2	13.2	13.0	0.2	53.25
(677,	000)	4	5∪v	 	1	337.3	 11.2	10.3	0.2	13.2	13.0	0.2	33.23
	677,		1	sov	 	1	285.5	 5.0	5.0	0.0	3.9	3.9	0.0	50.95
(677,	678)	2	sov	 	2	502.8	 5.3	5.2	0.1	4.1	4.0	0.1	48.68
(678,	679)	1	sov	 	0	291.0	 5.5	5.5	0.0	4.2	4.2	0.0	50.89
(678,	679)	2	sov	 	1	495.6	 5.8	5.7	0.1	4.5	4.4	0.1	48.36
(680,	681)	1	sov	 	0	368.6	 8.7	8.6	0.1	6.7	6.7	0.1	56.77

(680, 681)	2	sov	 	2	525.0		9.3	9.2	0.1	7.2	7.1	0.1	53.09
(681, 682)	1	sov	 	1	388.2		9.0	8.9	0.1	7.0	6.9	0.1	56.75
(681, 682)	2	sov	 	2	506.1		9.6	9.5	0.1	7.4	7.3	0.1	52.99
(684, 685)	1	sov	 	0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(686, 111)	1	sov	 	0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(685, 681)	1	sov	 	0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(682, 683)	1	sov	 	1	401.8		9.0	8.9	0.1	7.0	6.9	0.1	56.74
(682, 683)	2	sov	 	1	491.1		9.7	9.6	0.1	7.4	7.4	0.1	52.91
(687, 688)	1	sov	 	0	408.6		6.7	6.6	0.1	5.1	5.1	0.1	47.42
(687, 688)	2	sov	 	1	484.0		7.2	7.1	0.1	5.5	5.4	0.1	44.19
(688,7027)	1	sov	 	0	414.0		4.3	4.3	0.0	3.3	3.3	0.0	42.19
(688,7027)	2	sov	 	0	478.0		4.7	4.6	0.0	3.6	3.6	0.0	38.61
(7056, 626)	1	sov	 	3	671.8		5.3	4.6	0.7	4.1	3.5	0.5	54.58
(7056, 626)	2	sov	 	0	486.5		4.7	4.2	0.5	3.6	3.3	0.4	61.21
(679,7058)	1	sov	 	0	295.6		3.1	3.0	0.0	2.4	2.3	0.0	50.52
(679,7058)	2	sov	 	1	492.8		3.3	3.1	0.1	2.5	2.4	0.1	47.45
(7059, 684)	1	sov	 	0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(7060, 628)	1	sov	 	2	879.0		4.3	4.1	0.2	3.3	3.1	0.2	33.96
(7061, 630)	1	sov	 	0	557.6		4.9	4.5	0.5	3.8	3.4	0.4	45.42
(7062, 674)	1	sov	 	0	829.3		2.3	2.0	0.3	1.8	1.6	0.2	48.55
(7063, 672)	1	sov	 	2	921.6		7.5	6.8	0.7	5.8	5.3	0.5	41.08
(671,7064)	1	sov	 	0	557.0		2.4	2.3	0.1	1.8	1.8	0.1	52.36
(633,7065)	1	sov	 	3	941.2		4.3	4.1	0.1	3.3	3.2	0.1	53.22
(633,7065)	2	sov	 	4	924.7		4.3	4.2	0.1	3.3	3.2	0.1	52.56
(7066, 634)	1	sov	 	1	254.4		4.1	3.9	0.2	3.1	3.0	0.1	34.92
(7067, 636)	1	sov	 	0	414.9		5.1	4.7	0.5	4.0	3.6	0.4	50.35
(665,7068)	1	sov	 	1	502.0		2.7	2.6	0.1	2.1	2.0	0.1	51.56
(7069, 666)	1	sov	 	0	768.6	,	3.4	3.3	0.1	2.6	2.5	0.1	35.69

(7070, 668) (7070, 668)	1 2	sov	 	0	207.8 805.2	 4.5 4.1	3.8 3.9	0.6	3.4 3.2	3.0 3.0	0.5	47.89 52.14
	2											
(639,7071)	1	sov	 	0	82.0	 2.3	2.0	0.3	1.8	1.5	0.2	48.60
(639,7071)	2	sov	 	0	757.0	 2.2	2.1	0.1	1.7	1.6	0.1	50.38
(7072, 642)	1	sov	 	0	95.9	 2.3	1.9	0.5	1.8	1.4	0.4	45.20
(7072, 642)	2	sov	 	0	465.0	 2.2	1.9	0.3	1.7	1.5	0.2	48.16
(641,7073)	1	sov	 	0	77.0	 2.3	2.3	0.0	1.7	1.7	0.0	52.49
(641,7073)	2	sov	 	2	1071.8	 2.4	2.4	0.0	1.9	1.8	0.0	49.50
(661,7074)	1	sov	 	0	71.0	 2.8	2.6	0.2	2.2	2.0	0.1	45.93
(7075, 662)	1	sov	 	0	347.2	 4.5	3.8	0.7	3.4	2.9	0.5	43.94
(7075, 662)	2	sov	 	0	933.9	 4.2	3.9	0.3	3.2	3.0	0.2	46.72
(645,7076)	1	sov	 	0	10.0	 3.2	3.0	0.2	2.5	2.3	0.2	49.74
(645,7076)	2	SOV	 	1	705.1	 3.2	3.2	0.0	2.5	2.5	0.0	49.60
(645,7076)	3	sov	 	1	1060.4	 3.4	3.3	0.2	2.6	2.5	0.1	46.97
(7077, 646)	1	sov	 	0	72.3	 3.2	3.0	0.2	2.4	2.3	0.2	34.26
(7084, 857)	1	sov	 	0	213.3	 2.6	2.3	0.3	2.0	1.8	0.2	49.31
(857, 858)	1	sov	 	0	194.0	 4.0	3.9	0.1	3.1	3.0	0.1	53.23
(859,7085)	1	sov	 	0	327.0	 6.2	6.0	0.2	4.8	4.7	0.1	53.00
(7086, 860)	1	sov	 	0	28.1	 5.8	5.7	0.0	4.4	4.4	0.0	55.21
(860, 861)	1	sov	 	0	27.0	 5.6	5.6	0.0	4.3	4.3	0.0	55.21
(866,7087)	1	sov	 	0	66.0	 3.9	3.8	0.1	3.0	2.9	0.1	53.60
(873,7088)	1	sov	 	0	57.0	 7.0	7.0	0.0	5.4	5.4	0.0	53.91
(7089, 874)	1	sov	 	1	84.3	 3.7	3.6	0.2	2.9	2.8	0.1	52.75
(874, 875)	1	sov	 	0	79.0	 3.7	3.6	0.0	2.8	2.8	0.0	54.41
(876,7090)	1	sov	 	0	138.0	 6.0	5.9	0.1	4.6	4.6	0.0	53.91
(7091, 877)	1	sov	 	0	77.7	 5.1	3.6	1.4	3.9	2.8	1.1	39.63
(877, 878)	1	sov	 	0	73.0	 4.6	4.4	0.2	3.5	3.4	0.1	51.70
(879,880)	1	sov	 	3	1023.9	 13.9	13.7	0.2	10.7	10.6	0.1	64.36
(879, 880)	2	sov	 	5	1005.9	 14.0	13.8	0.2	10.8	10.7	0.1	63.89

(880,	881)	1	sov	 	5	1008.8	 19.8	19.5	0.4	15.4	15.1	0.3	63.98
-	880,	-	2	sov	 	7	994.0	 20.0	19.6	0.4	15.5	15.2	0.3	63.52
(880,	001)	2	50V	 	,	334.0	20.0	13.0	0.1	13.3	13.1	0.5	00.0-
						_			1- 0		10 5	10.0	0.4	62 10
(881,	882)	1	sov	 	5	1022.6	 16.4	15.9	0.5	12.7	12.3	0.4	63.19
(881,	882)	2	sov	 	5	980.6	 16.5	16.0	0.5	12.7	12.4	0.4	62.97
(882,	883)	1	sov	 	2	1023.0	 16.3	15.8	0.6	12.6	12.2	0.4	62.61
-	882,	-	2	sov	 	4	981.5	 16.3	15.7	0.5	12.6	12.2	0.4	62.83
`	002,	005,	_	50.		•	302.5		-5.	***			• • •	02.00
,	883,	0041	1	sov	 	6	957.4	12.0	10 6	0.4	10 1			60 50
								 13.0	12.6	0.4	10.1	9.8	0.3	62.79
(883,	884)	2	sov	 	6	989.5	 13.1	12.6	0.4	10.1	9.8	0.3	62.73
(883,	873)	1	sov	 	0	57.0	 7.6	7.6	0.0	5.9	5.8	0.0	53.91
(884,	885)	1	sov	 	5	965.3	 12.1	11.6	0.4	9.3	9.0	0.3	62.69
(884,	885)	2	sov	 	5	981.8	 12.1	11.6	0.4	9.3	9.0	0.3	62.61
										• • •				
(885,	886)	1	sov	 	1	967.6	 14.9	14.4	0.6	11.6	11.1	0.4	62.53
-	885,	-	2	sov	 	2	979.7	 14.9	14.4	0.6	11.6	11.1	0.4	62.51
,	005,	000,	_	501		_	373.7	11.7	11.1	0.0	11.0	11.1	0.4	02.51
,	886,	0071	1	sov		6	1033.9	16.4	15.7	0.7	12.7	12.2	0.5	62.19
						-								
	886,		2	sov	 	4	989.2	 16.4	15.7	0.7	12.7	12.2	0.5	62.26
(886,	887)	9	sov	 	0	3.3	 19.6	17.4	2.2	15.1	13.4	1.7	52.13
(887,	888)	1	sov	 	5	1014.3	 16.9	16.2	0.7	13.1	12.6	0.5	62.21
(887,	888)	2	sov	 	2	1011.7	 16.9	16.2	0.7	13.1	12.5	0.6	62.32
(875,	886)	1	sov	 	0	79.0	 5.3	5.3	0.0	4.1	4.1	0.0	54.67
`	0.0,	000,	_			•								
,	000	889)	1	sov	 	6	1020.6	 18.4	17.6	0.8	14.2	13.6	0.6	62.16
_			2	sov		6	1008.0	 18.4	17.6	0.8	14.2	13.6	0.6	62.15
(888,	009)	2	500	 	0	1008.0	 10.4	17.6	0.0	14.2	13.0	0.0	02.15
						_								
		890)	1	sov	 	5	1025.6	 12.2	11.6	0.5	9.4	9.0	0.4	62.06
(889,	890)	2	sov	 	5	1000.4	 12.2	11.6	0.6	9.4	9.0	0.5	61.93
(890,	891)	1	sov	 	3	1022.3	 19.1	18.3	0.8	14.8	14.2	0.7	62.07
(890,	891)	2	sov	 	5	1000.6	 19.1	18.3	0.9	14.8	14.1	0.7	62.04
(891.	892)	1	sov	 	7	1031.2	 14.4	13.7	0.6	11.1	10.6	0.5	62.07
		892)	2	sov	 	6	987.7	 14.4	13.7	0.7	11.1	10.6	0.5	62.02
'	0,51,	0,52,	_	501		·	307.7		201.	•••				
	000	893)	1	sov	 	10	1034.7	 33.7	32.2	1.6	26.1	24.9	1.2	61.97
													1.2	62.09
(892,	893)	2	sov	 	13	981.7	 33.7	32.2	1.5	26.1	24.9	1.4	02.09
									20.0		26.2	00 4		61 76
•		894)	1	sov	 	11	1015.8	 39.9	38.0	1.9	30.9	29.4	1.5	61.78
(893,	894)	2	sov	 	8	997.1	 39.7	37.9	1.9	30.8	29.3	1.4	62.01
(894,	895)	1	sov	 	10	996.3	 24.5	23.3	1.2	18.9	18.0	0.9	61.73

			_			_		04.4	00.0	1 0	10 0	17 0	0 0	61.95
(894,	895)	2	sov	 	6	1014.4	 24.4	23.2	1.2	18.9	17.9	0.9	61.95
		222	_			•	1015 0	38.1	36.3	1.8	29.5	28.1	1.4	61.80
-	-	896)	1	sov	 	3	1015.8				29.5	28.0	1.5	61.78
(895,	896)	2	sov	 	7	1008.1	 38.1	36.2	1.9	29.5	20.0	1.5	61.76
,	906	897)	1	sov	 	17	1045.5	 40.8	38.8	2.0	31.5	30.0	1.5	61.83
	-	897)	2	SOV	 	17	973.7	 40.8	38.8	2.1	31.6	30.0	1.6	61.72
,	890,	691)	2	50V	 	1,	9/3./	 40.0	30.0	2.1	31.0	30.0	1.0	01.72
(897.	898)	1	sov	 	7	1027.6	 22.6	21.4	1.1	17.5	16.6	0.9	61.68
		898)	2	sov	 	2	992.1	 22.5	21.4	1.1	17.4	16.5	0.9	61.79
•														
((898)	, 899)	1	sov	 	6	1033.3	 16.6	15.8	0.8	12.9	12.2	0.6	61.56
((898)	, 899)	2	sov	 	12	981.2	 16.6	15.7	0.8	12.8	12.2	0.6	61.71
			_			_								
		, 900)	1	sov	 	8	965.4	 18.2	17.3	0.9	14.1	13.4	0.7	61.67
((899	, 900)	2	sov	 	3	978.4	 18.2	17.3	0.9	14.1	13.4	0.7	61.61
,	(200	, 866)	1	sov	 	0	66.0	 7.8	7.7	0.1	6.0	5.9	0.1	54.54
`	(0))	, 000,	-	DOV		Ū	00.0	7.0	, . ,	0.1	0.0	3.9	0.1	34.34
(900	, 901)	1	sov	 	10	955.9	 21.4	20.3	1.1	16.5	15.7	0.8	61.70
(900	, 901)	2	sov	 	9	976.6	 21.4	20.3	1.1	16.5	15.7	0.8	61.70
((901	, 902)	1	SOV	 	0	1088.7	 16.9	15.8	1.1	13.1	12.2	0.8	60.60
(901	, 902)	2	SOV	 	1	1031.7	 16.6	15.7	0.9	12.8	12.1	0.7	61.60
(901	, 902)	9	sov	 	0	8.6	 21.6	17.9	3.6	16.6	13.8	2.8	47.43
	, ,,,,	0021		2011			1076 6	16.0	15.0		12.0	10.2	0.7	61 20
		, 903)	1	sov	 	1	1076.6 1055.0	 16.8	15.9	0.8	13.0	12.3	0.7	61.38
(902	, 903)	2	sov	 	0	1055.0	 16.7	15.8	0.9	12.9	12.2	0.7	61.77
((858	, 901)	1	sov	 	0	194.0	 10.1	9.9	0.2	7.8	7.7	0.2	53.57
`	, 555,	, 502,	_			•				• • •				
((903	, 904)	1	sov	 	1	1069.6	 19.2	18.2	1.0	14.9	14.1	0.7	61.42
		, 904)	2	sov	 	2	1063.0	 19.1	18.1	1.0	14.8	14.0	0.8	61.76
		, 905)	1	SOV	 	3	1065.1	 14.9	14.1	0.7	11.5	10.9	0.6	61.44
. (904	, 905)	2	sov	 	3	1064.6	 14.8	14.0	0.8	11.4	10.9	0.6	61.70
	,	0071				_	1272.2	14.4	14.2	0.3	11.2	11.0	0.2	63.81
	-	, 907)	1	sov	 	6		 14.4	14.2	0.3	11.2	11.0	0.2	63.66
((906	, 907)	2	sov	 	5	1266.8	 14.5	14.2	0.2	11.2	11.0	0.2	03.00
	(907	, 908)	1	sov	 	8	1293.3	 22.0	21.4	0.6	17.1	16.6	0.5	63.13
	•	, 908)	2	sov	 	10	1209.6	 22.0	21.5	0.5	17.0	16.6	0.4	63.21
,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ,,,,,,	_	504				0			_,,,		- • -	
(908	, 909)	1	sov	 	6	1364.1	 16.7	15.9	0.7	12.9	12.3	0.6	61.42
	•	, 909)	2	sov	 	7	1139.7	 16.3	15.8	0.6	12.6	12.2	0.4	62.72
((909	, 910)	1	sov	 	5	1024.8	 14.5	13.9	0.6	11.2	10.8	0.4	62.26
((909	, 910)	2	sov	 	4	1147.4	 14.4	13.9	0.5	11.1	10.8	0.4	62.62

			_			_				0 1		7.4	0 1	F2 0F
(909,	859)	1	sov	 	3	327.8	 9.6	9.5	0.1	7.5	7.4	0.1	53.85
(910,	911)	1	sov	 	4	1040.1	 17.4	16.7	0.6	13.4	13.0	0.5	62.57
	910,		2	sov	 	7	1133.9	 17.4	16.7	0.7	13.5	12.9	0.5	62.32
`	310,	,	-	501		•				• • •				
(911,	912)	1	sov	 	4	1074.6	 16.0	15.4	0.6	12.4	11.9	0.5	62.39
(911,	912)	2	sov	 	6	1097.6	 16.1	15.4	0.7	12.4	11.9	0.5	61.95
(861,	912)	1	sov	 	0	27.0	 6.2	6.2	0.0	4.8	4.8	0.0	55.23
			_			_								
	912,		1	sov	 	7	1114.0	 16.4	15.7	0.7	12.7	12.2	0.5	62.22
	912,	-	2	SOV	 	5	1086.9	 16.5	15.8	0.7	12.8	12.2	0.6	61.84
(912,	913)	9	sov	 	0	1.0	 19.1	16.9	2.1	14.7	13.0	1.6	53.65
(913,	914)	1	sov	 	8	1118.1	 17.2	16.5	0.8	13.4	12.8	0.6	62.14
	913,		2	sov	 	4	1081.9	 17.4	16.6	0.8	13.4	12.8	0.6	61.66
•	,	,	_			_	2002.5		20.0	0.0	13.1	12.0	0.0	01.00
(914,	915)	1	sov	 	10	1116.2	 34.1	32.5	1.6	26.4	25.1	1.3	61.88
(914,	915)	2	sov	 	11	1082.7	 34.4	32.6	1.8	26.6	25.2	1.4	61.44
	915,	-	1	sov	 	9	1123.6	 34.5	32.7	1.8	26.7	25.3	1.4	61.72
(915,	916)	2	sov	 	8	1076.5	 34.7	32.9	1.8	26.8	25.4	1.4	61.42
,	916,	917)	1	sov	 	9	1131.9	 31.5	29.7	1.7	24.4	23.0	1.3	61.49
	916,		2	sov	 	7	1078.2	 31.5	29.9	1.7	24.4	23.1	1.3	61.33
`	, ,,	3111	2	BOV		,	1070.2	31.3	29.9	1.,	21.1	23.1	1.5	01.33
(917,	918)	1	sov	 	6	1114.1	 24.7	23.3	1.5	19.2	18.0	1.1	61.17
(917,	918)	2	sov	 	10	1084.7	 24.7	23.4	1.3	19.1	18.1	1.0	61.25
	918,		1	sov	 	9	1108.7	 31.8	30.0	1.9	24.6	23.2	1.4	61.23
(918,	919)	2	sov	 	11	1102.0	 31.8	30.1	1.7	24.6	23.3	1.3	61.33
			_			_	1107.0	22.0			05.6	04.1	1 -	61.00
	919,	-	1	sov	 	7	1107.0	 33.0	31.1	2.0	25.6	24.1	1.5	61.20
(919,	920)	2	sov	 	6	1108.0	 33.0	31.2	1.8	25.6	24.2	1.4	61.19
(920,	921)	1	sov	 	6	1100.0	 20.2	19.0	1.2	15.6	14.7	0.9	61.17
	920,	-	2	sov	 	5	1114.4	 20.2	19.1	1.1	15.6	14.8	0.9	61.24
,	, ,_,,	, ,												
(921,	922)	1	sov	 	6	1090.7	 19.2	18.1	1.1	14.9	14.0	0.9	61.17
(921,	922)	2	sov	 	9	1118.6	 19.3	18.2	1.1	14.9	14.1	0.8	61.14
	922,		1	sov	 	7	1115.8	 19.4	18.2	1.2	15.0	14.1	0.9	61.17
(922,	923)	2	sov	 	5	1105.4	 19.4	18.3	1.1	15.0	14.2	0.9	61.06
,	. 023	024)	1	sov	 	13	1129.3	 21.8	20.5	1.3	16.9	15.9	1.0	61.14
	923, 923,		1 2	SOV	 	8	1087.5	 21.8	20.5	1.3	16.9	15.9	1.0	60.89
'	343,	344)	2	50 V	 	0	1007.5	 21.3	20.0	1.5	10.9	13.9	1.0	00.09
(924,	925)	1	sov	 	6	1145.1	 20.8	19.4	1.4	16.1	15.0	1.1	60.34
	924,	-	2	sov	 		1055.0	 20.5	19.4	1.2	15.9	15.0	0.9	61.24
		-												

												1 0	61 20
(925,	926)	1	SOV	 	6	1000.7	 23.7	22.4	1.3	18.4	17.3	1.0	61.39
(925,	926)	2	sov	 	7	1056.7	 23.7	22.5	1.3	18.4	17.4	1.0	61.31
(925,	876)	1	sov	 	0	138.0	 10.2	10.1	0.1	7.9	7.8	0.1	53.98
(926,	927)	1	sov	 	5	999.4	 17.4	16.5	0.9	13.5	12.7	0.7	61.50
(926,	927)	2	sov	 	3	1059.0	 17.5	16.5	1.0	13.5	12.8	0.7	61.31
(878,	927)	1	sov	 	2	72.1	 3.8	3.7	0.0	2.9	2.9	0.0	53.82
(927,	928)	1	sov	 	6	1063.0	 16.7	15.8	1.0	12.9	12.2	0.7	61.18
(927,	928)	2	sov	 	9	1063.4	 16.7	15.8	1.0	12.9	12.2	0.7	61.20
(927,	928)	9	sov	 	0	2.6	 19.5	18.4	1.1	15.0	14.2	0.8	52.55
(928,	929)	1	sov	 	2	1058.4	 15.5	14.6	0.8	12.0	11.3	0.6	61.53
(928,	-	2	sov	 	4	1063.5	 15.6	14.7	0.9	12.1	11.3	0.7	61.11
(),	, ,	_			-			,	0.5			0.,	01.11
(929,	930)	1	sov	 	2	1075.2	 19.2	18.1	1.1	14.9	14.0	0.9	61.22
(929,	-	2	sov	 	3	1043.3	 19.3	18.1	1.1	14.9	14.0	0.9	60.97
()2)	, ,,,,	-	D0 V		•	1013.3	17.5	10.1		14.7	14.0	0.5	00.57
(930,	931)	1	sov	 	4	1087.1	 12.8	12.1	0.7	9.9	9.3	0.6	61.15
(930,	-	2	sov	 	3	1029.1	 12.9	12.1	0.7	10.0	9.4	0.6	60.88
()30,	931)	2	504	 	3	1029.1	 12.9	12.1	0.7	10.0	9.4	0.0	00.00
(683,	6971	1	sov	 	0	403.6	 6.2	6.1	0.1	4.7	4.7	0.0	52.75
(683,	-	2	sov	 	1	488.4	 6.6	6.5	0.1	5.1	5.0	0.1	49.14
(003,	007)	2	500	 	_	400.4	 0.0	0.5	0.1	3.1	5.0	0.1	49.14
(407,	3691	1	sov	 	1	668.6	 5.0	4.7	0.3	3.8	3.6	0.2	50.63
(407)		2	sov	 	0	636.2	 4.6	4.4	0.2	3.6	3.4	0.2	54.14
		3	SOV	 	0	751.2	 5.0	4.7	0.2	3.8	3.6	0.2	50.65
(407,	, 309)	3	50V	 	U	751.2	 5.0	4.7	0.2	3.0	3.0	0.2	30.03
(411,	416\	1	sov	 	0	429.3	 3.8	3.7	0.1	2.9	2.9	0.0	49.16
(411,	, 410)	_	504	 	·	423.3	3.0	3.7	٠. ـ	2.,,	2.,	0.0	13.10
(115,	1171	1	sov	 	3	271.0	 14.0	13.6	0.3	10.8	10.5	0.3	48.83
(115	, 11/,	-	50V	 	3	2/1.0	 14.0	13.0	0.5	10.0	10.5	0.5	10.05
(382	3031	1	sov	 	0	124.3	 3.7	3.4	0.3	2.8	2.6	0.2	36.86
-		2	SOV	 	3	1118.1	 4.1	3.8	0.4	3.2	2.9	0.3	32.72
(382	, 303)	2	500	 	3	1110.1	 7.1	3.0	0.4	3.2	2.5	0.5	32.72
/ 410	414\	1	sov	 	0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00
(412,	, 414)	1	500	 	U	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00
/ 201	0271	1	sov	 	0	13.9	 4.3	-2.1	6.3	3.3	-1.6	4.9	32.05
(281,		1											
(281,	-	6	sov	 	1	1009.2	 2.9	2.8	0.1	2.2	2.2	0.1	47.06
(281,	, 937)	7	sov	 	0	1012.9	 2.8	2.7	0.1	2.2	2.1	0.1	48.55
,	4 7 4 3	_			•	126.4	. 1	7 7	1 2	7 0	6.0	1.0	30 FF
(383,		1	sov	 	0	136.4	 9.1	7.7	1.3	7.0			38.55
(383	, 414)	2	sov	 	0	1104.6	 8.9	7.9	1.0	6.9	6.1	0.8	39.22
		_			_				0 4		. .	0 3	E0 04
(314	, 553)	1	sov	 	7	1157.5	 7.9	7.5	0.4	6.1	5.8	0.3	52.24

(553,	933)	1	sov			7	1150.3		10.4	9.8	0.6	8.0	7.6	0.4	47.93
(933,	934)	1	sov			1	1151.3		10.1	9.6	0.6	7.8	7.4	0.4	47.06
		006)						750 0		0.3	0 1	0.2	7 0	7.0	0 1	49.62
	935,	-	1	sov			1	750.8		9.3	9.1		7.2	7.0	0.1	
(935,	936)	2	sov			1	954.7		9.7	9.3	0.4	7.5	7.2	0.3	47.59
(934,	935)	1	sov			3	650.9		5.0	4.8	0.2	3.9	3.7	0.1	48.73
(934,	935)	6	sov			2	1054.0		5.2	4.9	0.2	4.0	3.8	0.2	47.17
(936,	309)	1	sov			1	804.1		7.6	7.4	0.2	5.8	5.7	0.1	49.75
(936,	309)	2	sov			3	903.8		7.9	7.6	0.3	6.1	5.9	0.2	47.40
																27.20
	(414,		1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
	(414,	415)	9	sov			3	1241.1		4.5	4.2	0.3	3.5	3.3	0.2	41.60
(937,	555)	1	sov			4	1025.7		4.7	4.4	0.3	3.6	3.4	0.2	50.24
(937,	555)	2	sov			2	1005.3		4.6	4.3	0.3	3.6	3.3	0.2	51.11
	(111,	676)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(111,	676)	6	sov			0	927.9		8.3	8.1	0.2	6.4	6.3	0.1	54.46
	111,	-	7	sov			1	753.2		8.5	8.3	0.2	6.5	6.4	0.1	53.30
	,	0,0,	,	501			•	733.2		0.5	0.5	0.2	0.5	0.4	0.1	33.30
((416,	161)	1	sov			0	426.5		7.7	7.6	0.1	6.0	5.9	0.1	49.13
•	(416,	161)	9	sov			0	274.5		7.8	7.6	0.2	6.0	5.9	0.2	48.71
((162,	165)	1	sov			2	987.5		9.6	9.4	0.2	7.4	7.3	0.2	63.85
((162,	165)	2	sov			5	1419.6		9.7	9.5	0.2	7.5	7.3	0.2	63.34
(162,	165)	3	sov			5	1462.5		9.7	9.5	0.2	7.5	7.3	0.2	63.36
((162,	165)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	(165,	166)	1	sov			2	1024.9		8.0	7.8	0.1	6.1	6.1	0.1	64.27
	(165,	-	2	sov			4	1363.3		8.0	7.9	0.1	6.2	6.1	0.1	63.71
	(165,		3	sov			3	1402.7		8.0	7.9	0.2	6.2	6.1	0.1	63.57
	165,		4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	105,	100,	•	1101	v	Ū	·	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	(386,	167)	1	sov			4	1467.2		8.8	8.1	0.7	6.8	6.3	0.5	58.32
	(386,	167)	2	sov			4	1393.6		8.2	7.9	0.3	6.3	6.1	0.2	62.65
((386,	167)	3	SOV			1	1127.9		7.9	7.6	0.3	6.1	5.9	0.2	65.11
((386,	167)	4	HOV	13	13	0	13.0	13.0	7.9	7.8	0.1	6.1	6.0	0.1	64.55
	(386,	167)	9	sov			0	36.8		10.3	8.7	1.7	8.0	6.7	1.3	49.62
	(167,	168)	1	sov			5	1425.2		8.6	8.1	0.4	6.6	6.3	0.3	59.70
	(167,		2	sov			4	1413.1		8.1	7.9	0.2	6.3	6.1	0.2	62.74
	(167, (167,	-	3	sov			4	1180.4		7.9	7.6	0.3	6.1	5.9	0.2	64.96
	(167,	-	4	HOV	13	13	0	13.0	13.0	7.9	7.8	0.3	6.1	6.0	0.1	64.56
	10/,	100/	*	HOV	13	13		13.0	13.0	7.3	7.0	0.1	0.1	0.0	0.1	04.50
	(168,	169)	1	sov			4	1386.1		9.1	8.7	0.4	7.0	6.7	0.3	60.21
((168,	169)	2	sov			3	1417.1		8.7	8.5	0.2	6.7	6.5	0.2	62.88

(168, 169)	3	sov			3	1207.4		8.5	8.2	0.3	6.5	6.3	0.2	64.87
(168, 169)	4	HOV	13	13	0	13.0	13.0	8.5	8.4	0.1	6.5	6.4	0.1	64.52
(404 170)					•	270.2		2.6	2.6	0.0	2.0	2.8	0.0	54.16
(404, 170)	1	sov			0	270.2		3.6	3.6	0.0	2.8	2.8	0.0	34.16
(7018, 171)	1	sov			0	450.4		2.9	2.5	0.4	2.2	1.9	0.3	43.54
(171, 172)	1	sov			0	409.0		2.6	2.5	0.1	2.0	1.9	0.1	48.38
(172, 387)	1	sov			0	409.0		2.7	2.5	0.2	2.1	1.9	0.1	49.99
(7020, 174)	1	sov			0	441.1		3.3	3.0	0.3	2.5	2.3	0.2	45.71
(174, 175)	1	sov			0	407.0		3.3	3.3	0.1	2.6	2.5	0.1	49.39
(175, 386)	1	sov			1	407.1		3.8	3.6	0.2	2.9	2.8	0.1	51.74
(385, 173)	1	sov			0	427.0		3.2	3.2	0.1	2.5	2.5	0.0	53.93
(173,7019)	1	sov			0	427.3		3.2	3.2	0.1	2.5	2.4	0.0	51.27
(170,7017)	1	sov			0	271.0		3.7	3.7	0.0	2.9	2.8	0.0	51.13
(151, 344)	1	sov			0	566.5			7.6	٥	6.0	F 0	0.4	F1 F0
	2	SOV			0			8.0	7.6	0.5	6.2	5.9	0.4	51.52
(151, 344)	2	50V			U	41.5		8.8	6.8	2.0	6.8	5.2	1.5	47.34
(344,7026)	1	sov			0	7.0		3.3	2.9	0.4	2.5	2.2	0.3	43.30
(344,7026)	2	sov			0	601.2		3.5	2.9	0.7	2.7	2.2	0.5	40.22
(7007, 208)	1	sov			0	131.4		3.0	2.5	0.5	2.3	1.9	0.4	37.95
(209, 180)	1	sov			0	118.0		3.8	3.6	0.2	2.9	2.8	0.1	50.65
(315, 555)	1	sov			3	849.4		14.2	13.7	0.4	11.0	10.6	0.3	61.88
(315, 555)	2	sov			7	1181.3		14.3	13.7	0.5	11.0	10.7	0.4	61.34
(315, 555)	3	sov			3	1144.1		13.7	13.4	0.3	10.5	10.7	0.2	64.08
(315, 555)	4	sov			6	833.0		13.5	13.1	0.4	10.4	10.1	0.3	65.08
(315, 555)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,														
(313, 248)	1	sov			4	1819.8		12.1	11.3	0.9	9.4	8.7	0.7	59.62
(313, 248)	2	sov			3	1415.1		11.7	11.3	0.4	9.1	8.7	0.3	61.68
(313, 248)	3	sov			2	1188.1		11.2	11.0	0.3	8.7	8.5	0.2	64.32
(313, 248)	4	sov			4	730.8		11.1	10.9	0.2	8.5	8.4	0.2	65.16
(313, 248)		HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(020, 220,	5	HOV	U	·	·								• • •	
										0 4				
(258, 259) (258, 259)	5 1 2	SOV			0	886.7 233.1		4.7	4.3	0.4 0.2	3.6 3.7	3.3	0.3	46.63 45.46

(259,	260)	6	sov			1	785.4		9.2	8.9	0.3	7.1	6.9	0.2	53.13
(259,	260)	7	SOV			2	474.9		9.0	8.9	0.1	7.0	6.9	0.1	54.21
(260,	261)	1	sov			0	700.2		8.8	8.5	0.3	6.8	6.5	0.3	52.85
(260,	261)	6	sov			1	811.1		8.7	8.5	0.2	6.7	6.5	0.2	53.58
(260,	261)	7	sov			0	493.0		8.6	8.4	0.1	6.6	6.5	0.1	54.23
(261,	262)	1	sov			0	700.0		16.3	15.5	0.8	12.6	12.0	0.6	52.17
(262,	263)	1	sov			1	701.5		6.7	6.3	0.4	5.2	4.9	0.3	51.81
(263,	264)	1	sov			2	699.9		7.4	7.0	0.4	5.7	5.4	0.3	51.55
(7008,	625)	1	sov			0	833.7		3.5	1.7	1.8	2.7	1.3	1.4	33.50
(403,		1	sov			3	728.1		5.1	4.2	0.9	3.9	3.2	0.7	45.15
(403,	310)	2	sov			2	174.0		5.9	4.7	1.2	4.6	3.6	0.9	38.91
(307,		1	sov			2	444.0		4.2	4.2	0.1	3.3	3.2	0.1	66.44
(307,		2	sov			1	1076.6		4.6	4.5	0.2	3.6	3.5	0.1	60.66
(307,		3	sov			0	984.6		4.4	4.3	0.1	3.4	3.3	0.1	64.39
(307,	187)	4	SOV			2	717.4		4.4	4.3	0.1	3.4	3.3	0.1	64.03
(307,	187)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(264,	187)	1	sov			2	698.7		3.9	3.7	0.2	3.0	2.8	0.2	51.46
(261,		1	sov			0	792.5		7.7	7.5	0.2	5.9	5.8	0.1	53.50
(261,	189)	2	sov			3	512.4		7.6	7.5	0.1	5.9	5.8	0.1	54.09
(189,		1	sov			1	759.9		8.2	8.0	0.2	6.3	6.2	0.2	49.36
(189,	265)	2	sov			0	545.5		8.1	7.9	0.2	6.2	6.1	0.1	50.15
(265,		1	sov			0	730.6		6.5	6.4	0.2	5.0	4.9	0.1	44.66
(265,	266)	2	sov			1	575.3		6.4	6.3	0.1	4.9	4.8	0.1	45.59
						_									
(266,		1	sov			2	714.5		8.7	8.5	0.2	6.7	6.6	0.1	43.61
(266,	267)	2	sov			2	589.5		8.5	8.3	0.2	6.6	6.4	0.1	44.58
						_									
(267,		1	sov			1	691.5		8.1	7.9	0.2	6.3	6.1	0.2	43.53
(267,	268)	2	sov			0	610.1		8.0	7.8	0.2	6.1	6.0	0.2	44.57
		_				_									
(268,		1	sov			7	589.0		13.3	12.4	0.9	10.3	9.6	0.7	45.98
(268,	269)	2	sov			5	709.3		12.8	12.1	0.7	9.9	9.3	0.6	47.85
		_				_									
(441,	397)	1	sov			2	834.1		3.5	3.2	0.3	2.7	2.5	0.2	49.84
,	2021	_				_	1500 1								
(564,	-	1	sov			7	1592.4		8.1	7.6	0.5	6.2	5.9	0.4	59.17
(564,		2	sov			2	1321.6		7.7	7.4	0.3	5.9	5.7	0.2	62.21
(564,	399)	3	sov			1	646.0		7.5	7.2	0.2	5.8	5.6	0.2	63.98

(564,	399)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
-	564,		9	sov			3	447.9		8.0	7.8	0.2	6.2	6.0	0.1	59.89
,	399,	400)	1	sov			3	1241.2		4.8	4.5	0.3	3.7	3.5	0.2	60.19
•	399,		2	SOV			1	1222.9		4.7	4.5	0.2	3.6	3.5	0.1	61.73
							0	643.2		4.5	4.4	0.1	3.5	3.4	0.1	64.56
	399,	-	3	sov						0.0	0.0	0.0	0.0	0.0	0.0	0.00
(399,	400)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(269,	15)	1	sov			2	389.2		6.1	4.5	1.7	4.8	3.5	1.3	39.16
(269,	15)	2	sov			2	901.2		5.5	4.5	1.0	4.2	3.5	0.8	44.10
(10,	401)	1	sov			3	1019.0		9.2	8.6	0.6	7.1	6.7	0.5	51.09
		401)	2	sov			0	227.1		9.1	8.6	0.4	7.0	6.6	0.3	52.05
	400,		1	sov			1	1127.5		16.6	16.0	0.5	12.8	12.4	0.4	61.78
•	400,	- •	2	sov			1	739.2		15.8	15.4	0.4	12.2	11.9	0.3	64.86
(400,	10)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(400,	10)	9	sov			4	1244.7		17.4	16.3	1.1	13.4	12.6	0.9	58.87
(270,	7)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(613,	7)	1	sov			0	648.2		2.8	2.7	0.1	2.1	2.1	0.1	52.81
	613,		2	sov			1	708.2		2.7	2.7	0.1	2.1	2.0	0.0	53.66
(7,	8)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(7,	8)	6	sov			3	698.3		2.8	2.8	0.1	2.2	2.1	0.0	53.06
(7	sov			0	655.9		2.8	2.7	0.1	2.1	2.1	0.0	53.97
		• •	_											0.1		F1 60
(-	1	sov			0	641.3		2.8	2.7	0.1	2.2	2.1	0.1	51.63
(-	-	2	sov			0	262.5		2.8	2.7	0.1	2.1	2.1	0.0	52.72
(8,	9)	6	sov			1	449.1		2.8	2.7	0.1	2.1	2.1	0.0	52.39
(9,	273)	1	sov			0	555.0		3.3	3.3	0.1	2.6	2.5	0.1	50.77
(273.	274)	1	sov			0	267.8		3.6	3.5	0.0	2.7	2.7	0.0	47.16
		274)	2	sov			1	287.0		3.8	3.7	0.1	2.9	2.8	0.1	44.39
`	2,5,	_,_,	_	201								• • •				
(9,	271)	1	sov			1	361.8		4.0	3.9	0.1	3.1	3.0	0.1	48.14
(9,	271)	2	sov			0	434.5		3.9	3.8	0.1	3.0	3.0	0.1	49.21
,	071	٥٦٥١		sov			0	362.0		3.7	3.6	0.1	2.9	2.8	0.0	45.89
	-	272)	1				-									
(271,	272)	2	sov			0	434.0		3.6	3.6	0.0	2.8	2.8	0.0	46.64
(415,	276)	1	sov			0	1241.9		3.7	3.4	0.3	2.9	2.7	0.2	41.80
(415.	276)	2	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
`		,	_													
(272,	276)	1	sov			1	369.7		8.3	8.2	0.1	6.4	6.3	0.1	43.78
(272,	276)	2	sov			1	425.6		8.2	8.1	0.1	6.3	6.2	0.1	44.40

(276,	281)	1	sov			2	1060.5		4.4	4.0	0.4	3.4	3.1	0.3	45.22
-	276,	-	9	sov			1	654.0		4.3	4.1	0.2	3.3	3.1	0.2	46.41
•	276,		10	SOV			ō	323.0		4.3	4.0	0.2	3.3	3.1	0.2	46.42
'	270,	201)	10	500			U	323.0		4.5	4.0	0.2	3.3	3.1	0.2	10.12
(937,	277)	1	sov			0	3.0		3.9	2.7	1.2	3.0	2.1	0.9	42.12
(264,	279)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(274,	275)	1	sov			0	44.8		5.9	4.9	1.0	4.6	3.8	0.8	39.61
(274,	275)	2	sov			1	508.9		5.3	5.2	0.1	4.1	4.0	0.1	44.13
	275,		1	sov			1	289.3		13.5	12.9	0.7	10.4	9.9	0.5	47.47
(275,	934)	2	sov			0	264.4		13.7	13.0	0.8	10.6	10.0	0.6	46.83
(490,	258)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(490,	258)	6	sov			2	1120.2		3.3	3.0	0.3	2.6	2.3	0.2	44.05
(304,	259)	1	SOV			0	434.2		9.1	9.0	0.1	7.0	6.9	0.1	54.75
(304,	259)	2	sov			0	448.2		9.2	9.1	0.1	7.1	7.0	0.1	54.22
(278,	490)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(27,	28)	1	sov			1	577.4		5.3	5.1	0.2	4.1	4.0	0.1	60.20
(28)	2	sov			0	716.3		4.9	4.8	0.1	3.8	3.7	0.1	65.09
•	27,	28)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
`	,	20,	3	1101	·	Ū	Ū	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(28,	29)	1	sov			1	578.4		4.5	4.4	0.1	3.5	3.4	0.1	61.46
(28,	29)	2	sov			0	716.2		4.2	4.2	0.1	3.3	3.2	0.1	65.25
(28,	29)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	29,	30)	1	sov			3	576.9		5.1	5.0	0.1	3.9	3.8	0.1	61.72
(-	30)	2	SOV			2	714.8		4.8	4.7	0.1	3.7	3.6	0.1	65.19
•	29,	30)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(29,	30)	3	HOV	U	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(30,	31)	1	sov			0	578.4		4.9	4.9	0.1	3.8	3.7	0.1	61.76
(30,	31)	2	sov			3	711.0		4.7	4.6	0.1	3.6	3.5	0.1	65.06
(30,	31)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(23,	24)	1	sov			4	1340.2		7.0	6.7	0.3	5.4	5.2	0.2	62.10
(24)	2	sov			1	887.0		6.8	6.5	0.2	5.2	5.1	0.2	63.68
(24)	3	HOV	0	0	ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(-	24)	9	sov			1	940.2		7.0	6.7	0.3	5.4	5.2	0.2	61.52
'	23,	47)	9	204			-	340.2	-	7.0	0.7	0.5	J.4	3.2	0.2	01.52
(31,	32)	1	sov			1	583.8		4.0	3.9	0.1	3.1	3.0	0.1	61.80
(-	32)	2	sov			2	705.0		3.8	3.7	0.1	3.0	2.9	0.1	64.94
(31,	32)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
1	283,	6321	1	sov			1	930.5		8.9	8.6	0.3	6.9	6.6	0.2	53.44
-	283,		2	sov			1	938.9		9.0	8.7	0.3	7.0	6.7	0.2	52.66
٠,	,		_				_							• • •		

(284,	283)	1	sov	 	1	923.4	 9.6	9.3	0.3	7.4	7.2	0.3	53.53
(284,	283)	2	sov	 	3	948.8	 9.7	9.4	0.3	7.5	7.3	0.2	52.81
(285,	284)	1	sov	 	1	924.9	 6.8	6.6	0.2	5.2	5.1	0.2	53.62
	285,		2	sov	 	1	947.2	 6.9	6.7	0.2	5.3	5.1	0.2	52.84
•	286,		1	sov	 	3	904.9	 11.6	11.3	0.3	9.0	8.7	0.3	53.79
(286,	285)	2	sov	 	3	965.4	 11.8	11.4	0.4	9.1	8.8	0.3	52.86
(27,	286)	1	sov	 	1	886.0	 9.1	8.8	0.3	7.0	6.8	0.2	53.65
(27,	286)	2	sov	 	1	984.2	 9.3	9.0	0.3	7.1	6.9	0.2	52.82
(596,	111)	1	sov	 	0	575.7	 7.6	7.5	0.1	5.9	5.8	0.1	56.26
	596,	-	2	sov	 	0	1103.5	 8.2	7.9	0.3	6.3	6.1	0.2	52.09
•		,						0.2	,		0.5	0.1	0.2	32.03
(673,	675)	1	sov	 	2	885.7	 5.4	5.1	0.3	4.2	3.9	0.3	51.12
(675,	287)	1	sov	 	2	863.8	 9.7	9.4	0.3	7.5	7.2	0.2	52.90
(675,	287)	9	sov	 	0	768.4	 9.5	9.3	0.2	7.4	7.2	0.2	53.57
(287,	289)	1	sov	 	1	796.5	 9.5	9.3	0.2	7.4	7.2	0.2	53.59
-	287,		2	sov	 	2	837.1	 9.7	9.4	0.3	7.5	7.2	0.2	52.85
,	000	204)		2011		_	800.9	10.0	10 5					44
-	289, 289,	-	1	SOV	 	5 6	833.2	 12.8 13.0	12.5 12.6	0.3 0.4	9.9	9.6 9.7	0.3	53.44
(289,	294)	2	SOV	 	6	833.2	 13.0	12.6	0.4	10.0	9.7	0.3	52.84
(294,	296)	1	sov	 	5	809.7	 11.6	11.3	0.3	9.0	8.7	0.2	53.35
(294,	296)	2	sov	 	3	824.7	 11.7	11.4	0.4	9.0	8.8	0.3	52.84
,	296,	297)	1	sov	 	0	832.0	 17.5	16.9	0.6	13.5	13.0	0.4	53.16
	296,		6	sov	 	0	802.0	 17.6	17.0	0.6	13.6	13.1	0.4	52.71
,	230,	231)	Ū	501		Ū	002.0	17.0	17.0	0.0	13.0	13.1	0.1	32.71
(297,	601)	1	sov	 	0	846.6	 9.7	9.4	0.3	7.5	7.3	0.3	52.97
(297,	601)	2	sov	 	0	788.5	 9.8	9.5	0.3	7.6	7.3	0.3	52.52
(282,	346)	1	sov	 	0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00
(297,	352)	1	sov	 	0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00

2038 ALTERNATIVE A AM Peak

	•	

CENTENNIAL_2038_ALT-A_AM PEAK

CUMULATIVE FRESIM STATISTICS AT TIME 17 0 0

LINK STATISTICS

VEH-MILE

VEH-MIN/ SECONDS/VEHICLE

							-											
	VEHIC		LANE	CURR	AVG	VEH-	VEH-	TOTAL						VOLUM				
LINK		IN	OUT	CHING	CONT	CONT	MILES	MIN	TIME	TIME	TIME	M/T :	TOTAL D	ELAY	VPHPL	VPMPL	MILE/HR	TYPE
(153,	96)	7214	723!	5 1273	21	29.5	1777.4	1769.8	14.7	13.8	0.9	0.94	1.00	0.06	1203.2	20.0	60.26	FRWY
(563,	98)	5251	. 5249	9 3198	24	25.8	1491.3	1548.9	17.7	15.9	1.9	0.90	1.04	0.11	1049.9	18.2	57.77	FRWY
(154,	101)	4040	4044	1 726	37	34.2	2172.2	2052.9	30.5	29.7	0.7	0.98	0.95	0.02	808.0	12.7	63.49	FRWY
(103,	104)	5363	5359	9 1893	19	14.5	812.5	870.9	9.7	8.4	1.3	0.87	1.07	0.14	953.3	17.0	55.98	FRWY
(158,	105)	6165	6178	3 1149	21	31.7	1753.2	1903.4	18.5	15.8	2.7	0.85	1.09	0.16	1234.3	22.3	55.27	FRWY
(128,	97)	4536	455	1 627	27	30.1	1887.8	1808.6	23.9	23.1	0.8	0.97	0.96	0.03	908.6	14.5	62.63	FRWY
(156,	102)	5518	5526	5 1656	14	22.8	1359.1	1370.0	14.9	13.7	1.2	0.92	1.01	0.08	1010.7	17.0	59.52	FRWY
(109,	7001)	1937	1938	3 0	0	1.2	62.7	71.2	2.2	2.1	0.1	0.96	1.14	0.04	968.6	18.3	52.86	RAMP
(102,	103)	4187	4173	662	41	28.7	1797.5	1722.1	24.7	23.8	0.9	0.96	0.96	0.04	835.8	13.3	62.63	FRWY
(160,	7002)	1342	1340	0	3	1.0	54.3	60.5	2.7	2.7	0.0	0.98	1.11	0.02	670.4	12.4	53.94	RAMP
(7003,	106)	1190	1190	445	0	3.0	103.4	181.0	8.8	6.7	2.1	0.76	1.75	0.41	620.2	18.1	34.27	RAMP
(106,	103)	1190	1190	233	0	4.1	138.4	248.3	12.5	7.7	4.9	0.61	1.79	0.70	956.4	28.6	33.44	RAMP
(7004,	107)	830	830	88	0	1.0	42.7	59.2	4.0	3.1	0.8	0.79	1.39	0.29	445.6	10.3	43.26	RAMP
(107,	104)	830	830	459	0	2.0	77.8	119.3	8.6	6.1	2.5	0.71	1.53	0.44	516.8	13.2	39.13	RAMP
(110,	109)	1936	1937	7 .61	0	1.3	68.2	77.0	2.4	2.3	0.1	0.97	1.13	0.04	968.1	18.2	53.12	RAMP
(96,	110)	1937	1936	5 44	1	0.9	49.1	55.5	1.7	1.7	0.1	0.97	1.13	0.04	968.2	18.2	53.15	RAMP

(127,	97)	717	716	438	1	2.7	80.4	159.6	13.4	7.4	6.0	0.55	1.98	0.89	612.9	20.3	30.25	RAMP
(96,	128)	5298	5289	1670	28	24.3	1503.9	1460.5	16.6	15.8	0.7	0.96	0.97	0.04	1058.8	17.1	61.78	FRWY
(128,	129)	753	752	6	3	2.5	129.1	149.1	11.9	11.3	0.6	0.95	1.15	0.06	749.3	14.4	51.97	RAMP
(132,	130)	6959	6954	1380	23	18.0	1034.0	1080.3	9.3	8.3	1.0	0.89	1.04	0.12	1247.9	21.7	57.43	FRWY
(131,	130)	263	263	0	0	0.2	11.4	13.5	3.1	2.8	0.2	0.93	1.18	0.09	263.0	5.2	50.66	RAMP
(151,	132)	6113	6108	591	25	28.0	1726.1	1680.2	16.5	15.7	0.8	0.95	0.97	0.05	1222.5	19.8	61.64	FRWY
(105,	137)	4658	4654	891	23	17.5	1084.5	1047.2	13.5	12.9	0.6	0.96	0.97	0.04	931.8	15.0	62.13	FRWY
(98,	138)	1635	1636	13	2	3.1	159.2	187.1	6.9	6.4	0.5	0.93	1.18	0.08	1591.8	31.2	51.05	RAMP
(138,	139)	1636	1636	157	2	1.2	62.0	70.8	2.6	2.5	0.1	0.96	1.14	0.05	818.0	15.6	52.52	RAMP
(141,	140)	1479	1479	473	0	3.6	118.5	218.4	8.9	5.2	3.6	0.59	1.84	0.75	739.5	22.7	32.56	RAMP
(140,	101)	1479	1480	0	0	4.7	209.4	280.7	11.4	9.3	2.1	0.81	1.34	0.25	1479.9	33.1	44.75	RAMP
(105,	143)	1520	1516	0	7	2.6	89.2	154.2	6.1	3.8	2.3	0.63	1.73	0.64	1519.3	43.8	34.70	RAMP
(7005,	127)	717	717	24	0	0.7	16.5	43.0	3.0	1.6	1.5	0.51	2.60	1.26	424.1	18.4	23.07	RAMP
(129,	7006)	752	753	0	0	0.9	33.7	54.6	4.4	3.5	0.9	0.79	1.62	0.34	376.4	10.2	36.98	RAMP
(147,	148)	548	546	0	2	0.9	42.9	54.6	6.0	5.6	0.4	0.94	1.27	0.07	546.3	11.6	47.19	RAMP
(148,	137)	546	546	0	0	0.6	31.6	37.4	4.1	3.8	0.3	0.92	1.18	0.09	546.0	10.7	50.81	RAMP
(163,	149)	7067	7061	2712	69	67.8	4236.5	4069.9	34.4	33.0	1.3	0.96	0.96	0.04	1421.1	22.8	62.46	FRWY
(311,	150)	7247	7242	997	30	28.8	1635.8	1726.5	14.3	12.5	1.8	0.88	1.06	0.13	1449.1	25.5	56.85	FRWY
(152,	153)	7220	7214	771	7	4.9	273.4	292.1	2.4	2.1	0.3	0.87	1.07	0.14	1312.2	23.4	56.16	FRWY
(130,	152)	7217	7220	5391	22	30.5	1778.1	1828.4	15.2	13.7	1.5	0.90	1.03	0.10	1350.8	23.2	58.35	FRWY
(100,	154)	4036	4040	311	20	20.0	1283.5	1198.9	17.6	17.4	0.2	0.99	0.93	0.01	817.0	12.7	64.24	FRWY
(101,	155)	5524	5515	2346	24	23.3	1359.4	1398.0	15.2	13.7	1.5	0.90	1.03	0.10	1032.7	17.7	58.34	FRWY
(155,	156)	5515	5518	1750	1	3.4	209.0	203.5	2.2	2.1	0.1	0.95	0.97	0.05	1103.4	17.9	61.61	FRWY

(104,	157)	6189	6163	3799	55	30.1	1753.6	1807.5	17.6	15.8	1.8	0.90	1.03	0.11	1157.4	19.9	58.21	FRWY
(157,	158)	6163	6165	261	3	4.1	233.4	245.3	2.4	2.1	0.3	0.88	1.05	0.13	1232.5	21.6	57.09	FRWY
(137,	159)	5200	5204	1736	11	15.4	919.0	926.9	10.7	9.8	0.9	0.92	1.01	0.08	939.5	15.8	59.49	FRWY
(150,	151)	7242	7240	314	12	16.5	984.9	992.5	8.2	7.6	0.6	0.92	1.01	0.08	1448.6	24.3	59.54	FRWY
(325	, 95)	5273	5271	1071	45	52.5	3271.7	3149.5	35.8	34.4	1.5	0.96	0.96	0.04	1054.3	16.9	62.33	FRWY
(102	, 160)	1339	1342	31	2	2.0	106.6	119.4	5.3	5.2	0.1	0.97	1.12	0.03	670.3	12.5	53.59	RAMP
(98,	, 99)	3614	3611	505	27	24.6	1534.5	1474.1	24.5	23.6	0.9	0.96	0.96	0.03	722.1	11.6	62.46	FRWY
(99	, 164)	3611	3603	321	18	16.1	1012.3	964.7	16.0	15.6	0.5	0.97	0.95	0.03	721.3	11.5	62.96	FRWY
(295	, 200)	1564	1564	529	4	3.6	173.3	217.6	8.3	8.3	0.1	0.99	1.26	0.01	622.4	13.0	47.77	FRWY
(203	, 201)	1563	1563	34	1	0.9	54.3	51.3	1.8	1.7	0.0	0.97	0.94	0.02	869.1	13.7	63.54	FRWY
(200	, 199)	1247	1246	78	2	2.3	102.9	138.5	6.7	6.6	0.1	0.99	1.35	0.01	623.3	14.0	44.59	FRWY
(179	, 178)	2880	2877	114	6	5.2	272.6	314.0	6.5	6.2	0.3	0.95	1.15	0.06	1439.2	27.6	52.08	FRWY
(180	, 179)	2885	2880	345	15	10.5	546.3	632.1	13.1	12.4	0.7	0.94	1.16	0.07	1177.3	22.7	51.85	FRWY
(181	, 180)	2756	2752	92	7	4.9	259.2	295.8	6.4	6.2	0.3	0.96	1.14	0.05	1376.8	26.2	52.57	FRWY
(199	, 198)	1246	1247	73	3	2.9	129.5	174.4	8.4	8.3	0.1	0.99	1.35	0.02	623.8	14.0	44.55	FRWY
(198	, 197)	1608	1607	575	7	7.1	369.5	425.5	15.9	15.0	0.9	0.95	1.15	0.06	678.8	13.0	52.10	FRWY
(197	, 196)	1852	1848	435	7	9.8	525.5	590.4	19.2	18.6	0.6	0.97	1.12	0.03	804.2	15.1	53.40	FRWY
(196	, 195)	1848	1847	338	14	16.9	902.8	1012.5	32.9	32.0	0.9	0.97	1.12	0.03	923.5	17.3	53.50	FRWY
(182	, 181)	2750	2756	344	14	16.9	890.8	1014.0	22.1	21.2	0.9	0.96	1.14	0.05	1376.1	26.1	52.71	FRWY
(183	, 182)	3698	3693	491	23	20.2	1050.2	1214.5	19.7	18.6	1.1	0.94	1.16	0.06	1848.3	35.6	51.88	FRWY
(184	, 183)	3697	3698	563	25	25.5	1356.3	1527.2	24.6	23.8	0.8	0.97	1.13	0.03	1865.9	35.0	53.29	FRWY
(205	, 204)	248	247	0	1	0.2	8.6	11.7	2.8	2.8	0.1	0.97	1.36	0.03	247.5	5.6	44.13	RAMP
(204	, 197)	247	245	0	2	0.3	14.4	19.4	4.7	4.6	0.1	0.98	1.35	0.02	246.2	5.5	44.45	RAMP
(182	, 193)	943	945	144	0	1.9	105.1	112.0	7.1	6.2	1.0	0.87	1.07	0.14	633.5	11.3	56.30	RAMP

(193, 194)	945	945	42	0	1.1	68.2	67.3	4.3	4.0	0.3	0.94	0.99	0.06	454.0	7.5	60.79	RAMP
(208, 209)	133	133	0	0	0.2	11.4	14.7	6.6	6.2	0.5	0.93	1.28	0.09	133.0	2.8	46.79	RAMP
(207, 198)	361	361	0	0	0.5	22.8	31.9	5.3	5.1	0.3	0.95	1.40	0.07	361.0	8.4	42.81	RAMP
(206, 207)	361	361	0	0	0.3	10.3	16.8	2.8	2.6	0.2	0.92	1.63	0.13	361.0	9.8	36.73	RAMP
(200, 210)	317	317	0	1	0.4	16.4	22.0	4.2	4.1	0.0	0.99	1.34	0.01	316.4	7.1	44.71	RAMP
(210, 211)	317	317	0	0	0.3	13.0	18.8	3.6	3.6	0.0	1.00	1.45	0.00	317.0	7.7	41.30	RAMP
(178, 202)	2877	2876	28	2	1.6	83.9	95.0	2.0	1.6	0.4	0.82	1.13	0.21	1438.9	27.1	53.00	FRWY
(139,7009)	1636	1637	0	1	1.0	51.4	58.7	2.2	2.1	0.1	0.96	1.14	0.05	818.2	15.6	52.55	RAMP
(7010, 141)	1482	1479	394	4	2.8	127.1	167.6	6.5	5.4	1.1	0.83	1.32	0.23	772.9	17.0	45.49	RAMP
(211,7011)	317	317	0	0	0.4	14.3	25.3	4.8	4.6	0.2	0.96	1.77	0.08	317.0	9.4	33.84	RAMP
(7012, 206)	361	361	0	0	0.3	9.0	16.2	2.3	2.2	0.1	0.95	1.80	0.09	421.5	12.6	33.39	RAMP
(7014, 205)	248	248	0	0	0.3	12.6	17.9	4.0	3.7	0.3	0.93	1.42	0.10	267.4	6.3	42.13	RAMP
(194,7015)	945	943	0	2	0.5	30.4	31.6	2.0	1.8	0.2	0.89	1.04	0.12	314.7	5.4	57.75	RAMP
(201, 295)	1563	1564	26	3	3.8	220.6	230.1	8.8	8.8	0.0	1.00	1.04	0.00	781.7	13.6	57.52	FRWY
(149, 298)	7061	7070	670	32	33.9	2007.0	2035.6	17.3	15.7	1.5	0.91	1.01	0.09	1412.9	23.9	59.16	FRWY
(533, 299)	7563	7562	2436	19	17.9	795.1	1075.4	8.5	6.1	2.5	0.71	1.35	0.39	1301.7	29.3	44.36	FRWY
(299, 300)	8237	8232	2307	51	43.3	2339.1	2600.9	19.0	15.8	3.1	0.83	1.11	0.18	1553.5	28.8	53.96	FRWY
(300, 301)	8232	8251	1219	52	67.2	4047.0	4031.4	29.4	27.3	2.1	0.93	1.00	0.07	1646.9	27.3	60.23	FRWY
(301, 302)	8251	8248	4954	40	32.5	1951.5	1951.6	14.2	13.1	1.1	0.92	1.00	0.08	1483.7	24.7	60.00	FRWY
(302, 303)	8248	8258	7759	28	39.4	2343.2	2361.2	17.2	15.8	1.4	0.92	1.01	0.08	1178.3	19.8	59.54	FRWY
(303, 304)	7306	7293	2216	24	23.0	1395.1	1377.9	11.3	10.7	0.6	0.94	0.99	0.06	1216.7	20.0	60.75	FRWY
(304, 305)	6178	6188	2086	15	18.1	1070.5	1083.5	10.5	9.6	0.9	0.91	1.01	0.09	1206.7	20.4	59.28	FRWY
(305, 306)	6188	6185	1018	37	28.5	1756.7	1709.1	16.6	15.9	0.7	0.96	0.97	0.04	1030.6	16.7	61.67	FRWY

(306,	307)	4985	4981	640	22	28.5	1775.0	1707.2	20.5	19.7	0.8	0.96	0.96	0.04	997.6	16.0	62.39	FRWY
(187,	310)	6035	6046	1507	4	13.3	773.5	799.4	7.9	7.1	0.8	0.90	1.03	0.11	1066.3	18.4	58.05	FRWY
(310,	311)	7264	7247	4061	44	36.8	2061.1	2207.8	18.3	15.8	2.4	0.87	1.07	0.14	1327.2	23.7	56.01	FRWY
(159,	312)	5204	5212	201	5	9.2	559.3	550.5	6.3	5.9	0.4	0.94	0.98	0.06	1041.6	17.1	60.96	FRWY
(312,	313)	5212	5213	286	16	15.0	920.9	899.0	10.4	9.9	0.5	0.95	0.98	0.05	1042.3	17.0	61.46	FRWY
(248,	314)	4254	4256	323	10	19.5	1208.1	1167.5	16.5	15.8	0.6	0.96	0.97	0.04	850.5	13.7	62.09	FRWY
(314,	315)	3329	3323	147	8	7.2	457.8	434.6	7.8	7.6	0.2	0.97	0.95	0.03	665.0	10.5	63.20	FRWY
(555,	316)	5777	5766	2113	47	38.9	2421.4	2335.4	24.3	23.3	1.0	0.96	0.96	0.04	836.2	13.4	62.21	FRWY
(316,	317)	5766	5765	1675	17	17.4	1091.4	1046.4	10.9	10.5	0.4	0.96	0.96	0.03	960.4	15.3	62.58	FRWY
(317,	318)	5765	5749	746	28	26.8	1635.6	1606.2	16.7	15.8	1.0	0.94	0.98	0.06	1079.5	17.7	61.10	FRWY
(318,	319)	6591	6595	1928	30	32.9	1873.4	1976.5	18.0	15.8	2.2	0.88	1.06	0.13	1244.2	21.9	56.87	FRWY
(319,	320)	6595	6590	288	13	14.9	917.6	895.3	8.1	7.7	0.4	0.95	0.98	0.05	1318.3	21.4	61.49	FRWY
(320,	321)	6590	6592	3239	31	36.0	2083.4	2159.6	19.6	17.5	2.1	0.89	1.04	0.11	1319.0	22.8	57.88	FRWY
(321,	322)	6592	6579	1405	30	31.2	1870.7	1870.7	17.0	15.9	1.2	0.93	1.00	0.07	1141.9	19.0	60.00	FRWY
(322,	323)	4900	4881	474	32	26.1	1638.8	1568.8	19.3	18.6	0.7	0.96	0.96	0.03	977.7	15.6	62.68	FRWY
(323,	324)	5000	5004	421	11	13.6	847.1	815.0	9.8	9.4	0.4	0.96	0.96	0.04	909.1	14.6	62.36	FRWY
(324,	325)	5281	5273	810	26	24.1	1499.4	1448.9	16.5	15.7	0.7	0.96	0.97	0.04	995.8	16.0	62.09	FRWY
(7023,	147)	546	548	0	0	0.6	21.1	33.5	3.3	2.8	0.5	0.84	1.59	0.25	602.4	15.9	37.84	RAMP
(143,	7025)	1516	1510	0	9	1.7	43.5	102.4	4.1	2.0	2.0	0.50	2.35	1.17	1512.7	59.3	25.53	RAMP
(144,	131)	263	263	0	0	0.1	7.3	9.0	2.1	2.0	0.0	0.98	1.23	0.03	263.0	5.4	48.82	RAMP
(7022,	144)	261	263	0	0	0.2	9.3	12.5	2.6	2.3	0.3	0.90	1.35	0.14	289.7	6.5	44.54	RAMP
(347,	348)	962	963	35	0	0.8	39.7	46.2	2.9	2.8	0.0	0.99	1.16	0.01	481.2	9.3	51.56	RAMP
(348,	349)	963	963	70	1	1.3	61.8	75.9	4.7	4.6	0.1	0.98	1.23	0.03	481.3	9.8	48.87	RAMP
(560,	370)	3392	3395	616	3	5.0	321.5	302.4	5.3	5.2	0.1	0.98	0.94	0.02	565.8	8.9	63.77	FRWY

(370, 371)	3395	3395 875	7	11.4 709.2	684.4	12.1	11.6	0.5	0.96	0.97	0.04	574.8	9.2	62.18	FRWY
(371, 372)	3395	3388 1244	14	15.4 945.8	921.7	16.3	15.5	0.8	0.95	0.97	0.05	724.6	11.8	61.57	FRWY
(372, 373)	4429	4419 2307	14	13.0 770.1	778.0	10.6	9.7	0.9	0.91	1.01	0.09	884.9	14.9	59.39	FRWY
(373, 374)	4419	4410 263	14	7.8 485.7	470.2	6.4	6.1	0.3	0.95	0.97	0.04	882.7	14.2	61.97	FRWY
(374, 375)	4410	4404 243	18	12.4 766.5	744.5	10.1	9.8	0.4	0.96	0.97	0.03	880.8	14.3	61.78	FRWY
(375, 376)	3459	3456 334	24	16.0 1004.0	959.3	16.6	16.1	0.5	0.97	0.96	0.03	864.5	13.8	62.79	FRWY
(376, 377)	3742	3736 519	11	8.5 523.4	507.8	8.1	7.8	0.4	0.95	0.97	0.05	811.4	13.1	61.85	FRWY
(377, 378)	4052	4051 1381	14	16.3 996.9	980.6	14.5	13.7	0.9	0.94	0.98	0.06	931.6	15.3	61.00	FRWY
(381, 382)	1182	1182 28	0	1.2 49.0	71.3	3.6	3.6	0.0	0.99	1.45	0.01	591.0	14.3	41.24	RAMP
(378, 384)	4051	4050 60	2	2.5 153.4	148.7	2.2	2.1	0.1	0.95	0.97	0.05	1012.5	16.4	61.90	FRWY
(384, 385)	4050	4054 293	8	16.1 997.1	965.1	14.3	13.7	0.6	0.96	0.97	0.04	1012.4	16.3	61.99	FRWY
(385, 386)	3420	3419 514	19	26.3 1654.2	1576.0	27.6	26.8	0.9	0.97	0.95	0.03	855.3	13.6	62.98	FRWY
(402, 403)	1218	1221 567	5	3.7 167.9	224.0	11.0	9.8	1.2	0.89	1.33	0.15	609.0	13.5	44.98	RAMP
(401, 381)	1182	1182 15	2	0.9 46.3	55.6	2.8	2.8	0.0	0.99	1.20	0.01	591.1	11.8	50.00	RAMP
(395, 396)	4044	4034 310	21	14.3 884.5	856.8	12.7	12.1	0.6	0.95	0.97	0.04	1010.9	16.3	61.94	FRWY
(394, 395)	5063	5065 177	13	8.8 537.0	530.5	6.3	6.0	0.3	0.95	0.99	0.05	1012.7	16.7	60.73	FRWY
(393, 394)	5061	5063 408	15	14.7 901.4	879.5	10.4	9.9	0.6	0.95	0.98	0.05	1012.7	16.5	61.50	FRWY
(392, 393)	5063	5061 1074	15	9.0 536.9	537.7	6.4	5.9	0.5	0.92	1.00	0.08	1012.4	16.9	59.91	FRWY
(391, 392)	4509	4504 1638	18	15.3 923.2	915.0	12.2	11.4	0.8	0.93	0.99	0.07	1020.2	16.9	60.54	FRWY
(390, 391)	4153	4160 429	10	19.9 1226.4	1192.7	17.2	16.4	0.9	0.95	.0.97	0.05	1039.1	16.8	61.70	FRWY
(389, 390)	5389	5386 443	29	25.5 1532.5	1527.4	17.0	15.8	1.2	0.93	1.00	0.07	1348.6	22.4	60.20	FRWY
(388, 389)	5395	5389 232	12	8.4 501.4	504.1	5.6	5.2	0.5	0.92	1.01	0.08	1347.9	22.6	59.67	FRWY
(387, 388)	5390	5395 2146	25	25.2 1531.4	1514.1	16.9	15.8	1.1	0.94	0.99	0.06	1253.6	20.7	60.68	FRWY

(166, 404)	5269	5266	238	12	12.1	748.2	723.7	8.2	7.9	0.3	0.96	0.97	0.04	1316.9	21.2	62.04	FRWY
(404, 387)	5081	5082	452	27	25.2	1560.6	1514.7	17.9	17.0	0.9	0.95	0.97	0.05	1270.1	20.5	61.82	FRWY
(306, 405)	1200	1201	76	4	2.1	112.1	124.4	6.2	6.1	0.1	0.98	1.11	0.02	600.4	11.1	54.06	RAMP
(558, 406)	1200	1200	60	2	1.7	75.1	99.1	5.0	4.9	0.1	0.98	1.32	0.03	521.4	11.5	45.43	FRWY
(351, 408)	970	969	239	1	1.4	58.2	83.1	5.1	4.8	0.3	0.93	1.43	0.09	484.6	11.5	42.01	RAMP
(408, 409)	969	969	116	0	2.8	114.5	166.1	10.3	9.5	0.8	0.92	1.45	0.12	654.4	15.8	41.36	RAMP
(410, 405)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY
(413, 409)	1199	1199	100	5	3.9	173.6	234.5	11.7	11.5	0.2	0.98	1.35	0.02	600.0	13.5	44.42	FRWY
(349, 350)	963	967	122	0	4.3	212.2	258.9	16.1	15.9	0.3	0.98	1.22	0.02	482.2	9.8	49.19	RAMP
(350, 351)	967	970	82	3	3.6	160.9	215.4	13.3	13.1	0.2	0.98	1.34	0.02	484.9	10.8	44.82	RAMP
(559, 407)	2170	2184	697	6	13.0	631.1	780.2	21.5	20.9	0.7	0.97	1.24	0.04	724.5	14.9	48.54	FRWY
(407, 411)	332	332	0	1	0.5	25.8	31.3	5.7	5.6	0.1	0.98	1.21	0.02	331.3	6.7	49.46	FRWY
(406, 413)	1200	1199	74	2	2.2	96.8	131.2	6.6	6.4	0.1	0.98	1.36	0.03	599.9	13.6	44.27	FRWY
(161,7031)	585	585	0	3	0.7	34.5	43.1	4.4	4.2	0.2	0.96	1.25	0.05	292.3	6.1	48.15	FRWY
(7032, 435)	1043	1043	0	1	1.1	50.1	67.9	3.6	3.2	0.4	0.89	1.35	0.15	1126.1	25.4	44.31	RAMP
(435, 436)	1043	1042	0	1	0.9	43.6	54.3	3.1	3.0	0.1	0.96	1.24	0.05	1042.3	21.6	48.23	RAMP
(436, 372)	1042	1041	0	1	1.1	57.2	68.3	3.9	3.6	0.3	0.91	1.19	0.10	1041.1	20.7	50.23	RAMP
(395, 437)	1021	1021	35	2	1.9	104.1	115.6	6.8	6.7	0.1	0.98	1.11	0.02	510.6	9.5	53.99	RAMP
(437,7033)	1021	1018	0	3	1.6	75.3	95.3	5.6	5.2	0.4	0.93	1.27	0.09	509.8	10.8	47.40	RAMP
(7034, 440)	621	621	0	0	0.6	27.0	37.0	3.3	2.9	0.4	0.88	1.37	0.17	676.3	15.4	43.86	RAMP
(440, 441)	621	622	0	0	0.5	22.3	27.9	2.7	2.6	0.1	0.96	1.25	0.06	621.9	13.0	47.84	RAMP
(7035, 443)	284	284	0	1	0.3	11.4	20.3	3.9	2.9	1.0	0.75	1.78	0.44	311.5	9.3	33.67	RAMP
(443, 444)	284	283	0	1	0.3	11.2	15.1	3.2	2.8	0.3	0.89	1.35	0.14	283.8	6.4	44.54	RAMP
(444, 376)	283	286	0	0	0.7	38.1	43.6	9.2	8.8	0.4	0.96	1.14	0.05	285.0	5.4	52.45	RAMP

(375, 442)	945	944	26	1	1.2	65.0	72.6	4.6	4.5	0.1	0.98	1.12	0.03	472.4	8.8	53.70	RAMP
(442,7036)	944	942	0	2	0.9	44.7	53.7	3.4	3.3	0.1	0.96	1.20	0.04	471.6	9.5	49.89	RAMP
(7037, 454)	311	312	0	0	0.3	14.7	19.6	3.5	3.1	0.3	0.90	1.33	0.13	337.4	7.5	45.02	RAMP
(454, 455)	312	313	0	0	0.3	14.9	18.2	3.5	3.4	0.1	0.98	1.22	0.03	312.6	6.4	49.01	RAMP
(455, 377)	313	316	0	0	0.4	22.8	26.3	5.0	4.7	0.3	0.95	1.15	0.06	314.6	6.0	52.02	RAMP
(390, 458)	1233	1235	0	1	4.6	160.8	277.4	13.5	8.5	4.9	0.63	1.72	0.63	1234.2	35.5	34.79	RAMP
(456, 457)	349	349	0	0	0.2	10.6	13.9	2.4	2.2	0.2	0.92	1.32	0.11	349.0	7.7	45.62	RAMP
(457, 391)	349	349	0	0	0.2	9.7	11.9	2.0	1.8	0.2	0.89	1.23	0.13	349.0	7.2	48.71	RAMP
(7038, 456)	349	349	0	0	0.2	9.1	13.8	2.0	1.6	0.4	0.80	1.51	0.30	403.4	10.2	39.67	RAMP
(458,7039)	1235	1238	0	1	3.5	49.4	211.0	10.2	2.9	7.4	0.28	4.27	3.08	1236.0	88.0	14.04	RAMP
(7040, 466)	561	560	0	. 1	0.6	25.4	34.6	3.4	3.0	0.4	0.88	1.36	0.17	608.9	13.8	44.01	RAMP
(466, 467)	560	560	0	1	0.5	23.2	28.8	3.1	3.0	0.1	0.96	1.24	0.05	559.8	11.6	48.42	RAMP
(467, 392)	560	559	0	2	0.6	31.5	37.0	4.0	3.7	0.3	0.92	1.18	0.09	559.9	11.0	51.04	RAMP
(309,7043)	1469	1469	0	3	2.3	110.1	136.2	5.6	5.4	0.2	0.97	1.24	0.04	734.0	15.1	48.51	FRWY
(7044, 483)	843	842	0	4	1.5	65.5	89.4	6.1	5.3	0.7	0.88	1.36	0.17	884.7	20.1	43.98	RAMP
(484, 318)	841	842	0	1	1.1	57.0	68.8	4.9	4.4	0.5	0.90	1.21	0.12	841.2	16.9	49.77	RAMP
(483, 484)	842	841	0	1	0.9	41.3	52.4	3.7	3.5	0.2	0.95	1.27	0.07	841.4	17.8	47.29	RAMP
(303, 487)	952	952	0	0	1.0	53.7	61.5	3.9	3.7	0.2	0.96	1.14	0.05	952.0	18.1	52.46	RAMP
(487, 488)	952	951	0	2	1.8	89.6	110.4	7.0	6.7	0.3	0.96	1.23	0.05	952.3	19.5	48.72	RAMP
(488,7046)	951	948	0	3	1.1	52.5	67.6	4.3	4.0	0.3	0.93	1.29	0.09	949.3	20.4	46.56	RAMP
(489, 490)	1445	1444	167	2	2.6	81.0	157.6	6.5	4.1	2.5	0.62	1.95	0.74	1079.4	35.0	30.82	RAMP
(7047, 489)	1445	1445	679	0	2.1	63.4	126.8	4.8	2.9	1.9	0.60	2.00	0.80	785.6	26.2	30.00	RAMP
(7045, 531)	679	676	129	4	0.9	32.5	55.7	4.6	2.5	2.1	0.54	1.71	0.78	365.6	10.4	35.04	RAMP

(531,	532)	676	676	3	0	0.6	26.6	35.2	3.1	2.2	0.9	0.70	1.32	0.39	456.5	10.0	45.43	RAMP
(532,	299)	676	675	0	1	0.5	26.6	30.9	2.7	2.2	0.5	0.80	1.16	0.23	675.8	13.1	51.70	RAMP
(322	522)	1679	1677	16	2	1.4	75.3	83.8	3.0	2.9	0.0	0.98	1.11	0.02	839.1	15.6	53.95	RAMP
(7049	, 523)	120	120	0	0	0.1	4.5	7.0	3.2	3.0	0.1	0.96	1.54	0.07	132.2	3.4	38.86	RAMP
(523	, 524)	120	120	0	0	0.2	9.4	12.4	6.2	5.6	0.6	0.91	1.31	0.12	120.0	2.6	45.76	RAMP
(524	, 323)	120	119	0	2	0.2	9.0	10.1	5.1	4.9	0.2	0.96	1.13	0.05	119.4	2.2	53.26	RAMP
(298	, 533)	5864	5861	879	28	32.0	1962.4	1918.4	19.6	18.5	1.1	0.94	0.98	0.05	1172.1	19.1	61.38	FRWY
(7050	, 529)	1702	1702	717	0	2.1	63.1	127.5	4.1	3.0	1.0	0.74	2.02	0.52	941.3	31.7	29.71	RAMP
(529	, 530)	1702	1702	148	0	1.9	52.5	113.5	4.0	2.2	1.8	0.56	2.16	0.96	946.8	34.1	27.78	RAMP
(530	, 533)	1702	1702	0	0	4.0	160.9	239.2	8.4	6.2	2.2		1.49		1702.0	42.2	40.34	RAMP
	, 525)	277	277	0	0	0.3	12.5	16.3	3.3	3.0			1.31		300.7	6.6	45.82	RAMP
	, 526)	277	277		0													
				0		0.4	20.9	25.4	5.5	5.4	0.1		1.22		277.0	5.6	49.31	RAMP
(526	, 324)	277	277	0	0	0.5	27.4	31.1	6.7	6.5	0.3	0.96	1.14	0.04	277.0	5.2	52.80	RAMP
(298	, 534)	1206	1206	0	2	4.5	111.2	269.8	13.4	5.1	8.3	0.38	2.43	1.50	1206.0	48.7	24.74	RAMP
(534	,7052)	1206	1211	0	2	4.3	61.0	256.3	12.7	2.8	9.9	0.22	4.20	3.28	1206.6	84.5	14.29	RAMP
(313	, 347)	962	962	41	1	1.4	74.3	83.9	5.2	5.1	0.2	0.97	1.13	0.04	760.3	14.3	53.14	RAMP
(522	,7048)	1677	1675	0	4	1.5	78.8	92.7	3.3	3.3	0.1	0.98	1.18	0.02	838.3	16.5	50.94	RAMP
(405	, 558)	1201	1200	7	1	0.9	47.5	54.5	2.7	2.7	0.0	0.99	1.15	0.01	400.0	7.7	52.29	FRWY
(409	, 559)	2168	2170	188	2	3.1	135.2	184.9	5.1	5.0	0.1	0.97	1.37	0.04	723.0	16.5	43.87	FRWY
(369	, 560)	3390	3392	421	8	10.4	642.6	623.7	11.0	10.5	0.5	0.95	0.97	0.05	565.5	9.1	61.82	FRWY
(97	, 563)	5267	5251	1383	31	24.7	1494.7	1483.0	16.9	15.8	1.1	0.93	0.99	0.07	992.7	16.4	60.47	FRWY
(10	, 11)	2247	2243	76	6	4.1	251.3	243.9	6.5	6.2	0.3	0.95	0.97	0.05	748.3	12.1	61.82	FRWY
(11	, 12)	2243	2242	104	8	3.9	244.4	236.1	6.3	6.0	0.3	0.96	0.97	0.04	748.2	12.0	62.11	FRWY
(12	, 13)	2242	2240	54	3	2.3	140.9	135.9	3.6	3.5	0.2	0.96	0.96	0.04	747.0	12.0	62.23	FRWY
-																		

(13,	14)	2240	2238	28	4	2.3	141.6	136.5	3.7	3.5	0.2	0.96	0.96	0.04	746.3	12.0	62.25	FRWY
(14,	15)	2238	2239	47	1	2.3	145.5	140.2	3.8	3.6	0.2	0.96	0.96	0.04	746.3	12.0	62.23	FRWY
(15,	16)	3722	3722	560	10	11.9	704.8	712.7	11.5	10.5	1.0	0.91	1.01	0.09	930.3	15.7	59.33	FRWY
(16,	17)	3722	3726	119	2	5.7	352.5	340.3	5.5	5.3	0.2	0.96	0.97	0.04	930.7	15.0	62.17	FRWY
(17,	18)	3726	3724	242	12	11.3	705.0	679.3	10.9	10.5	0.4	0.96	0.96	0.04	931.5	15.0	62.27	FRWY
(18,	19)	3724	3719	216	13	10.1	630.2	608.0	9.8	9.4	0.4	0.96	0.96	0.04	930.5	15.0	62.20	FRWY
(19,	20)	3719	3717	220	10	8.8	549.1	530.1	8.6	8.2	0.4	0.96	0.97	0.04	929.2	15.0	62.15	FRWY
(20,	21)	3717	3714	183	7	8.9	553.3	534.3	8.6	8.3	0.4	0.96	0.97	0.04	929.3	15.0	62.13	FRWY
(21,	22)	3714	3713	146	8	6.3	389.0	375.5	6.1	5.8	0.3	0.96	0.97	0.04	928.5	14.9	62.16	FRWY
(22,	23)	3713	3715	264	26	13.4	830.9	801.5	12.9	12.4	0.5	0.96	0.96	0.04	928.7	14.9	62.20	FRWY
(24,	25)	3711	3732	637	3	9.3	553.4	560.6	9.0	8.2	0.8	0.91	1.01	0.09	930.6	15.7	59.23	FRWY
(25,	26)	3732	3730	143	3	5.7	353.2	344.1	5.5	5.3	0.3	0.95	0.97	0.05	932.6	15.1	61.59	FRWY
(26,	27)	3730	3729	153	10	11.7	706.2	700.8	11.3	10.8	0.5	0.95	0.99	0.05	932.2	15.4	60.47	FRWY
(190,	255)	800	799	41	2	2.4	151.4	142.3	10.7	10.5	0.2	0.98	0.94	0.02	399.8	6.3	63.84	FRWY
(255,	257)	1275	1279	624	2	3.2	193.4	191.9	9.0	8.4	0.6	0.93	0.99	0.07	498.2	8.2	60.48	FRWY
(257,	280)	1279	1281	35	0	1.9	121.3	115.9	5.4	5.3	0.2	0.97	0.96	0.03	640.3	10.2	62.79	FRWY
(280,	282)	2096	2095	1057	7	9.8	595.7	586.5	16.8	15.8	1.0	0.94	0.98	0.06	827.7	13.6	60.93	FRWY
(282,	32)	2095	2095	123	7	4.8	299.0	286.3	8.2	7.9	0.3	0.97	0.96	0.03	1048.3	16.7	62.65	RAMP
(32,	33)	3962	3961	268	8	9.0	562.9	537.2	8.1	7.9	0.2	0.97	0.95	0.03	792.5	12.6	62.86	FRWY
(33,	34)	3961	3957	217	11	8.9	562.3	535.4	8.1	7.9	0.2	0.97	0.95	0.03	791.8	12.6	63.02	FRWY
(34,	35)	3957	3964	203	7	9.0	568.1	540.7	8.2	8.0	0.2	0.97	0.95	0.03	792.6	12.6	63.04	FRWY
(35,	36)	3964	3967	208	9	9.4	592.5	563.9	8.5	8.3	0.2	0.97	0.95	0.03	793.0	12.6	63.04	FRWY
(36,	37)	3967	3953	233	16	10.3	651.3	619.7	9.4	9.1	0.3	0.97	0.95	0.03	791.5	12.6	63.07	FRWY

	(37,	54)	3953	3953	249	11	11.8	745.8	710.0	10.8	10.5	0.3	0.97	0.95	0.03	790.7	12.5	63.02	FRWY
•	(54,	55)	4075	4081	341	9	8.0	502.1	480.2	7.1	6.8	0.2	0.97	0.96	0.03	716.4	11.4	62.73	FRWY
	(55,	56)	4081	4080	152	8	6.1	386.5	368.2	5.4	5.3	0.2	0.97	0.95	0.03	816.3	13.0	62.99	FRWY
	(56,	57)	4345	4344	601	11	13.2	823.1	789.5	10.9	10.5	0.4	0.96	0.96	0.03	797.4	12.7	62.56	FRWY
	(57,	58)	4344	4345	132	5	6.5	411.5	392.0	5.4	5.3	0.2	0.97	0.95	0.03	869.1	13.8	62.99	FRWY
	(58,	59)	4345	4342	794	7	7.6	477.2	454.5	6.3	6.1	0.2	0.97	0.95	0.03	868.8	13.8	63.00	FRWY
	(59,	60)	4342	4337	494	13	11.1	693.0	664.2	9.2	8.9	0.3	0.96	0.96	0.03	868.0	13.9	62.60	FRWY
	(60,	61)	4337	4332	2449	16	19.9	1231.5	1194.8	16.5	15.8	0.7	0.96	0.97	0.04	867.0	14.0	61.84	FRWY
	(61,	62)	3712	3711	191	10	11.3	702.2	679.3	11.0	10.6	0.4	0.97	0.97	0.03	741.6	12.0	62.03	FRWY
	(62,	63)	2852	2840	239	18	9.5	598.0	568.7	12.0	11.7	0.3	0.97	0.95	0.03	711.8	11.3	63.09	FRWY
	(63,	64)	2840	2835	227	13	9.8	617.5	587.8	12.4	12.1	0.4	0.97	0.95	0.03	709.4	11.3	63.03	FRWY
	(64,	65)	3312	3313	801	12	10.2	627.3	612.6	11.1	10.5	0.6	0.95	0.98	0.05	744.3	12.1	61.43	FRWY
	(65,	66)	3313	3313	117	3	5.0	313.7	300.4	5.4	5.3	0.2	0.97	0.96	0.03	828.2	13.2	62.65	FRWY
	(66,	67)	3313	3317	1192	8	9.4	589.2	563.0	10.2	9.9	0.3	0.97	0.96	0.03	829.1	13.2	62.79	FRWY
	(67,	68)	3317	3312	408	10	13.3	815.7	798.8	14.5	13.7	0.8	0.94	0.98	0.05	828.2	13.5	61.27	FRWY
	(68,	69)	3312	3296	238	21	15.3	939.6	915.7	16.6	15.9	0.7	0.96	0.97	0.04	826.8	13.4	61.57	FRWY
	(69,	70)	2174	2167	196	12	11.0	697.4	658.9	18.2	17.8	0.4	0.98	0.94	0.02	543.1	8.6	63.51	FRWY
	(70,	71)	2167	2163	92	6	5.0	318.8	301.2	8.4	8.2	0.2	0.98	0.94	0.02	540.9	8.5	63.50	FRWY
	(71,	72)	2525	2522	653	12	11.4	717.3	685.7	16.3	15.8	0.5	0.97	0.96	0.03	587.2	9.4	62.77	FRWY
	(72,	73)	2522	2523	1490	11	16.8	1057.5	1010.9	24.1	23.3	0.8	0.97	0.96	0.03	630.2	10.0	62.76	FRWY
	(73,	74)	2523	2523	213	13	11.6	716.2	697.6	16.6	16.1	0.5	0.97	0.97	0.03	630.3	10.2	61.60	FRWY
	(74,	75)	1137	1131	105	8	7.1	451.6	425.6	22.5	22.1	0.3	0.98	0.94	0.01	378.7	5.9	63.67	FRWY
	(75,	76)	1401	1401	364	0	2.2	139.6	134.9	5.8	5.5	0.2	0.96	0.97	0.04	363.4	5.9	62.08	FRWY
	(76,	77)	1688	1685	371	4	1.7	102.5	104.4	3.7	3.4	0.3	0.91	1.02	0.09	428.7	7.3	58.92	FRWY
																•				

(568, 569)	2193	2185	63	8	1.6	82.9	96.6	2.6	2.1	0.5	0.80	1.17	0.23	729.6	14.2	51.48	FRWY
(569, 570)	1481	1476	108	10	5.7	346.6	341.5	13.9	13.0	0.9	0.94	0.99	0.06	492.3	8.1	60.89	FRWY
(570, 571)	2782	2783	393	10	7.1	434.3	428.5	9.2	8.6	0.6	0.94	0.99	0.06	695.7	11.4	60.81	FRWY
(571, 572)	3057	3062	606	19	14.0	869.9	837.9	16.4	15.8	0.7	0.96	0.96	0.04	712.1	11.4	62.29	FRWY
(572, 573)	3062	3063	855	9	20.3	1273.2	1219.2	23.9	23.1	0.8	0.96	0.96	0.03	765.6	12.2	62.65	FRWY
(573, 574)	3063	3054	290	21	14.0	869.8	837.1	16.4	15.8	0.6	0.96	0.96	0.03	765.5	12.3	62.35	FRWY
(574, 575)	2680	2690	221	9	10.2	643.4	612.7	13.7	13.3	0.4	0.97	0.95	0.03	670.8	10.6	63.00	FRWY
(575, 576)	2690	2687	392	14	14.1	886.0	844.4	18.8	18.3	0.6	0.97	0.95	0.03	672.2	10.7	62.96	FRWY
(576, 577)	4721	4717	3193	18	23.8	1339.8	1430.9	18.2	15.8	2.4	0.87	1.07	0.14	1096.8	19.5	56.18	FRWY
(577, 578)	4717	4713	325	16	18.3	1139.3	1096.7	14.0	13.4	0.6	0.96	0.96	0.04	1178.6	18.9	62.33	FRWY
(578, 579)	4713	4711	1431	15	15.5	948.1	929.5	11.8	11.1	0.7	0.94	0.98	0.06	1178.4	19.3	61.20	FRWY
(579, 580)	4711	4706	139	11	7.3	445.9	435.1	5.5	5.2	0.3	0.95	0.98	0.05	1177.2	19.1	61.49	FRWY
(580, 581)	4706	4704	296	18	14.5	890.9	871.0	11.1	10.6	0.5	0.95	0.98	0.05	1176.0	19.2	61.37	FRWY
(581, 582)	3768	3758	270	17	11.8	744.4	710.4	11.3	11.0	0.4	0.97	0.95	0.03	940.3	15.0	62.87	FRWY
(582, 583)	3758	3758	322	15	14.1	884.8	843.5	13.5	13.0	0.4	0.97	0.95	0.03	939.6	14.9	62.93	FRWY
(583, 584)	4704	4704	1514	22	15.1	890.1	905.8	11.6	10.5	1.1	0.91	1.02	0.09	1056.1	17.9	58.96	FRWY
(584, 585)	5831	5830	3368	30	30.1	1656.1	1805.2	18.6	15.8	2.7	0.85	1.09	0.16	1285.9	23.4	55.04	FRWY
(585, 586)	5830	5839	337	6	13.5	793.2	810.3	8.3	7.5	0.8	0.90	1.02	0.10	1458.3	24.8	58.73	FRWY
(586, 587)	5839	5844	178	7	11.9	724.5	713.7	7.3	6.9	0.5	0.94	0.99	0.06	1460.0	24.0	60.91	FRWY
(587, 588)	5844	5846	105	7	9.0	553.6	540.2	5.5	5.3	0.3	0.95	0.98	0.05	1461.4	23.8	61.49	FRWY
(588, 589)	5846	5859	268	9	18.2	1108.6	1092.6	11.2	10.6	0.6	0.94	0.99	0.06	1463.4	24.0	60.88	FRWY
(589, 590)	4887	4880	316	22	12.2	753.1	731.0	9.0	8.6	0.4	0.95	0.97	0.05	1179.9	19.1	61.81	FRWY
(590, 591)	4880	4875	352	13	9.1	567.2	545.9	6.7	6.5	0.3	0.96	0.96	0.04	975.6	15.6	62.34	FRWY

(591,	592)	4875	4871	255	17	10.1	630.5	605.2	7.4	7.2	0.3	0.96	0.96	0.04	974.9	15.6	62.51	FRWY
(592,	593)	4871	4873	4040	15	14.8	923.1	890.3	11.0	10.5	0.5	0.96	0.96	0.04	974.8	15.7	62.21	FRWY
(593,	594)	4873	4872	698	9	7.7	461.3	459.5	5.7	5.3	0.4	0.93	1.00	0.07	974.2	16.2	60.23	FRWY
(594,	595)	4872	4866	397	23	14.9	922.6	892.0	11.0	10.5	0.5	0.96	0.97	0.04	974.3	15.7	62.06	FRWY
(595,	596)	4866	4860	59	18	10.3	611.4	617.5	7.6	7.3	0.3	0.96	1.01	0.05	972.4	16.4	59.41	FRWY
(596,	597)	1797	1800	65	5	3.8	242.3	229.1	7.6	7.5	0.2	0.98	0.95	0.02	599.7	9.5	63.45	FRWY
(597,	598)	1800	1801	87	4	4.4	280.6	265.9	8.9	8.6	0.2	0.97	0.95	0.02	600.1	9.5	63.33	FRWY
(598,	599)	1801	1796	48	5	2.3	147.2	139.6	4.7	4.5	0.1	0.97	0.95	0.03	599.6	9.5	63.24	FRWY
(600,	601)	1796	1803	71	0	3.2	201.8	191.5	6.4	6.2	0.2	0.97	0.95	0.03	599.9	9.5	63.22	FRWY
(601,	602)	3690	3686	1548	14	9.2	523.8	549.1	8.9	7.9	1.0	0.88	1.05	0.12	801.7	14.0	57.23	FRWY
(602,	603)	3686	3693	183	7	8.5	524.1	510.4	8.3	7.9	0.4	0.95	0.97	0.05	922.4	15.0	61.61	FRWY
(603,	604)	3693	3696	117	6	7.2	449.0	429.2	7.0	6.7	0.2	0.97	0.96	0.03	923.1	14.7	62.77	FRWY
(604,	605)	3696	3700	166	6	8.1	509.2	487.7	7.9	7.6	0.3	0.96	0.96	0.03	924.6	14.8	62.65	FRWY
(605,	606)	3700	3689	219	13	10.7	666.1	639.3	10.4	10.0	0.4	0.96	0.96	0.04	923.5	14.8	62.51	FRWY
(606,	607)	3689	3684	153	7	8.5	527.9	507.5	8.3	7.9	0.3	0.96	0.96	0.04	921.7	14.8	62.41	FRWY
(607,	608)	3684	3687	167	2	7.4	459.3	441.4	7.2	6.9	0.3	0.96	0.96	0.04	921.3	14.8	62.43	FRWY
(608,	609)	3687	3682	208	7	9.1	569.5	547.4	8.9	8.6	0.3	0.96	0.96	0.04	921.3	14.8	62.43	FRWY
(609,	610)	3682	3677	205	7	10.3	645.7	620.5	10.1	9.7	0.4	0.96	0.96	0.04	919.4	14.7	62.43	FRWY
(610,	611)	3677	3678	1377	2	8.0	497.2	481.0	7.8	7.5	0.4	0.95	0.97	0.04	919.3	14.8	62.03	FRWY
(611,	612)	3678	3682	549	3	8.6	520.1	518.2	8.4	7.8	0.6	0.93	1.00	0.07	920.2	15.3	60.21	FRWY
(612,	613)	3682	3665	400	24	17.1	1044.1	1025.7	16.7	16.0	0.7	0.96	0.98	0.04	918.8	15.0	61.08	FRWY
(613,	614)	1810	1813	41	0	1.7	106.7	103.4	3.4	3.3	0.2	0.95	0.97	0.05	603.7	9.8	61.89	FRWY
(614,	615)	1813	1812	23	3	1.6	98.5	94.2	3.1	3.0	0.1	0.97	0.96	0.03	604.1	9.6	62.75	FRWY
(615,	616)	1812	1810	30	5	2.7	171.6	162.9	5.4	5.2	0.1	0.97	0.95	0.03	603.9	9.6	63.18	FRWY

(616,	617)	1810	1810	72	8	5.5	343.3	328.7	10.9	10.6	0.3	0.97	0.96	0.03	604.2	9.6	62.66	FRWY
(617,	618)	1556	1549	76	10	4.6	292.1	276.8	10.7	10.4	0.3	0.98	0.95	0.02	517.3	8.2	63.32	FRWY
(618,	619)	1549	1541	59	9	4.1	262.5	248.9	9.7	9.4	0.2	0.98	0.95	0.02	514.5	8.1	63.29	FRWY
(619,	620)	1541	1540	38	2	1.9	122.0	115.7	4.5	4.4	0.1	0.98	0.95	0.02	513.6	8.1	63.27	FRWY
(599,	600)	1796	1796	50	0	2.1	131.6	124.9	4.2	4.1	0.1	0.97	0.95	0.03	598.7	9.5	63.23	FRWY
(77,7	(053)	1685	1686	0	0	1.0	59.4	58.9	2.1	2.0	0.1	0.93	0.99	0.07	561.8	9.3	60.48	FRWY
(7054,	568)	2194	2193	369	3	2.2	103.9	129.2	3.3	2.4	0.8	0.74	1.24	0.32	791.8	16.4	48.28	FRWY
(396,	397)	4034	4025	1662	30	28.1	1743.8	1688.0	25.1	24.0	1.1	0.95	0.97	0.04	1007.8	16.3	61.98	FRWY
(397,	398)	4647	4651	1145	4	10.3	616.5	617.5	8.0	7.4	0.6	0.92	1.00	0.08	930.0	15.5	59.90	FRWY
(398,	564)	4651	4645	316	12	11.4	704.4	681.7	8.8	8.4	0.4	0.96	0.97	0.04	929.8	15.0	62.00	FRWY
(620,	369)	1540	1539	34	2	2.3	143.5	136.0	5.3	5.2	0.1	0.98	0.95	0.02	513.3	8.1	63.31	FRWY
(617,	114)	254	254	0	0	0.6	31.3	34.4	8.1	8.0	0.1	0.99	1.10	0.02	254.0	4.7	54.57	RAMP
(114,	115)	254	253	0	1	0.8	40.5	48.5	11.5	11.3	0.2	0.98	1.20	0.02	254.0	5.1	50.02	RAMP
(117,	416)	251	251	0	1	0.6	30.5	37.2	8.9	8.7	0.2	0.98	1.22	0.03	251.6	5.1	49.12	RAMP
(399,	402)	1218	1218	100	4	7.0	380.2	421.4	20.8	20.5	0.3	0.99	1.11	0.02	609.1	11.3	54.14	RAMP
(625,	132)	851	851	0	0	0.8	33.2	45.5	3.2	2.6	0.6	0.80	1.37	0.28	851.0	19.4	43.76	RAMP
(626,	627)	800	800	14	0	1.0	63.5	60.2	4.5	4.4	0.1	0.97	0.95	0.03	400.0	6.3	63.27	FRWY
(627,	190)	800	800	8	0	0.8	48.5	45.5	3.4	3.4	0.1	0.99	0.94	0.01	400.0	6.3	63.97	FRWY
(629,	255)	476	476	0	1	0.6	30.5	38.6	4.9	4.2	0.6	0.87	1.27	0.17	476.3	10.1	47.36	RAMP
(628,	629)	478	476	0	2	0.8	31.2	46.9	5.9	5.3	0.6	0.89	1.50	0.16	476.2	11.9	39.92	RAMP
(631,	280)	812	815	0	0	1.5	76.6	89.7	6.6	6.2	0.5	0.93	1.17	0.08	813.3	15.9	51.20	RAMP
(630,	631)	811	812	0	2	1.4	65.8	81.7	6.0	5.8	0.2	0.97	1.24	0.04	811.5	16.8	48.32	RAMP
(632,	633)	1866	1862	92	7	4.3	229.7	259.3	8.4	8.1	0.3	0.97	1.13	0.04	931.6	17.5	53.15	RAMP

(635,	54)	122	122	0	0	0.3	14.5	17.0	8.4	7.8	0.6	0.93	1.17	0.08	122.0	2.4	51.18	RAMP
(634,	635)	122	122	0	0	0.3	10.8	15.5	7.6	7.1	0.6	0.92	1.44	0.11	122.0	2.9	41.74	RAMP
(637,	56)	266	265	0	3	0.6	32.6	36.1	8.1	8.0	0.2	0.98	1.11	0.02	265.9	4.9	54.18	RAMP
(636,	637)	267	266	0	2	0.4	22.6	25.1	5.7	5.5	0.1	0.98	1.11	0.02	265.8	4.9	54.04	RAMP
(61,	638)	620	617	0	3	1.0	52.5	59.0	5.7	5.6	0.1	0.97	1.12	0.03	619.0	11.6	53.40	RAMP
(638,	639)	617	620	50	0	0.8	39.6	45.1	4.4	4.2	0.2	0.96	1.14	0.04	363.4	6.9	52.77	RAMP
(62,	640)	859	858	0	2	1.2	65.9	75.0	5.2	5.0	0.2	0.96	1.14	0.05	859.4	16.3	52.76	RAMP
(640,	641)	858	858	52	0	0.7	35.7	40.6	2.8	2.7	0.1	0.96	1.14	0.04	555.2	10.5	52.80	RAMP
(643,	64)	479	477	0	2	1.0	52.8	60.0	7.5	7.3	0.3	0.97	1.14	0.04	477.4	9.0	52.83	RAMP
(642,	643)	480	479	32	2	0.9	43.3	53.5	6.7	5.9	0.8	0.89	1.23	0.14	337.9	6.9	48.63	RAMP
(69,	644)	1122	1122	39	0	1.4	74.6	86.1	4.6	4.3	0.3	0.94	1.15	0.07	979.7	18.9	51.97	RAMP
(644,	645)	1122	1123	82	0	1.0	52.7	62.6	3.3	3.3	0.1	0.98	1.19	0.03	432.1	8.6	50.51	RAMP
(647,	71)	360	362	0	0	1.0	48.1	57.1	9.5	8.7	0.8	0.92	1.19	0.10	361.1	7.1	50.57	RAMP
(646,	647)	360	360	0	2	0.8	34.0	49.3	8.2	7.6	0.7	0.92	1.45	0.12	358.8	8.7	41.41	RAMP
(74,	648)	1386	1387	57	1	2.3	122.2	136.8	5.9	5.8	0.1	0.98	1.12	0.03	693.8	12.9	53.60	RAMP
(648,	649)	1387	1386	33	1	1.9	103.5	115.8	5.0	4.9	0.1	0.98	1.12	0.03	693.2	12.9	53.62	RAMP
(651,	75)	269	270	0	1	0.4	20.0	24.5	5.4	4.8	0.6	0.89	1.22	0.14	269.8	5.5	49.03	RAMP
(650,	651)	270	269	0	1	0.4	15.8	23.6	5.3	4.7	0.6	0.89	1.49	0.17	269.2	6.7	40.18	RAMP
(653,	76)	288	287	0	1	0.3	13.4	15.0	3.1	3.0	0.1	0.97	1.12	0.03	287.2	5.4	53.48	RAMP
(652,	653)	288	288	0	0	0.3	15.2	17.1	3.6	3.4	0.1	0.96	1.13	0.04	288.0	5.4	53.14	RAMP
(569,	654)	704	702	20	2	0.7	34.9	40.8	3.5	3.2	0.2	0.93	1.17	0.08	568.5	11.1	51.33	RAMP
(656,	570)	1304	1306	0	2	2.4	113.9	141.9	6.5	5.7	0.8	0.88	1.25	0.15	1304.3	27.1	48.15	RAMP
(655,	656)	1301	1304	0	0	2.7	111.0	164.2	7.6	6.8	0.7	0.90	1.48	0.15	1301.9	32.1	40.56	RAMP
(658,	571)	276	274	0	2	0.5	27.6	30.6	6.7	6.6	0.1	0.99	1.11	0.01	275.4	5.1	54.10	RAMP

,	657,	659)	279	276	0	4	0.4	23.3	25.9	5.6	5.6	0.1	0.99	1.11	0.02	276.4	5.1	53.99	RAMP
	•					_													
(574,	660)	374	374	0	0	0.3	15.8	17.6	2.8	2.8	0.1	0.98	1.11	0.03	374.0	6.9	53.97	RAMP
(660,	661)	374	375	0	0	0.3	15.0	17.4	2.8	2.7	0.1	0.98	1.17	0.02	374.3	7.3	51.46	RAMP
(663,	576)	2031	2034	55	3	4.6	192.2	273.1	8.1	6.2	1.9	0.77	1.42	0.33	1693.9	40.1	42.22	RAMP
(662,	663)	2024	2031	279	2	3.4	128.3	201.7	6.0	4.5	1.4	0.76	1.57	0.37	1013.8	26.6	38.15	RAMP
(581,	664)	936	936	0	2	1.9	102.6	116.3	7.5	7.2	0.3	0.96	1.13	0.04	935.7	17.7	52.93	RAMP
(664,	665)	936	936	0	0	0.8	39.9	45.4	2.9	2.8	0.1	0.96	1.14	0.04	936.0	17.8	52.71	RAMP
(667,	583)	948	946	. 0	6	3.3	154.6	199.0	12.6	10.8	1.9	0.85	1.29	0.19	945.7	20.3	46.61	RAMP
(666,	667)	951	948	0	3	1.1	38.3	67.4	4.3	4.2	0.1	0.98	1.76	0.04	948.9	27.9	34.06	RAMP
(669,	584)	1130	1127	16	5	2.5	124.7	148.8	7.9	7.3	0.6	0.92	1.19	0.10	962.8	19.1	50.28	RAMP
(668,	669)	1135	1130	101	5	1.4	68.2	83.4	4.4	4.0	0.5	0.89	1.22	0.13	565.8	11.5	49.01	RAMP
(589,	670)	972	972	0	1	0.8	42.0	47.8	3.0	2.8	0.1	0.96	1.14	0.05	971.6	18.5	52.65	RAMP
(670,	671)	972	973	0	0	0.8	40.0	45.3	2.8	2.7	0.1	0.96	1.13	0.04	972.8	18.4	53.01	RAMP
(672,	673)	914	916	0	0	1.6	76.6	97.5	6.4	6.0	0.4	0.94	1.27	0.08	914.5	19.4	47.13	FRWY
(674,	675)	962	962	0	2	1.1	55.2	63.0	3.9	3.7	0.2	0.95	1.14	0.05	961.5	18.3	52.51	RAMP
(676,	677)	3066	3078	886	11	16.9	873.7	1012.4	19.8	18.7	1.0	0.95	1.16	0.06	1246.9	24.1	51.78	FRWY
(677,	680)	1549	1554	165	7	7.3	393.7	440.5	17.0	16.6	0.4	0.98	1.12	0.03	775.6	14.5	53.61	FRWY
(677,	678)	1529	1531	27	0	2.2	109.3	133.5	5.2	5.2	0.1	0.98	1.22	0.02	765.1	15.6	49.09	RAMP
(678,	679)	1531	1531	28	2	2.4	118.9	146.0	5.7	5.6	0.1	0.98	1.23	0.02	765.9	15.7	48.90	RAMP
(680,	681)	1554	1553	65	3	4.0	213.3	238.7	9.2	9.0	0.2	0.98	1.12	0.03	777.7	14.5	53.62	FRWY
(681,	682)	1553	1554	70	3	4.1	220.6	246.8	9.5	9.3	0.2	0.98	1.12	0.03	597.5	11.1	53.64	FRWY
(684,	685)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	RAMP
(686,	111)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY

(685, 681)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	RAMP
(682, 683)	1554	1549	69	6	4.1	220.4	246.3	9.5	9.3	0.2	0.98	1.12	0.02	775.8	14.5	53.69	FRWY
(687, 688)	1547	1545	51	2	3.0	135.8	182.1	7.1	6.9	0.2	0.98	1.34	0.03	772.9	17.3	44.76	FRWY
(688,7027)	1545	1542	0	3	2.0	77.5	119.1	4.6	4.6	0.1	0.99	1.54	0.02	771.7	19.8	39.03	FRWY
(7056, 626)	799	800	59	1	1.2	66.9	70.0	5.0	4.4	0.6	0.88	1.05	0.12	417.4	7.3	57.31	FRWY
(679,7058)	1531	1533	0	0	1.4	65.9	81.9	3.2	3.1	0.1	0.97	1.24	0.04	766.0	15.9	48.26	RAMP
(7059, 684)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	RAMP
(7060, 628)	479	478	0	1	0.6	21.0	37.2	4.3	4.2	0.1	0.97	1.77	0.06	519.1	15.3	33.94	RAMP
(7061, 630)	812	811	0	1	1.2	53.3	69.3	4.8	4.5	0.4	0.92	1.30	0.10	858.6	18.6	46.18	RAMP
(7062, 674)	961	962	0	0	0.7	33.6	42.0	2.4	2.1	0.3	0.87	1.25	0.16	1068.6	22.3	47.94	RAMP
(7063, 672)	915	914	0	1	2.0	81.7	118.7	7.5	6.8	0.6	0.91	1.45	0.12	951.7	23.1	41.27	FRWY
(671,7064)	973	975	0	0	0.6	33.6	38.2	2.4	2.3	0.1	0.96	1.14	0.05	973.5	18.5	52.65	RAMP
(633,7065)	1862	1860	0	3	2.2	117.0	132.6	4.3	4.1	0.2	0.96	1.13	0.04	930.7	17.6	52.97	RAMP
(7066, 634)	122	122	0	0	0.2	5.2	9.0	4.1	4.0	0.1	0.99	1.72	0.02	133.1	3.8	34.93	RAMP
(7067, 636)	267	267	0	1	0.4	20.2	23.8	5.1	4.7	0.4	0.92	1.18	0.10	280.0	5.5	50.84	RAMP
(665,7068)	936	936	0	1	0.7	36.3	42.6	2.7	2.5	0.2	0.93	1.17	0.08	935.8	18.3	51.16	RAMP
(7069, 666)	953	951	0	2	1.0	35.1	59.5	3.4	3.3	0.1	0.98	1.69	0.03	1054.1	29.7	35.45	RAMP
(7070, 668)	1136	1135	495	1	1.4	71.3	84.3	4.2	3.9	0.3	0.93	1.18	0.09	601.2	11.8	50.74	RAMP
(639,7071)	620	620	0	0	0.4	19.4	22.9	2.2	2.1	0.2	0.93	1.18	0.09	310.0	6.1	50.86	RAMP
(7072, 642)	480	480	270	0	0.3	15.8	20.2	2.2	1.9	0.3	0.86	1.28	0.18	268.8	5.7	46.97	RAMP
(641,7073)	858	859	0	0	0.6	28.3	33.4	2.3	2.3	0.0	1.00	1.18	0.01	429.4	8.4	50.84	RAMP
(661,7074)	375	376	0	0	0.3	13.5	17.3	2.8	2.6	0.2	0.93	1.28	0.09	376.0	8.0	46.75	RAMP
(7075, 662)	2022	2024	639	3	2.6	117.1	153.3	4.3	3.9	0.4	0.91	1.31	0.11	1077.3	23.5	45.85	RAMP
(645,7076)	1123	1124	0	0	1.0	50.2	62.7	3.3	3.2	0.1	0.96	1.25	0.05	374.6	7.8	48.03	RAMP

(7077, 646)	361	360	0	1	0.4	12.2	21.2	3.2	3.1	0.1	0.97	1.74	0.04	402.0	11.7	34.40	RAMP
(7078, 657)	279	279	0	0	0.4	19.2	22.0	4.5	4.3	0.2	0.95	1.15	0.05	294.3	5.6	52.37	RAMP
(7080, 650)	269	270	0	0	0.5	16.5	28.6	6.0	5.9	0.1	0.98	1.73	0.03	286.0	8.2	34.70	RAMP
(7081, 655)	1300	1301	0	0	1.7	56.6	99.6	4.2	4.1	0.1	0.97	1.76	0.05	1415.2	41.5	34.06	RAMP
(649,7082)	1386	1386	0	2	1.5	77.7	89.7	3.9	3.7	0.2	0.95	1.15	0.06	693.4	13.3	51.98	RAMP
(7083, 652)	289	288	0	1	0.3	14.0	16.9	3.2	2.9	0.3	0.90	1.21	0.12	312.1	6.3	49.54	RAMP
(7084, 857)	391	391	0	0	0.3	15.3	18.6	2.6	2.3	0.3	0.90	1.22	0.13	429.2	8.7	49.22	RAMP
(857, 858)	391	391	0	0	0.4	23.1	26.0	4.0	3.9	0.1	0.97	1.13	0.04	391.0	7.3	53.22	RAMP
(859,7085)	303	303	0	0	0.5	27.8	31.5	6.2	6.0	0.2	0.96	1.13	0.04	303.0	5.7	52.98	RAMP
(7086, 860)	47	47	0	0	0.1	4.3	4.8	5.9	5.8	0.1	0.99	1.11	0.01	48.9	0.9	54.06	RAMP
(860, 861)	47	47	0	0	0.1	4.0	4.4	5.7	5.6	0.0	1.00	1.10	0.00	47.0	0.9	54.40	RAMP
(866,7087)	68	68	0	0	0.1	3.9	4.3	3.8	3.7	0.1	0.98	1.10	0.02	68.0	1.2	54.74	RAMP
(873,7088)	47	47	0	0	0.1	4.9	5.4	6.9	6.9	0.0	1.00	1.09	0.00	47.0	0.9	54.99	RAMP
(7089, 874)	211	211	0	0	0.2	12.3	14.3	3.8	3.6	0.2	0.94	1.16	0.07	225.0	4.3	51.73	RAMP
(874, 875)	211	211	0	0	0.2	11.7	13.0	3.7	3.6	0.1	0.98	1.11	0.02	211.0	3.9	53.92	RAMP
(876,7090)	31	31	0	0	0.1	2.8	3.1	6.0	6.0	0.0	0.99	1.12	0.01	31.0	0.6	53.45	RAMP
(7091, 877)	61	61	0	0	0.1	3.6	5.5	5.0	3.6	1.4	0.72	1.51	0.42	65.0	1.6	39.85	RAMP
(877, 878)	61	61	0	0	0.1	4.0	4.6	4.5	4.3	0.3	0.94	1.16	0.07	61.0	1.2	51.89	RAMP
(879, 880)	1999	1998	121	9	7.8	502.2	469.1	13.9	13.7	0.2	0.99	0.93	0.01	1013.7	15.8	64.24	FRWY
(880, 881)	1998	1997	189	12	11.0	704.3	662.2	19.9	19.5	0.3	0.98	0.94	0.02	998.5	15.6	63.81	FRWY
(881, 882)	1997	1997	202	12	9.1	575.5	546.5	16.4	16.0	0.4	0.97	0.95	0.03	998.9	15.8	63.18	FRWY
(882, 883)	1997	2001	205	7	9.0	568.3	542.8	16.3	15.8	0.5	0.97	0.96	0.03	1000.2	15.9	62.82	FRWY
(883, 884)	1954	1956	138	4	7.1	444.3	424.7	13.0	12.6	0.4	0.97	0.96	0.03	976.7	15.6	62.77	FRWY

(883,	873)	47	47	0	0	0.1	5.4	5.8	7.5	7.4	0.0	1.00	1.09	0.00	47.0	0.9	55.00	RAMP
(884,	885)	1956	1958	132	8	6.6	410.4	393.2	12.1	11.6	0.4	0.96	0.96	0.03	977.9	15.6	62.63	FRWY
(885,	886)	1958	1958	156	7	8.1	507.4	486.8	14.9	14.4	0.6	0.96	0.96	0.04	977.7	15.6	62.54	FRWY
(886,	887)	2169	2172	424	5	10.0	616.6	600.5	16.6	15.8	0.8	0.95	0.97	0.05	943.7	15.3	61.61	FRWY
(887,	888)	2172	2161	208	24	10.2	633.3	612.1	16.9	16.2	0.7	0.96	0.97	0.04	1083.6	17.5	62.09	FRWY
(875,	886)	211	211	0	0	0.3	17.0	18.8	5.3	5.3	0.1	0.99	1.10	0.01	211.0	3.9	54.33	RAMP
(888,	889)	2161	2166	228	4	11.1	686.7	663.5	18.4	17.6	0.8	0.96	0.97	0.04	1082.4	17.4	62.10	FRWY
(889,	890)	2166	2163	155	6	7.3	453.2	438.5	12.2	11.6	0.5	0.96	0.97	0.04	1081.9	17.4	62.01	FRWY
(890,	891)	2163	2167	227	11	11.5	714.0	691.2	19.2	18.3	0.9	0.95	0.97	0.04	1082.6	17.5	61.97	FRWY
(891,	892)	2167	2166	182	7	8.7	537.5	521.4	14.4	13.7	0.7	0.95	0.97	0.05	1084.0	17.5	61.86	FRWY
(892,	893)	2166	2162	424	20	20.3	1254.7	1217.6	33.8	32.2	1.6	0.95	0.97	0.05	1080.7	17.5	61.83	FRWY
(893,	894)	2162	2162	517	19	24.0	1481.9	1439.0	39.9	38.0	1.9	0.95	0.97	0.05	1082.2	17.5	61.79	FRWY
(894,	895)	2162	2156	291	20	14.7	906.6	882.4	24.5	23.3	1.2	0.95	0.97	0.05	1081.0	17.5	61.64	FRWY
(895,	896)	2156	2161	396	23	23.0	1412.4	1377.8	38.3	36.2	2.0	0.95	0.98	0.05	1080.4	17.6	61.50	FRWY
(896,	897)	2161	2171	458	20	24.7	1515.7	1481.9	41.1	38.8	2.3	0.95	0.98	0.05	1082.7	17.6	61.37	FRWY
(897,	898)	2171	2169	267	11	13.7	838.5	820.5	22.7	21.4	1.3	0.94	0.98	0.05	1085.1	17.7	61.32	FRWY
(898,	899)	2169	2168	198	8	10.1	616.0	604.3	16.7	15.8	1.0	0.94	0.98	0.06	1084.1	17.7	61.16	FRWY
(899,	900)	2100	2102	188	16	10.6	654.0	638.6	18.3	17.3	1.0	0.95	0.98	0.05	1048.3	17.1	61.45	FRWY
(899,	866)	68	68	0	0	0.1	8.0	8.7	7.7	7.6	0.1	0.99	1.09	0.01	68.0	1.2	55.18	RAMP
(900,	901)	2102	2100	251	10	12.6	771.3	753.8	21.5	20.3	1.2	0.95	0.98	0.05	1052.3	17.1	61.39	FRWY
(901,	902)	2491	2490	661	7	11.9	707.7	714.2	17.2	15.8	1.4	0.92	1.01	0.08	1083.0	18.2	59.45	FRWY
(902,	903)	2490	2477	219	16	11.6	710.7	696.4	16.8	15.9	0.9	0.94	0.98	0.06	1241.7	20.3	61.23	FRWY
(858,	901)	391	391	0	0	1.1	59.0	66.3	10.2	9.9	0.3	0.97	1.12	0.03	391.0	7.3	53.45	RAMP
(903,	904)	2477	2468	243	20	13.2	811.1	794.8	19.3	18.2	1.1	0.94	0.98	0.06	1237.1	20.2	61.23	FRWY

(904,	905)	2468	2462	179	12	10.2	625.1	612.2	14.9	14.1	0.8	0.94	0.98	0.06	1232.4	20.1	61.26	FRWY
(906,	907)	2499	2498	137	11	10.1	647.9	607.4	14.4	14.2	0.2	0.98	0.94	0.01	1266.0	19.8	64.00	FRWY
	907,	908)	2498	2496	369	13	15.2	963.7	913.3	22.0	21.4	0.6	0.97	0.95	0.02	1247.8	19.7	63.31	FRWY
	(908,	909)	2496	2502	254	10	11.4	709.5	684.8	16.5	15.8	0.7	0.96	0.97	0.04	1248.7	20.1	62.16	FRWY
	(909,	910)	2199	2197	168	10	8.8	551.1	528.2	14.4	13.9	0.5	0.96	0.96	0.04	1098.9	17.6	62.60	FRWY
	(909,	859)	303	303	0	1	0.8	43.7	48.7	9.6	9.5	0.2	0.98	1.11	0.02	302.9	5.6	53.91	RAMP
	(910,	911)	2197	2194	223	12	10.6	661.7	633.3	17.3	16.7	0.6	0.96	0.96	0.03	1096.7	17.5	62.69	FRWY
	(911,	912)	2194	2193	233	11	9.7	607.8	583.3	16.0	15.3	0.6	0.96	0.96	0.04	1096.8	17.5	62.53	FRWY
	(861,	912)	47	47	0	0	0.1	4.5	5.0	6.3	6.3	0.0	1.00	1.10	0.00	47.0	0.9	54.36	RAMP
	(912,	913)	2240	2242	254	11	10.2	636.4	611.0	16.4	15.7	0.6	0.96	0.96	0.04	974.0	15.6	62.49	FRWY
	(913,	914)	2242	2238	205	12	10.7	667.3	641.9	17.2	16.5	0.7	0.96	0.96	0.04	1120.6	18.0	62.37	FRWY
	(914,	915)	2238	2228	442	31	21.1	1311.0	1266.1	34.0	32.5	1.5	0.96	0.97	0.04	1117.6	18.0	62.13	FRWY
	(915,	916)	2228	2228	461	16	21.2	1318.7	1274.8	34.3	32.7	1.6	0.95	0.97	0.04	1115.1	18.0	62.07	FRWY
	(916,	917)	2228	2231	354	16	19.3	1198.5	1159.8	31.2	29.7	1.5	0.95	0.97	0.05	1115.3	18.0	62.00	FRWY
	(917,	918)	2231	2240	314	12	15.2	940.7	912.9	24.5	23.3	1.2	0.95	0.97	0.05	1118.7	18.1	61.83	FRWY
	(918,	919)	2240	2232	345	21	19.6	1212.0	1175.6	31.5	30.0	1.6	0.95	0.97	0.05	1119.1	18.1	61.86	FRWY
	(919,	920)	2232	2240	388	22	20.4	1257.5	1221.7	32.7	31.1	1.7	0.95	0.97	0.05	1119.3	18.1	61.76	FRWY
	(920,	921)	2240	2236	246	12	12.4	767.5	746.4	20.0	19.0	1.0	0.95	0.97	0.05	1117.5	18.1	61.69	FRWY
	(921,	922)	2236	2248	208	8	11.9	731.7	713.6	19.1	18.1	1.0	0.95	0.98	0.05	1118.6	18.2	61.52	FRWY
	(922,	923)	2248	2237	209	20	12.0	740.0	722.5	19.3	18.2	1.1	0.94	0.98	0.05	1123.4	18.3	61.46	FRWY
	(923,	924)	2237	2223	253	14	13.4	824.2	805.6	21.7	20.5	1.2	0.94	0.98	0.06	1113.5	18.1	61.39	FRWY
	(924,	925)	2223	2223	218	11	12.6	775.5	758.5	20.5	19.3	1.2	0.94	0.98	0.06	1110.3	18.1	61.35	FRWY
	(925,	926)	2192	2191	234	17	14.4	886.5	866.3	23.7	22.4	1.3	0.94	0.98	0.06	1096.2	17.9	61.40	FRWY

6	0.6	31.0	0.01	1.12	0.99	0.1	10.2	10.3	5.3	4.7	0.1	0	0	31	31	5, 876)	(925
9	17.9	1096.4	0.06	0.98	0.94	1.0	16.4	17.5	638.0	652.0	10.6	2	197	2194	2191	6, 927)	(926
1	1.1	60.2	0.02	1.10	0.99	0.1	3.7	3.7	3.7	3.4	0.1	1	0	60	61	8, 927)	(878
0	16.0	982.0	0.06	0.98	0.94	1.0	15.7	16.7	627.6	641.7	10.5	7	233	2262	2254	7, 928)	(92
. 5	18.5	1132.6	0.06	0.98	0.94	0.9	14.6	15.5	585.1	598.5	9.8	14	176	2267	2262	8, 929)	(92
.4	18.4	1132.2	0.05	0.98	0.94	1.1	18.1	19.1	721.8	739.4	12.0	8	188	2265	2267	9, 930)	(92:
. 4	18.4	1131.6	0.06	0.98	0.94	0.7	12.0	12.8	481.6	492.9	8.0	9	141	2261	2265	0, 931)	(93
. 3	7.3	351.1	0.15	1.24	0.88	0.4	3.2	3.7	42.9	34.6	0.7	1	0	702	702	4,7079)	(654
. 5	15.5	774.0	0.03	1.21	0.98	0.1	6.4	6.5	168.2	139.6	2.8	2	40	1547	1549	3, 687)	(68:
. 9	11.9	617.0	0.07	1.16	0.94	0.3	4.6	4.8	149.2	129.0	2.5	3	. 111	1851	1852	7, 369)	(40
.7	6.7	332.4	0.02	1.21	0.99	0.0	3.7	3.8	20.8	17.3	0.3	0	0	333	332	1, 416)	(41
.1	5.1	251.9	0.03	1.22	0.98	0.3	13.6	13.9	58.2	47.7	1.0	2	. 0	251	253	5, 117)	(11
. 8	17.8	590.9	0.12	1.81	0.93	0.3	3.8	4.1	80.6	44.5	1.3	2	22	1180	1182	2, 383)	(38:
. 0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0	0	0	0	2, 414)	(41:
. 0	18.0	826.9	0.11	1.31	0.92	0.2	2.7	3.0	123.5	94.4	2.1	0	. 103	2481	2480	1, 937)	. (28
. 3	15.3	596.0	0.20	1.54	0.87	1.2	7.8	8.9	175.7	114.2	2.9	4	92	1177	1180	3, 414)	
. 5	17.5	927.0	0.04	1.13	0.96	0.3	7.5	7.8	120.1	105.9	2.0	0	0	927	927	4, 553)	(31
. 1	19.1	927.1	0.05	1.24	0.96	0.4	9.8	10.2	158.4	128.0	2.6	3	0	925	927	3, 933)	(55
. 4	19.4	924.7	0.06	1.26	0.95	0.5	9.5	10.0	154.4	122.6	2.6	5	. 0	922	925	3, 934)	(93
. 1	15.1	735.3	0.03	1.23	0.97	0.3	9.2	9.5	232.1	188.6	3.9	1	107	1472	1470	5, 936)	(93
.3	15.3	736.4	0.05	1.25	0.96	0.2	4.9	5.1	124.0	99.6	2.1	7	138	1470	1476	4, 935)	(93
. 1	15.1	735.3	0.03	1.23	0.97	0.2	7.5	7.7	189.1	153.7	3.2	4	75	1469	1472	6, 309)	(93
. 2	14.2	589.3	0.10	1.44	0.93	0.3	4.2	4.5	88.5	61.4	1.5	0	0	1179	1177	4, 415)	(41
.7	24.7	1230.2	0.11	1.21	0.91	0.4	4.3	4.7	193.8	160.8	3.2	7	189	2457	2462	7, 555)	(93

(111, 676)	3067	3066	821	7	7.3	384.1	439.4	8.6	8.2	0.4	0.95	1.14	0.05	1022.6	19.5	52.45	FRWY
(416, 161)	584	585	44	0	1.2	61.7	74.9	7.7	7.6	0.1	0.98	1.21	0.02	292.4	5.9	49.41	FRWY
(162, 165)	5271	5269	319	15	14.6	918.1	875.0	9.8	9.5	0.3	0.97	0.95	0.03	1345.1	21.4	62.95	FRWY
(165, 166)	5269	5269	133	14	11.9	748.4	711.8	8.1	7.9	0.2	0.97	0.95	0.03	1317.2	20.9	63.09	FRWY
(386, 167)	3731	3728	525	5	8.5	529.6	512.9	8.3	7.9	0.4	0.95	0.97	0.04	810.5	13.1	61.96	FRWY
(167, 168)	3728	3732	165	5	8.5	529.8	508.3	8.2	7.9	0.3	0.96	0.96	0.04	932.5	14.9	62.54	FRWY
(168, 169)	3732	3725	184	14	9.1	568.0	543.7	8.7	8.4	0.3	0.96	0.96	0.03	932.5	14.9	62.68	FRWY
(404, 170)	185	185	0	0	0.2	10.1	11.1	3.6	3.6	0.0	0.99	1.11	0.01	185.0	3.4	54.16	RAMP
(7018, 171)	306	306	0	0	0.3	11.8	16.1	2.9	2.5	0.3	0.88	1.36	0.16	336.6	7.7	43.98	RAMP
(171, 172)	306	307	0	0	0.2	10.8	13.2	2.6	2.5	0.1	0.98	1.23	0.03	306.9	6.3	48.83	RAMP
(172, 387)	307	308	0	1	0.2	11.5	13.7	2.7	2.5	0.2	0.92	1.19	0.09	307.0	6.1	50.54	RAMP
(7020, 174)	311	312	0	0	0.3	14.0	18.4	3.3	3.0	0.3	0.91	1.31	0.11	337.4	7.4	45.69	RAMP
(174, 175)	312	312	0	0	0.3	14.3	17.4	3.3	3.3	0.0	0.99	1.22	0.02	312.0	6.3	49.34	RAMP
(175, 386)	312	312	0	0	0.3	16.9	19.6	3.8	3.5	0.2	0.94	1.16	0.07	312.0	6.0	51.85	RAMP
(385, 173)	634	633	0	1	0.6	30.8	34.9	3.3	3.2	0.1	0.97	1.13	0.04	633.0	12.0	52.92	RAMP
(173,7019)	633	632	0	1	0.6	28.9	34.2	3.2	3.2	0.1	0.98	1.19	0.03	632.1	12.5	50.56	RAMP
(170,7017)	185	185	0	0	0.2	9.8	11.5	3.7	3.7	0.0	0.99	1.17	0.01	185.0	3.6	51.38	RAMP
(151, 344)	1127	1128	10	2	2.5	129.9	149.3	7.9	7.5	0.4	0.95	1.15	0.06	1113.5	21.3	52.19	RAMP
(344,7026)	1128	1129	0	1	1.0	44.6	58.2	3.1	2.8	0.3	0.90	1.30	0.13	563.9	12.3	45.99	RAMP
(7007, 208)	133	133	0	0	0.1	4.7	7.5	3.0	2.5	0.5	0.84	1.59	0.26	148.6	3.9	37.81	RAMP
(209, 180)	133	133	0	0	0.1	7.0	8.4	3.8	3.4	0.3	0.91	1.19	0.10	133.0	2.6	50.48	RAMP
(315, 555)	3323	3320	249	15	12.7	808.5	764.8	13.8	13.5	0.3	0.98	0.95	0.02	664.4	10.5	63.43	FRWY
(313, 248)	4251	4254	1508	17	13.7	854.2	821.8	11.6	11.1	0.5	0.96	0.96	0.04	850.2	13.6	62.37	FRWY

(258,	259)	1443	1441	0	2	1.9	87.1	116.5	4.8	4.4	0.5	0.90	1.34	0.13	1097.6	24.5	44.87	FRWY
(259,	260)	2553	2553	453	5	6.6	347.6	397.8	9.4	8.9	0.4	0.96	1.14	0.05	850.8	16.2	52.43	FRWY
(260,	261)	2553	2551	10	7	6.2	329.2	373.1	8.8	8.5	0.3	0.97	1.13	0.04	850.8	16.1	52.94	FRWY
(261,	262)	1059	1059	0	10	4.8	249.4	290.5	16.5	15.5	1.0	0.94	1.16	0.07	1057.5	20.5	51.50	FRWY
(262,	263)	1059	1059	0	6	2.0	102.0	119.9	6.8	6.3	0.5	0.93	1.17	0.08	1058.6	20.7	51.09	FRWY
(263,	264)	1059	1059	0	1	2.2	112.6	132.8	7.5	7.0	0.5	0.93	1.18	0.08	1059.9	20.8	50.88	FRWY
(7008,	625)	849	851	0	2	0.9	30.5	55.3	3.5	1.8	1.7	0.51	1.81	0.88	942.0	28.4	33.12	RAMP
(403,	310)	1221	1218	86	3	1.9	77.5	112.0	5.5	4.2	1.3	0.76	1.44	0.35	939.1	22.6	41.55	RAMP
(307,	187)	4981	4979	119	4	6.3	389.5	375.9	4.5	4.3	0.2	0.96	0.96	0.04	996.0	16.0	62.18	FRWY
(264,	187)	1059	1056	0	4	1.2	58.3	69.3	3.9	3.6	0.3	0.92	1.19	0.10	1057.1	21.0	50.42	RAMP
(261,	189)	1492	1493	102 -	4	3.2	170.7	192.0	7.7	7.5	0.2	0.97	1.12	0.03	746.3	14.0	53.35	RAMP
(189,	265)	1493	1489	80	7	3.4	167.8	203.6	8.2	8.0	0.2	0.97	1.21	0.03	745.6	15.1	49.43	RAMP
(265,	266)	1489	1491	68	3	2.7	120.6	161.6	6.5	6.4	0.2	0.98	1.34	0.03	744.1	16.6	44.78	RAMP
(266,	267)	1491	1493	66	4	3.6	157.3	215.6	8.7	8.4	0.2	0.98	1.37	0.03	746.8	17.1	43.77	RAMP
(267,	268)	1493	1486	58	7	3.4	146.7	201.5	8.1	7.9	0.2	0.97	1.37	0.04	744.6	17.1	43.67	RAMP
(268,	269)	1486	1482	613	8	5.4	252.4	325.4	13.2	12.3	0.9	0.93	1.29	0.09	741.2	15.9	46.54	RAMP
(441,	397)	622	622	0	0	0.6	30.2	36.3	3.5	3.2	0.3	0.91	1.20	0.11	622.0	12.5	49.88	RAMP
(564,	399)	4645	4645	2043	10	10.2	616.1	612.6	7.9	7.5	0.4	0.95	0.99	0.05	929.4	15.4	60.34	FRWY
(399,	400)	3427	3428	96	2	4.5	274.5	269.1	4.7	4.4	0.3	0.94	0.98	0.06	856.5	14.0	61.21	FRWY
(269,	15)	1482	1483	241	2	2.4	99.2	145.8	5.9	4.4	1.5	0.74	1.47	0.38	801.9	19.7	40.81	RAMP
(10,	401)	1183	1182	71	5	3.0	154.7	180.0	9.1	8.6	0.5	0.94	1.16	0.07	1044.6	20.3	51.59	RAMP
(400,	10)	3428	3430	213	15	15.9	974.1	956.2	16.7	15.9	0.8	0.95	0.98	0.05	857.2	14.0	61.12	FRWY
(270,	7)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY
(613,	7)	1855	1855	44	1	1.4	75.2	85.4	2.8	2.7	0.1	0.96	1.14	0.05	927.1	17.6	52.81	RAMP

(7,	8)	1855	1854	256	3	1.4	76.9	86.8	2.8	2.7	0.1	0.97	1.13	0.04	618.3	11.6	53.16	FRWY	
(8,	9)	1854	1853	56	4	1.5	74.8	87.1	2.8	2.7	0.1	0.96	1.16	0.05	750.4	14.6	51.50	FRWY	
(9,	273)	561	560	0	1	0.5	26.3	31.1	3.3	3.3	0.1	0.98	1.18	0.03	560.3	11.0	50.76	FRWY	
(273,	274)	560	562	19	1	0.6	26.1	34.1	3.6	3.6	0.1	0.98	1.30	0.02	403.7	8.8	46.06	FRWY	
(9,	271)	1292	1296	24	0	1.4	69.1	85.4	4.0	3.8	0.1	0.97	1.24	0.04	646.5	13.3	48.51	RAMP	
(271,	272)	1296	1301	14	0	1.3	61.2	79.7	3.7	3.6	0.1	0.98	1.30	0.02	649.4	14.1	46.11	RAMP	
(415,	276)	1179	1180	0	0	1.2	51.2	73.6	3.7	3.5	0.3	0.93	1.44	0.10	821.0	19.7	41.70	FRWY	
(272,	276)	1301	1301	63	1	3.0	131.5	180.2	8.3	8.1	0.2	0.97	1.37	0.04	650.1	14.8	43.79	RAMP	
(276,	281)	2481	2480	872	4	3.0	136.6	179.7	4.3	4.0	0.4	0.91	1.32	0.11	826.4	18.1	45.62	FRWY	
(937,	277)	19	19	0	0	0.0	0.9	1.2	3.8	2.3	1.5	0.62	1.37	0.53	19.0	0.4	43.75	FRWY	
(264,	279)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY	
(274,	275)	562	561	31	1	0.8	36.6	50.0	5.3	5.2	0.1	0.97	1.37	0.04	280.6	6.4	43.89	FRWY	
(275,	934)	561	554	42	7	2.1	99.2	125.8	13.6	12.8	0.8	0.94	1.27	0.07	363.3	7.7	47.31	FRWY	
(490,	258)	1444	1443	0	2	1.4	58.5	84.6	3.5	2.9	0.6	0.83	1.45	0.24	721.9	17.4	41.52	FRWY	
(304,	259)	1115	1112	50	6	2.8	154.2	170.7	9.2	9.1	0.1	0.99	1.11	0.02	556.8	10.3	54.19	RAMP	
(278,	490)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY	
(27,	28)	1865	1865	60	2	2.7	166.0	159.9	5.1	4.9	0.2	0.96	0.96	0.04	621.6	10.0	62.29	FRWY	
(28,	29)	1865	1866	46	1	2.3	143.1	136.4	4.4	4.3	0.1	0.97	0.95	0.03	621.8	9.9	62.95	FRWY	
(29,	30)	1866	1866	39	1	2.6	161.9	154.0	5.0	4.8	0.1	0.97	0.95	0.03	622.0	9.9	63.07	FRWY	
(30,	31)	1866	1870	37	2	2.5	158.2	150.6	4.8	4.7	0.1	0.97	0.95	0.03	622.8	9.9	63.01	FRWY	
(23,	24)	3715	3711	1252	12	7.2	445.5	432.3	7.0	6.7	0.3	0.95	0.97	0.05	927.5	15.0	61.83	FRWY	
(31,	32)	1870	1867	33	4	2.0	128.8	122.9	3.9	3.8	0.1	0.97	0.95	0.03	622.8	9.9	62.87	FRWY	
(283,	632)	1867	1866	66	3	4.6	246.5	277.7	8.9	8.6	0.3	0.97	1.13	0.04	933.6	17.5	53.26	RAMP	

													0 07	1 10	0 00	022 7	17 5	53.39	RAMP
(284,	283)	1869	1867	113	4	5.0	266.7	299.7	9.6	9.3	0.3	0.97	1.12	0.03	933.7	17.5	55.59	KAMP
(285,	284)	1867	1869	83	1	3.5	188.9	212.4	6.8	6.6	0.2	0.97	1.12	0.03	933.8	17.5	53.36	RAMP
(286,	285)	1864	1867	113	6	6.0	323.5	362.9	11.7	11.4	0.3	0.97	1.12	0.03	932.5	17.4	53.49	RAMP
(27,	286)	1864	1864	106	3	4.7	253.1	283.9	9.1	8.9	0.3	0.97	1.12	0.03	931.9	17.4	53.48	RAMP
(596,	111)	3063	3067	241	3	7.0	364.6	419.8	8.2	7.8	0.4	0.95	1.15	0.06	1532.8	29.4	52.12	RAMP
(673,	675)	916	916	0	0	1.4	70.1	82.2	5.4	5.0	0.4	0.93	1.17	0.08	916.0	17.9	51.16	FRWY
(675,	287)	1878	1878	153	3	5.0	266.8	301.2	9.6	9.3	0.3	0.97	1.13	0.04	939.3	17.7	53.16	FRWY
(287,	289)	1878	1878	112	1	5.0	266.7	301.2	9.6	9.3	0.3	0.97	1.13	0.04	938.8	17.7	53.13	FRWY
(289,	294)	1878	1877	147	1	6.8	358.1	405.7	13.0	12.5	0.5	0.96	1.13	0.04	938.7	17.7	52.96	FRWY
(294,	296)	1877	1877	108	2	6.1	323.3	366.7	11.7	11.3	0.4	0.96	1.13	0.04	938.9	17.8	52.89	FRWY
(296,	297)	1877	1883	102	9	9.2	485.0	552.3	17.6	16.9	0.7	0.96	1.14	0.05	940.1	17.8	52.69	FRWY
(297,	601)	1883	1887	145	6	5.2	270.4	309.6	9.8	9.4	0.5	0.95	1.14	0.05	943.1	18.0	52.41	RAMP
(282,	346)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY
(297,	352)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY

NETWORK STATISTICS

VEHICLE-MILES = 245246.1, VEHICLE-MINUTES = 249055.7, MOVING/TOTAL TRIP TIME = 0.937,

AVERAGE CONTENT = 4150.9, CURRENT CONTENT = 4171.0, SPEED(MPH) = 59.08,

TOTAL DELAY (VEH-MIN) = 15632.86, TRAVEL TIME (MIN)/VEH-MILE = 1.02, DELAY TIME (MIN)/ VEH-MILE = 0.06

LINK STATISTICS BY LANE

(SOME STATISTICS APPLY TO HOV LANES ONLY)

SEC./VEHICLE SEC./PERSON

VEHICLES CURR VOLUME VOLUME OF TOTAL MOVE DELAY TOTAL MOVE DELAY SPEED
LINK LANE TYPE IN OUT CONT VEH/HR VIOLATORS TIME TIME TIME TIME TIME TIME MILES/HR

(153,	96)	1	sov			1	963.2		14.7	13.5	1.2	11.4	10.4	0.9	60.13
•	153,	96)	2	sov			7	2026.6		15.3	14.1	1.1	11.8	11.0	0.9	58.09
	153,	96)	3	sov			5	1548.2		14.1	13.6	0.6	10.9	10.5	0.4	62.66
-	153,	96)	4	sov			3	1095.5		13.8	13.3	0.5	10.6	10.2	0.4	64.18
	-		5				_									
-	153,	96)	-	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(153,	96)	9	sov			5	1585.6		15.2	14.3	0.9	11.7	11.0	0.7	58.48
(563,	98)	1	sov			12	2148.8		19.0	16.0	3.0	14.6	12.4	2.3	53.94
(563,	98)	2	sov			6	1253.2		18.0	16.1	1.9	13.9	12.4	1.5	56.95
(563,	98)	3	SOV			2	997.4		16.3	15.7	0.7	12.6	12.1	0.5	62.74
(563,	98)	4	sov			4	850.0		15.8	15.3	0.5	12.2	11.8	0.4	64.73
(563,	98)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	•											• • • •	•••	•••	•••	0.00
(154.	101)	1	sov			8	662.3		29.9	29.2	0.6	23.2	22.7	0.5	64.82
	-	101)	2	sov			10	1125.0		30.7	30.0	0.7	23.9	23.3	0.6	62.97
•		101)	3	sov			12	1122.4		30.0	29.4	0.7	23.3	22.8	0.5	64.47
	-	101)	4	SOV			7	1130.2		31.1	30.1	1.0	23.3	23.2		
-	-	-	_												0.7	62.31
(154,	101)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,							_									
-	_	104)	1	sov			7	1851.2		11.2	8.4	2.8	8.7	6.5	2.1	48.70
-	-	104)	2	sov			7	1467.4		9.1	8.4	0.8	7.1	6.5	0.6	59.81
-		104)	3	sov			3	1116.8		8.5	8.2	0.3	6.6	6.4	0.2	64.05
(103,	104)	4	sov			2	799.8		8.7	8.4	0.3	6.7	6.5	0.2	62.81
(103,	104)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(103,	104)	9	sov			0	127.1		13.2	11.3	1.9	10.2	8.8	1.5	41.25
(158,	105)	1	sov			9	2809.9		21.0	16.1	4.9	16.2	12.4	3.8	48.81
	_	105)	2	sov			7	1639.4		17.1	15.7	1.3	13.2	12.2	1.0	59.93
-	-	105)	3	sov			3	1094.5		15.9	15.5	0.5	12.3	11.9	0.3	64.27
		105)	4	SOV			2	623.1		15.9	15.6	0.3	12.3	12.0	0.3	64.19
	-	105)	5	HOV	0	0	ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	150,	105)	3	HOV	U	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	100						•	763.8		22.2	22.6		10 0	17.4	۰.	64 10
	128,	-	1	sov			2			23.3	22.6	0.7	18.0	17.4	0.5	64.19
-	128,	-	2	sov			10	1354.1		25.0	24.0	1.0	19.4	18.7	0.8	59.72
	128,		3	sov			9	1331.7		23.7	23.0	0.7	18.2	17.7	0.5	63.23
•	128,		4	sov			6	1093.7		23.1	22.4	0.8	17.8	17.2	0.6	64.70
(128,	97)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(156,	102)	1	sov			7	2210.8		15.6	13.9	1.8	12.1	10.7	1.4	56.65
		102)	2	sov			2	1287.3		14.7	13.6	1.1	11.4	10.5	0.9	60.30
i	156.	102)	3	sov			2	993.8		13.8	13.4	0.4	10.7	10.3	0.3	64.18
		102)	4	sov			3	739.8		14.1	13.8	0.3	10.9	10.6	0.3	62.79
	-	102)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
		102)		SOV			Ö	288.3		15.7	14.6	1.1	12.1	11.3	0.9	56.56
,	130,	102)	,	204	_		U	200.3		13.7	14.0		12.1	11.3	0.3	50.50
,	100	7001	1	5011			0	1378.1		2.2	2.2	0.1	1.7	1.7	0.1	51.82
	-	7001)	2	sov			0			2.2	2.2		1.6	1.6	0.0	55.59
(109,	7001)	2	sov			0	559.0		2.1	2.1	0.0	1.6	1.0	0.0	55.59

(102, 103)	1	sov			15	1098.2		25.5	24.1	1.4	19.7	18.7	1.1	60.83	
(102, 103)	2	sov			15	1255.7		24.7	23.8	0.9	19.1	18.4	0.7	62.66	
(102, 103)	3	sov			7	1061.3		24.0	23.4	0.6	18.6	18.1	0.5	64.47	
(102, 103)	4	sov			4	763.9		24.7	24.0	0.7	19.0	18.4	0.5	62.75	
(102, 103)	5	HOV	0	0	0	0.0	0.0	0.0							
(102, 103)	3	HOV	U	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(160,7002)	1	sov			2	614.1		2.7	2.7	0.0	2.1	2.1	0.0	54.37	
(160,7002)	2	sov			1	726.7		2.7	2.7	0.1	2.1	2.1	0.0	53.58	
													•••	33.30	
(7003, 106)	1	sov			0	574.9		8.8	6.6	2.2	6.8	5.1	1.7	34.25	
(7003, 106)	2	sov			0	665.4		8.8	6.4	2.4	6.7	4.9	1.8	34.27	
(106, 103)	1	sov			0	962.8		11.4	7.9	3.6	8.8	6.1	2.8	26.61	
(106, 103)	2	sov			Ö	215.1		18.1	8.7					36.61	
(200, 200,	-	501			U	213.1		10.1	0.7	9.4	14.0	6.7	7.2	23.15	
(7004, 107)	1	sov			0	482.0		4.2	3.0	1.2	3.2	2.3	1.0	40.94	
(7004, 107)	2	sov			0	409.2		3.7	3.1	0.6	2.9	2.4	0.5	46.36	
(107, 104)	1	sov			0	502.2		8.7	6.3	2.4	6.7	4.9	1.8	38.85	
(107, 104)	2	sov			0	326.6		8.6	6.2	2.4	6.6	4.8	1.8	39.40	
(110, 109)	1	sov			0	1411.4		2.4	2.3	0.1	1.9	1.8	0.1	52.22	
(110, 109)	2	sov			Ö	524.8		2.3	2.2						
(110, 103)	-	504			U	324.0		2.3	4.4	0.1	1.8	1.7	0.0	55.70	
(96, 110)	1	sov			1	1461.1		1.7	1.7	0.1	1.3	1.3	0.0	52.36	
(96, 110)	2	SOV			0	475.3		1.6	1.6	0.0	1.3	1.2	0.0	55.75	
(127, 97)	1	sov			1	628.5		12.2	7.9	4.4	9.4	6.1	3.4	33.13	
(127, 97)	2	sov			0	74.8		25.4	8.2	17.2	19.6	6.4	13.3	15.89	
(96, 128)	1	sov			6	1288.0		16.8	15.9	0.9	12.0	12.3	0.7	60.85	
(96, 128)	2	SOV			9	1557.5		17.2	16.3	0.9	13.0 13.4	12.7		59.36	
(96, 128)	3	SOV			6	1394.0		16.1					0.7		
(96, 128)	_								15.6	0.5	12.4	12.0	0.4	63.39	
	4	sov			7	1054.3		15.8	15.3	0.5	12.2	11.8	0.4	64.71	
(96, 128)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(128, 129)	1	sov			3	720.2		11.8	11.3	0.5	9.1	8.7	0.4	52.19	
(128, 129)	2	sov			0	33.2		13.0	10.5	2.5	10.0	8.1	1.9	47.50	
, .,													_,,		
(132, 130)	1	sov			7	2028.0		10.5	8.3	2.3	8.1	6.4	1.8	50.80	
(132, 130)	2	sov			6	1934.1		9.0	8.4	0.6	7.0	6.5	0.5	59.34	
(132, 130)	3	sov			6	1611.7		8.6	8.2	0.4	6.6	6.3	0.3	62.56	
(132, 130)	4	sov			2	1281.4		8.5	8.1	0.4	6.5	6.2	0.3	63.21	
(132, 130)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(132, 130)	9	sov			2	99.1		13.8	10.8	3.0	10.7	8.4	2.3	38.73	
														•	

(131, 130)	1	sov			0	263.0		3.1	2.9	0.2	2.4	2.2	0.1	50.66	
(151, 132)	1	sov			10	1438.0		16.9	15.8	1.1	13.1	12.2	0.9	60.22	
(151, 132)	2	SOV			9	1889.6		16.7	15.9	0.8	12.9	12.3	0.6	60.82	
					_										
(151, 132)	3	sov			3	1556.3		16.2	15.6	0.6	12.5	12.0	0.5	62.72	
(151, 132)	4	sov			3	1228.7		16.1	15.4	0.7	12.4	11.8	0.5	63.31	
(151, 132)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(105, 137)	1	sov			6	1102.5		14.2	13.2	1.0	11.1	10.3	0.8	58.84	
(105, 137)	2	sov			8	1663.1		13.5	13.0	0.6	10.5	10.0	0.4	61.86	
(105, 137)	3	sov			5	1215.6		13.0	12.7	0.3	10.0	9.8	0.2	64.54	
(105, 137)	4	sov			4	677.7									
								13.0	12.7	0.3	10.0	9.8	0.2	64.36	
(105, 137)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(98, 138)	1	sov			2	1635.0		6.9	6.4	0.5	5.3	4.9	0.4	51.05	
(98, 138)	2	sov			0	0.1		7.1	-2.5	9.6	5.5	-1.9	7.4	49.15	
,									_,,				, . 	45145	
(138, 139)	1	sov			2	1539.5		2.6	2.5	0.1	2.0	1.9	0.1	52.55	
(138, 139)	2	sov			0	96.4		2.6	2.3	0.4	2.0	1.7	0.3	52.15	
(,	_				•					•••			0.5	32.13	
(141, 140)	1	sov			0	257.8		11.5	5.8	5.7	8.9	4.5	4.4	25.05	
(141, 140)	2	sov			0	1209.9		8.4	5.2	3.2	6.5	4.0	2.5	34.43	
·,,	_				•						•••			51115	
(140, 101)	1	sov			0	1422.1		11.3	9.3	2.1	8.7	7.2	1.6	44.95	
(140, 101)	2	sov			0	57.7		12.6	12.6	0.0	9.7	9.7	0.0	40.34	
(105, 143)	1	sov			7	1416.9		6.5	4.3	2.3	5.1	3.3	1.8	32.36	
(7005, 127)	1	sov			0	502.8		3.4	1.4	2.0	2.7	1.1	1.6	20.46	
(7005, 127)	2	sov			0	327.8		2.6	1.4	1.2	2.0	1.1	1.0	26.87	
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_														
(129,7006)	1	sov			0	6.0		5.2	3.6	1.5	4.0	2.8	1.2	31.12	
(129,7006)	2	sov			0	746.9		4.3	3.5	0.9	3.4	2.7	0.7	37.04	
	_				_										
(147, 148)	1	sov			2	546.3		6.0	5.6	0.3	4.6	4.4	0.3	47.19	
,,	_				-										
(148, 137)	1	sov			0	546.0		4.1	3.8	0.3	3.2	3.0	0.2	50.81	
(140, 137)	-	507			•	3=0.0			5.5			2.0		55.52	
(163, 149)	1	sov			17	1782.0		34.5	32.8	1.7	26.8	25.5	1.3	62.19	
(163, 149)	2	sov			21	1852.0		34.5	33.1	1.4	26.8	25.7	1.1	62.14	
(163, 149)	3	sov			17	1718.1		34.0	32.9	1.1	26.4	25.5	0.9	63.14	
						1754.5			33.2	1.2	26.4	25.5	0.9	62.44	
(163, 149)	4	sov			14			34.4							
(163, 149)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(311, 150)	1	sov			13	2826.3		15.8	12.6	3.2	12.2	9.7	2.5	51.39	
					7	1841.4		13.9	12.7	1.2	10.7	9.8	0.9	58.60	
(311, 150)	2	sov			-										
(311, 150)	3	sov			5	1453.7		13.0	12.5	0.6	10.0	9.6	0.4	62.42	

(311,		4	sov			5	1124.2		12.8	12.3	0.5	9.9	9.5	0.4	63.36	
(311,	150)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(152,	153)	1	sov			2	993.0		2.7	2.3	0.4	2.1	1.8	0.3	49.86	
(152,		2	sov			2	2281.6		2.5	2.1	0.5	2.0	1.6	0.4	53.72	
(152,		3	sov			ō	1382.6		2.2	2.0	0.2	1.7	1.6	0.2	60.62	
(152,		4	HOV	0	1017	1	738.3	738.3	2.1	2.0	0.1	1.6	1.6	0.1	63.89	
(152,	-	9	sov			2	1821.6		2.4	2.1	0.3	1.8	1.6			
(152/	133,	,	501				1021.0		4.4	2.1	0.3	1.8	1.0	0.2	57.34	
(130,	152)	1	sov			8	1962.4		15.9	13.7	2.2	12.3	10.6	1.7	55.91	
(130,	152)	2	sov			7	2394.0		15.8	13.9	2.0	12.2	10.7	1.5	56.02	
(130,	152)	3	sov			4	1644.8		14.3	13.6	0.7	11.0	10.5	0.6	61.95	
(130,	152)	4	sov			3	1202.9		14.0	13.4	0.6	10.8	10.3	0.5	63.28	
(130,	152)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(130,	152)	9	sov			0	17.7		18.7	10.5	8.2	14.4	8.1	6.3	47.37	
(100,	-	1	sov			4	614.7		17.3	17.2	0.1	13.5	13.4	0.1	65.33	
(100,		2	sov			5	1221.0		17.7	17.4	0.3	13.7	13.5	0.2	63.79	
(100,		3	sov			5	1018.2		17.4	17.2	0.2	13.5	13.4	0.2	64.88	
(100,	-	4	sov			6	1231.1		17.8	17.5	0.3	13.7	13.5	0.2	63.63	
(100,	154)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(101,	155)	1	sov			6	1751.6		16.7	13.6	3.1	12.9	10.5	2.4	53.01	
(101,		2	sov			6	1352.2		14.6	13.7	1.0	11.3	10.6	0.7	60.59	
(101,		3	sov			7	1255.9		13.9	13.4	0.5	10.7	10.4	0.4	63.86	
(101,	-	4	sov			5	1078.4		14.4	13.8	0.5	11.0	10.6	0.4	61.71	
(101,	-	5	HOV	0	0	ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(101,	-	9	sov			ō	79.5		23.8	18.1	5.7	18.4	14.0	4.4	37.26	
(,			20.			•					• • • • • • • • • • • • • • • • • • • •				37.120	
(155,	156)	1	sov			0	1977.7		2.3	2.1	0.2	1.8	1.6	0.1	59.91	
(155,	156)	2	sov			0	1517.3		2.2	2.1	0.1	1.7	1.6	0.1	62.10	
(155,	156)	3	sov			1	1199.4		2.1	2.1	0.1	1.7	1.6	0.1	63.61	
(155,	156)	4	sov			0	822.4		2.2	2.1	0.1	1.7	1.6	0.1	62.06	
(155,	156)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(104,	157)	1	sov			32	2264.4		19.2	15.9	3.3	14.8	12.3	2.5	53.35	
(104,	157)	2	sov			9	1791.8		17.0	15.8	1.3	13.2	12.2	1.0	60.11	
(104,	157)	3	sov			7	1254.8		16.1	15.5	0.6	12.4	12.0	0.5	63.67	
(104,	157)	4	sov			6	802.8		16.2	15.7	0.5	12.5	12.1	0.4	62.98	
(104,	157)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(104,	157)	9	sov			1	58.6		23.3	19.5	3.8	18.0	15.1	2.9	43.92	
(157,	150\	1	sov			2	2966.1		2.6	2.1	0.5	2.0	1.6	0.4	52.44	
(157,	-	2	SOV			1	1605.8		2.3	2.1	0.3	1.7	1.6	0.1	60.52	
(157,		3	SOV			0	996.1		2.3	2.1	0.2	1.6	1.6	0.1	64.08	
(157,		4	SOV			0	594.2		2.1	2.1	0.0	1.6	1.6	0.0	63.89	
		5	HOV			0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(157,	T28)	5	HOV	U	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	

	(137, 19	59)	1	sov			6	2080.5		11.5	9.9	1.7	8.9	7.6	1.3	55.19
	(137, 1			sov			2	1448.0		10.4	9.8	0.5	8.0	7.6	0.4	61.45
	(137, 1	-		sov			3	1030.8		9.8	9.6	0.2	7.6	7.4	0.2	64.69
	(137, 1		_	sov			0	587.9		9.8	9.6	0.2	7.5	7.4	0.2	64.91
	(137, 1			HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	(137, 1			sov			0	53.2		14.0	11.4	2.7	10.8	8.8	2.1	
	(10// 1	,	•	501			·	33.2		14.0	11.4	4.1	10.0	0.0	2.1	45.33
	(150, 1	51)	1	sov			6	2644.1		8.8	7.7	1.1	6.8	6.0	0.8	55.70
	(150, 1			sov			3	1903.7		8.1	7.6	0.4	6.3	5.9		60.63
	(150, 1	-		sov			1	1517.4		7.8	7.5	0.3	6.0	5.8	0.3 0.2	62.80
	(150, 1	-		sov			2	1177.6		7.7	7.4	0.3	5.9	5.7		
	(150, 1	-	_	HOV	0	0	ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	63.30
	(-,	-		•	·	·	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	(325,	95)	1	sov			11	1417.7		37.3	35.0	2.2	28.9	27.1	1.7	59.98
	(325,	95)	2	sov			16	1349.2		36.8	35.3	1.5	28.4	27.3	1.2	60.71
	(325,	95)	3	sov			13	1344.0		35.0	34.0	0.9	27.0	26.3	0.7	63.91
	(325,	95)	4	sov			5	1140.0		34.0	33.0	1.1	26.2	25.4	0.8	65.67
		95)		HOV	21	21	0	21.0	21.0	34.7	34.4	0.3	26.8	26.5	0.2	64.40
	,,	,					•			54.7	54.4	0.5	20.0	20.5	0.2	04.40
	(102, 1	60)	1	sov			1	601.5		5.3	5.2	0.1	4.1	4.1	0.0	54.08
	(102, 1	60)	2	sov			1	739.1		5.4	5.2	0.2	4.2	4.0	0.1	53.20
															***	33120
	(98,	99)	1	sov			7	781.4		24.9	23.7	1.2	19.2	18.3	0.9	61.44
	(98,	99)	2	sov			8	1033.6		25.4	24.3	1.1	19.7	18.8	0.9	60.31
	(98,	99)	3	sov			7	969.4		24.0	23.5	0.5	18.5	18.1	0.4	63.64
	(98,	99)	4	sov			5	826.1		23.6	22.9	0.6	18.1	17.6	0.5	64.95
	(98,	99)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
															• • • •	
	(99, 10	54)	1	sov			4	798.9		16.2	15.7	0.5	12.5	12.1	0.4	62.55
	(99, 1	64)	2	sov			4	992.7		16.6	16.0	0.5	12.9	12.5	0.4	61.00
	(99, 1	54)	3	sov			5	982.3		15.9	15.5	0.3	12.2	12.0	0.3	63.72
	(99, 1	64)	4	sov			5	832.6		15.6	15.2	0.4	12.0	11.7	0.3	64.93
	(99, 1		5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
															• • • •	
	(295, 2	00)	1	sov			2	720.0		8.3	8.2	0.1	6.4	6.3	0.1	48.22
	(295, 2	00)	2	sov			2	677.6		8.3	8.3	0.1	6.4	6.4	0.1	47.86
	(295, 2	00)	9	sov			0	166.4		8.7	8.6	0.1	6.8	6.7	0.1	45.61
													• • • •	•••		
	(203, 2	01)	1	sov			0	876.3		1.8	1.7	0.0	1.4	1.3	0.0	63.58
	(203, 2	01)	2	sov			1	861.9		1.8	1.7	0.0	1.4	1.3	0.0	63.50
		-						-					_			
	(200, 1	99)	1	sov			1	585.0		6.7	6.6	0.1	5.1	5.1	0.1	44.66
	(200, 1	99)	2	sov			1	661.6		6.7	6.6	0.1	5.2	5.1	0.0	44.52
•		-														-
•	(179, 1°	78)	1	sov			2	1466.0		6.5	6.1	0.4	5.1	4.7	0.3	52.11
	(179, 1	78)	2	sov			4	1412.3		6.5	6.1	0.4	5.1	4.7	0.3	52.05

(180, 179)	1	sov	 	7	1465.9	 13.2	12.4	0.8	10.2	9.6	0.6	51.80	
(180, 179)	2	sov	 	8	1408.0	 13.1	12.4	0.7	10.1	9.6	0.5	51.95	
(180, 179)	9	sov	 	0	10.5	 14.4	12.4	2.0	11.3	9.7	1.6	47.20	
(===, ===,	-												
(181, 180)	1	sov	 	4	1329.7	 6.4	6.2	0.3	5.0	4.8	0.2	52.85	
(181, 180)	2	sov	 		1423.9	 6.5	6.2	0.3	5.0	4.8	0.2	52.31	
(101/ 100/	-	201		•		•••					• • •		
(199, 198)	1	sov	 	2	561.0	 8.4	8.2	0.2	6.5	6.3	0.2	44.74	
(199, 198)		sov	 	1	686.5	 8.4	8.2	0.2	6.5	6.4	0.1	44.39	
(133, 130)	_	504	 	_	000.5	 0.4	0.2	0.2	0.5	0.4	0.1	44.39	
(198, 197)	1	sov	 	4	847.4	 15.9	15.0	0.8	12.3	11.6	0.6	52.12	
(198, 197)		sov	 	3	750.0	 15.8	15.1	0.7	12.2	11.7	0.6	52.12	
(198, 197)		sov	 	0	12.3	 18.6	18.0						
(190, 197)	9	SOV	 	U	14.3	 10.0	18.0	0.6	14.4	13.9	0.5	44.44	
(197, 196)	1	sov	 	4	1015.4	 19.3	18.6	0.7	14.9	14.4	0.5	53.11	
(197, 196)		sov	 	2	825.3	 19.0	18.6						
								0.4	14.7	14.3	0.3	53.91	
(197, 196)	9	sov	 	1	9.0	 23.6	20.5	3.1	18.3	15.9	2.4	43.35	
(196, 195)	1	sov	 	9	961.3	 33.1	32.1	1.0	25.5	24.8	0.7	53.19	
			 	_	885.7	 32.7	31.8		25.3	24.6		53.19	
(196, 195)	2	sov	 	5	883.7	 34.7	31.8	0.9	45.3	24.0	0.7	53.85	
/ 102 101\	1	sov	 	8	1274.3	 22.0	21.2	0.8	17.0	16.4	0.6	52.93	
(182, 181)					1478.0					16.4			
(182, 181)	4	sov	 	6	14/8.0	 22.2	21.2	1.0	17.1	10.4	0.8	52.53	
/ 103 103)		COTT	 	11	2141.6	 20.0	18.6	1.3	15.4	14.4	1.0	51.26	
(183, 182)		sov			1555.0	 19.4	18.5	0.9	15.0	14.3	0.7	52.77	
(183, 182)	2	SOV	 	12	1555.0	 19.4	18.5	0.9	15.0	14.3	0.7	52.77	
(184, 183)	1	sov	 	12	1929.2	 24.7	23.8	0.8	19.1	18.4	0.6	53.05	
				13	1802.6	 24.4	23.7	0.7	18.9	18.3	0.6	53.54	
(184, 183)	2	sov	 	13	1002.0	 44.4	23.7	0.7	10.9	10.3	0.0	33.34	
(005 004)					247 5	2.0	2.0	0 1	2 2	2 1	0 1	44 12	
(205, 204)	1	sov	 	. 1	247.5	 2.8	2.8	0.1	2.2	2.1	0.1	44.13	
	_			_	246.2	4 7	4 7	0 1	2 6	2 6	0 1	44 45	
(204, 197)	1	sov	 	2	246.2	 4.7	4.7	0.1	3.6	3.6	0.1	44.45	
	_			_	464.6		6 3		E ^	4 0	0.0	53.73	
(182, 193)		sov	 	0	464.6	 7.5	6.3	1.1	5.8	4.9	0.9		
(182, 193)	2	sov	 	0	479.1	 6.8	6.2	0.6	5.2	4.8	0.5	59.05	
	_			_	444.6		2.0		2 2	2.0	0.4	60 16	
(193, 194)		sov	 	0	164.9	 4.3	3.8	0.6	3.3	2.9	0.4	60.16	
(193, 194)		sov	 	0	780.0	 4.3	4.0	0.2	3.3	3.1	0.2	60.92	
(193, 194)	3	sov	 	0	0.1	 4.7	-1.1	5.8	3.6	-0.8	4.5	55.27	
												46.50	
(208, 209)	1	sov	 	0	133.0	 6.6	6.2	0.4	5.1	4.8	0.3	46.79	
(207, 198)	1	sov	 	0	361.0	 5.3	5.1	0.2	4.1	3.9	0.2	42.81	
(206, 207)	1	sov	 	0	361.0	 2.8	2.6	0.2	2.2	2.0	0.2	36.73	

(200, 210)	1	sov			1	316.4		4.2	4.1	0.0	3.2	3.2	0.0	44.71
(210, 211)	1	sov			0	317.0		3.6	3.6	0.0	2.8	2.7	0.0	41.30
(178, 202)	1	sov			1	1466.9		2.0	1.7	0.3	1.5	1.3	0.2	53.08
(178, 202)	2	sov			1			2.0	1.7	0.3	1.5	1.3	0.2	52.91
(1/0, 202)	_	50V			-	1410.0		2.0	1.,	0.3	1.5	1.3	0.2	34.91
(139,7009)	1	sov			1	1466.4		2.2	2.1	0.1	1.7	1.6	0.1	52.29
(139,7009)	2	sov			0	170.0		2.1	2.0	0.1	1.6	1.5	0.1	54.90
	_				•				2.0	0.1	1.0	5	0.1	34.30
(7010, 141)	1	sov			1	791.9		6.6	5.3	1.2	5.1	4.1	1.0	44.97
(7010, 141)	2	sov			3	753.8		6.4	5.3	1.2	5.0	4.1	0.9	46.06
(211,7011)	1	sov			0	317.0		4.8	4.6	0.2	3.7	3.6	0.2	33.84
(7012, 206)	1	sov			0	421.5		2.3	2.1	0.2	1.8	1.7	0.1	33.39
(7014, 205)	1	sov			0	267.4		4.0	. 3.7	0.3	3.1	2.9	0.2	42.13
(194,7015)	1	sov			1	179.7		2.0	1.8	0.2	1.5	1.4	0.2	58.06
(194,7015)	2	sov			1	760.4		2.0	1.8	0.2	1.6	1.4	0.1	57.70
(194,7015)	3	sov			0	4.0		2.1	1.9	0.3	1.7	1.4	0.2	54.02
(201, 295)	1	sov			1	796.3		8.8	8.8	0.0	6.8	6.8	0.0	57.57
(201, 295)	2	sov			2	767.1		8.8	8.8	0.0	6.8	6.8	0.0	57.47
(202, 255)	-	501			_			0.0		0.0			0.0	
(149, 298)	1	SOV			8	2320.9		18.8	15.8	3.1	14.6	12.2	2.4	54.27
· (149, 298)	2	sov			7	1652.6		16.8	15.7	1.0	13.0	12.2	0.8	60.96
(149, 298)	3	sov			9	1593.2		16.3	15.6	0.6	12.6	12.1	0.5	62.80
(149, 298)	4	sov			8	1487.0		16.6	15.9	0.8	12.8	12.2	0.6	61.51
(149, 298)	5	HOV	0	0	Ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(533, 299)	1	sov			8	1948.4		12.8	5.8	7.0	9.9	4.5	5.4	29.55
(533, 299)	2	SOV			6	1956.4		6.9	5.8	1.1	5.4	4.5	0.9	54.54
(533, 299)	3	SOV			3	1730.5		6.1	5.8	0.3	4.7	4.5	0.3	61.96
	_													
(533, 299)	4	sov			1	1476.6		6.2	5.9	0.3	4.8	4.5	0.3	61.10
(533, 299)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(533, 299)	9	sov			1	420.0		15.0	10.9	4.1	11.6	8.4	3.2	25.29
(299, 300)	1	sov			19	2247.8		22.2	15.9	6.4	17.2	12.3	4.9	46.02
(299, 300)	2	sov			14	2316.3		18.9	15.9	3.0	14.6	12.3	2.3	54.21
(299, 300)	3	sov			11	2012.2		16.8	15.6	1.2	13.0	12.1	0.9	60.79
(299, 300)	4	sov			3	1572.3		16.8	15.8	1.0	12.9	12.1	0.8	60.91
(299, 300)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(299, 300)	9	sov			4	82.9		25.9	22.3	3.6	20.0	17.2	2.8	39.44

(300,	301)	1	sov			12	2185.9		29.9	27.2	2.6	23.1	21.1	2.0	59.26
(300,	301)	2	sov			13	2217.7		29.9	27.5	2.3	23.1	21.3	1.8	59.27
(300,	301)	3	sov			16	2124.5		28.7	27.1	1.6	22.2	21.0	1.3	61.61
	300,		4	sov			11	1707.2		28.9	27.2	1.7	22.3	20.9	1.3	61.13
-	300,	-	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
١,	500,	301,	•	1101	·	•	•	0.0	•••	•••	0.0	•••	•••	•••		
,	301,	3021	1	sov			6	1208.2		14.2	13.1	1.1	11.0	10.2	0.9	59.82
•	301,		2	sov			9	1953.7								
	301,		3							14.1	13.2	0.9	10.9	10.2	0.7	60.48
	-	-	_	sov			14	2123.8		14.3	13.0	1.3	11.0	10.1	1.0	59.56
	301,	-	4	HOV	0	1558	5	931.1	931.1	13.8	13.0	0.8	10.6	10.0	0.6	61.62
(301,	302)	9	sov			6	2033.2		14.3	13.2	1.2	11.1	10.2	0.9	59.40
,	302,	3037	1	sov			7	2349.7		18.0	15.7	2.3	13.9	12.2	1 0	E6 00
	302,	-	2	sov			6	1667.6		17.0	15.7	1.0		12.2	1.8	56.90
-	302,	-	3	sov			5	1555.4					13.1		0.8	60.24
	-	-					_			16.7	15.8	0.9	12.9	12.2	0.7	61.38
	302,	-	4	sov			4	1380.8		16.6	15.6	0.9	12.7	12.0	0.7	61.77
	302,	-	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	302,	-	9	sov			4	585.2		16.9	15.7	1.2	13.0	12.1	0.9	60.67
(302,	303)	10	sov			2	709.3		17.6	16.4	1.2	13.6	12.7	0.9	58.11
(303,	304)	1	sov			5	2099.7		11.7	10.7	1.0	9.1	8.3	0.8	58.57
•	303,		2	sov			6	1688.8		11.3	10.7	0.6	8.7	8.3	0.4	61.00
-	303,	-	3	sov			6	1548.4		11.0	10.5	0.4	8.5	8.2	0.3	62.76
•	303,		4	sov			5	1345.1		11.1	10.6	0.6	8.6	8.1	0.4	61.91
	303,		5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	303,	-	9	SOV			2	618.1		11.4	11.1	0.3	8.8		0.0	
,	303,	304)	9	50V			4	010.1		11.4	11.1	0.3	0.0	8.5	0.4	60.38
(304,	305)	1	sov			6	2054.8		11.1	9.7	1.4	8.6	7.5	1.1	55.94
	304,	-	2	sov			3	1578.8		10.3	9.5	0.8	8.0	7.4	0.6	60.52
	304,		3	sov			1	1202.9		10.0	9.5	0.5	7.7	7.3	0.4	62.22
-	304,	-	4	HOV	0	1186	1	207.6	207.6	10.0	9.5	0.5	7.7	7.3	0.4	62.50
	304,		9	sov			4	1140.1		10.3	9.6	0.7	8.0	7.4	0.6	60.50
'	304,	303)	,	50 V			•	1140.1		10.5	3.0	0.7	0.0	, . .	0.0	00.50
(305,	306)	1	sov			5	663.9		16.2	15.3	0.9	12.6	11.8	0.7	63.02
(305,	306)	2	sov			12	1765.8		16.9	16.2	0.8	13.1	12.6	0.6	60.35
(305,	306)	3	sov			6	1515.4		16.3	15.7	0.6	12.6	12.1	0.5	62.88
•	305,		4	sov			9	1209.3		16.3	15.6	0.8	12.6	12.0	0.6	62.57
	305,		5	HOV	0	0	ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	305,	-	9	sov			5	1029.3		16.9	16.4	0.5	13.1	12.7	0.4	60.38
,	505,	500,	_	501			-					• • • • • • • • • • • • • • • • • • • •				
(306,	307)	1	sov			3	729.9		19.5	19.0	0.5	15.0	14.7	0.3	65.81
(306,	307)	2	sov			4	1525.9		21.2	20.4	0.8	16.5	15.9	0.6	60.41
	306,		3	sov			6	1506.2		20.4	19.6	0.8	15.8	15.2	0.6	62.74
-	306,	-	4	sov			9	1225.9		20.5	19.5	1.0	15.8	15.0	0.7	62.56
	306,	-	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
•		,									_		_			
(187,	310)	1	sov			0	1589.7		8.7	7.0	1.8	6.8	5.4	1.4	52.69

.

.

(187, 310)	2	sov			3	1548.0		7.8	7.3	0.5	6.0	5.7	0.4	59.22
(187, 310)	3	sov			0	1507.6		7.4	7.1	0.3	5.7	5.5	0.2	62.36
(187, 310)	4	sov			1	1271.2		7.4	7.0	0.4	5.7	5.4	0.3	62.64
(187, 310)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(187, 310)	9	sov			0	123.4		12.3	8.7	3.6	9.5	6.7	2.8	37.60
(310, 311)	1	sov			13	2570.6		20.4	15.6	4.8	15.8	12.1	3.7	50.13
(310, 311)	2	sov			8	1826.8		17.8	16.1	1.7	13.8	12.5	1.3	57.62
(310, 311)	3	sov			12	1531.6		16.6	15.7	0.9	12.8	12.1	0.7	61.72
(310, 311)	4	sov			10	1218.9		16.3	15.5	0.8	12.6	12.1	0.6	
(310, 311)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		62.68
(310, 311)	9	sov			1	107.4		21.7	19.4	2.3	16.9		0.0	0.00
					-	207.4		21.7	19.4	2.3	10.9	15.1	1.8	47.14
(159, 312)	1	sov			2	2080.7		6.7	6.0	0.7	5.2	4.7	0.5	57.70
(159, 312)	2	sov			2	1448.8		6.3	6.0	0.3	4.8	. 4.6	0.2	61.63
(159, 312)	3	sov			1	1057.7		6.0	5.8	0.1	4.6	4.5	0.1	64.86
(159, 312)	4	sov			0	620.9		6.0	5.8	0.1	4.6	4.5	0.1	64.96
(159, 312)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(312, 313)	1	sov			7	2029.8		10.9	10.1	0.8	8.5	7.8	0.6	58.26
(312, 313)	2	sov			3	1442.1		10.2	9.9	0.4	7.9	7.6	0.3	62.16
(312, 313)	3	sov			4	1097.3		9.8	9.6	0.2	7.5	7.4	0.1	64.98
(312, 313)	4	sov			2	642.2		9.8	9.6	0.2	7.5	7.4	0.2	65.06
(312, 313)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(248, 314)	1	sov			4	1654.1		17.2	16.1	1.1	13.3	12.5	0.9	59.30
(248, 314)	2	sov			1	1129.9		16.4	15.9	0.5	12.7	12.3	0.4	62.35
(248, 314)	3	sov			4	904.7		15.7	15.5	0.2	12.1	11.9	0.2	65.17
(248, 314)	4	sov			1	563.8		15.6	15.3	0.3	12.0	11.8	0.2	65.60
(248, 314)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(314, 315)	1	sov			3	722.2		8.2	7.8	0.3	6.3	6.1	0.3	60.66
(314, 315)	2	sov			3	1091.3		8.0	7.8	0.2	6.2	6.0	0.2	62.20
(314, 315)	3	sov			2	922.5		7.6	7.5	0.1	5.9	5.8	0.1	65.06
(314, 315)	4	sov			0	589.3		7.6	7.4	0.1	5.8	5.7	0.1	65.61
(314, 315)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(555, 316)	1	sov			3	423.5		24.5	23.4	1.1	19.0	18.1	0.9	61.61
(555, 316)	2	sov			12	1239.0		24.3	23.6	0.7	18.8	18.2	0.6	62.11
(555, 316)	3	sov			9	951.6		23.3	22.8	0.4	17.9	17.6	0.3	64.95
(555, 316)	4	sov			7	576. 4		23.0	22.5	0.5	17.7	17.3	0.4	65.61
(555, 316)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(555, 316)	9	sov			8	1310.9		24.7	23.3	1.4	19.1	18.0	1.0	61.17
(555, 316)	10	sov			8	1270.6		25.1	23.6	1.4	19.3	18.2	1.1	60.25
(316, 317)	1	sov			2	380.7		10.7	10.3	0.4	8.3	8.0	0.3	63.94
(316, 317)	2	sov			8	1790.3		11.1	10.7	0.4	8.6	8.3	0.3	61.34

(316, 317)	3	sov			2	1103.4		10.5	10.3	0.2	8.1	8.0	0.2	64.83
(316, 317)	4	SOV			0	689.2		10.4	10.1	0.2	8.0	7.8	0.2	65.80
(316, 317)	5	HOV	22	22	Ö	22.0	22.0	10.5	10.5	0.0	8.1	8.1	0.0	64.81
	9	sov			5	1776.8		11.2	10.6	0.6	8.6	8.2	0.4	61.06
(316, 317)	9	201			3	1//0.0		11.2	10.0	0.0	0.0	0.2	0.4	01.00
(317, 318)	1	sov			8	1272.6		17.2	16.0	1.2	13.3	12.4	1.0	59.32
(317, 318)	2	SOV			7	1463.9		16.4	15.7	0.7	12.7	12.1	0.5	62.36
(317, 318)	3	SOV			6	914.0		15.7	15.3					65.21
					-					0.4	12.1	11.8	0.3	
(317, 318)	4	sov			2	233.8		15.6	15.2	0.3	12.0	11.7	0.3	65.64
(317, 318)	5	HOV	22	0	0	6.7	6.7	15.7	15.7	0.0	12.1	12.1	0.0	65.08
(317, 318)	9	sov			5	1866.4		17.3	15.9	1.4	13.4	12.3	1.1	59.02
(318, 319)	1	sov			10	2240.7	<u> </u>	20.3	15.9	4.4	15.7	12.3	3.4	50.38
(318, 319)	2	SOV			10	1959.6		17.6	16.1	1.6	13.6	12.4	1.2	57.98
		SOV				1427.4								
(318, 319)	3				4			16.0	15.5	0.5	12.4	12.0	0.4	63.92
(318, 319)	4	sov			6	880.8		15.6	15.1	0.4	12.0	11.7	0.3	65.72
(318, 319)	5	HOV	22	22	0	22.0	22.0	15.8	15.7	0.0	12.2	12.1	0.0	64.84
(318, 319)	9	sov			0	63.5		25.7	20.3	5.5	20.0	15.7	4.3	39.73
(319, 320)	1	sov			5	2141.6		8.5	7.8	0.7	6.6	6.0	0.5	58.98
(319, 320)	2	sov			4	1921.6		8.3	7.9	0.4	6.4	6.1	0.3	60.31
(319, 320)	3	sov			3	1524.6		7.8	7.6	0.2	6.0	5.9	0.2	64.22
(319, 320)	4	sov			1	981.5		7.6	7.4	0.2	5.9	5.7	0.2	65.72
(319, 320)	5	HOV	22	22	ō	22.0	22.0	7.8	7.7	0.1	6.0	5.9	0.0	64.61
(319, 320)	3	HOV	44	22	U	22.0	22.0	7.0	/./	0.1	0.0	3.9	0.0	04.01
(320, 321)	1	sov			16	2555.6		21.8	17.7	4.2	16.9	13.6	3.2	52.14
(320, 321)	2	sov			5	1765.5		19.2	17.8	1.4	14.9	13.8	1.1	59.15
(320, 321)	3	sov			6	1363.5		17.7	17.2	0.5	13.7	13.3	0.4	64.19
(320, 321)	4	sov			4	888.6		17.3	16.8	0.5	13.3	12.9	0.3	65.88
(320, 321)	5	HOV	22	22	0	22.0	22.0	17.6	17.5	0.1	13.6	13.5	0.1	64.58
(020, 022,	•				_									
(321, 322)	1	sov			11	2193.3		18.3	16.2	2.0	14.1	12.6	1.6	56.03
(321, 322)	2	sov			8	1589.0		16.9	16.0	0.9	13.1	12.4	0.7	60.46
(321, 322)	3	sov			5	1281.1		15.9	15.5	0.4	12.3	12.0	0.3	64.41
(321, 322)	4	sov			3	855.2		15.5	15.1	0.4	11.9	11.6	0.3	65.91
(321, 322)	5	HOV	22	22	0	22.0	22.0	15.8	15.7	0.1	12.2	12.1	0.1	64.58
(321, 322)	9	SOV			3	644.4		17.6	16.6	1.0	13.6	12.8	0.8	57.98
(511, 511,		20.			-									
(322, 323)	1	sov			4	1151.5		19.9	19.0	1.0	15.5	14.7	0.8	60.51
(322, 323)	2	sov			8	1477.1		19.8	19.0	0.8	15.3	14.7	0.6	61.04
(322, 323)	3	sov			10	1313.3		18.7	18.3	0.5	14.5	14.1	0.4	64.41
(322, 323)	4	sov			9	925.0		18.3	17.8	0.5	14.1	13.7	0.4	65.88
(322, 323)	5	HOV	22	21	1	21.6	21.6	18.7	18.6	0.2	14.4	14.3	0.1	64.48
,,	-													
(323, 324)	1	sov			2			10.2	9.5	0.6	7.9	7.4	0.5	59.97
(323, 324)	2	sov			3	1413.0		10.1	9.6	0.4	7.8	7.4	0.3	60.64
(323, 324)	3	sov			4	1332.0		9.5	9.2	0.2	7.3	7.1	0.2	64.22

(323, 324)	4	sov			2	988.9		9.3	9.0	0.3	7.1	6.9	0.2	65.89
(323, 324)	5	HOV	21	21	ō	21.0	21.0	9.5	9.4	0.1	7.3	7.2	0.1	64.40
323, 324)	9	sov			Ö	10.0		12.3	10.1	2.2	9.5	7.8	1.7	49.68
323, 324)	,	50V			·	10.0		12.5	10.1		3.3	,	_,,	-5.00
324, 325)	1	sov			8	1447.6		17.2	16.0	1.2	13.3	12.4	0.9	59.44
324, 325)	2	sov			8	1404.1		16.9	16.1	0.7	13.1	12.5	0.6	60.56
324, 325)	3	sov			5	1335.2		15.9	15.5	0.4	12.3	12.0	0.3	64.14
324, 325)	4	sov			5	1056.1		15.5	15.1	0.5	11.9	11.6	0.3	65.85
324, 325)	5	HOV	21	21	0	21.0	21.0	15.9	15.7	0.2	12.3	12.1	0.1	64.33
324, 325)	9	sov			Ö	13.8		20.7	17.4	3.2	16.0	13.5	2.5	49.46
0_1, 0_0,		201			•	2010		2017	-/	3.2	10.0	13.3	2.5	43.40
7023, 147)	1	sov			0	602.4		3.3	2.7	0.6	2.6	2.1	0.5	37.84
143,7025)	1	sov			9	1307.5		4.7	2.8	1.9	3.6	2.1	1.5	22.06
144, 131)	1	sov			0	263.0		2.1	2.0	0.1	1.6	1.5	0.1	48.82
7022, 144)	1	sov			0	289.7		2.6	2.3	0.3	2.0	1.8	0.2	44.54
247 2401	1	COT			•	EQ 1		2 0	2 0	0 1	2.2	2.1	0 1	E1 E2
347, 348) 347, 348)	1 2	SOV			0	59.1 903.4		2.9 2.9	2.8 2.8	0.1	2.2	2.1	0.1	51.53
347, 348)	4	SOV			U	903.4		2.9	2.8	0.0	2.2	2.2	0.0	51.56
348, 349)	1	sov			0	112.6		4.5	4.3	0.2	3.5	3.3	0.1	51.25
348, 349)	2	sov			1	850.1		4.8	4.7	0.1	3.7	3.6	0.1	48.57
560, 370)	1	sov			0	178.8		5.1	5.1	0.1	4.0	3.9	0.0	66.31
560, 370)	2	sov			1	809.5		5.3	5.2	0.1	4.1	4.0	0.1	63.89
560, 370)	3	sov			0	754.5		5.4	5.4	0.1	4.2	4.1	0.1	62.71
-	4	sov			2	798.9		5.3	5.2	0.1	4.1	4.0	0.1	64.36
560, 370)														
560, 370)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
560, 370)	9	sov			0	853.0		5.4	5.3	0.1	4.1	4.1	0.1	63.57
370, 371)	1	sov			2	142.7		17.4	13.7	3.7	13.5	10.6	2.9	43.19
370, 371)	2	sov			1	870.2		11.9	11.5	0.4	9.2	8.9	0.3	63.14
370, 371)	3	sov			2	774.2		12.0	11.7	0.2	9.2	9.1	0.2	62.86
370, 371)	4	sov			1	676.7		11.7	11.4	0.3	9.0	8.8	0.2	64.26
370, 371)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
370, 371)	9	sov			1	909.5		12.1	11.6	0.5	9.4	9.0	0.4	62.00
371, 372)	1	sov			2	589.2		16.7	15.4	1.3	12.9	11.9	1.0	59.97
(371, 372)	2	sov			8	1420.6		16.6	15.5	1.0	12.8	12.0	0.8	60.66
371, 372)	3	sov			2	857.4		16.0	15.5	0.5	12.4	12.0	0.4	62.71
371, 372)	4	sov			2	514.5		15.7	15.3	0.4	12.1	11.8	0.3	64.17
371, 372)	5	HOV	13	0	ō	8.3	8.3	15.5	15.5	0.1	12.0	12.0	0.1	64.68
3/1, 3/4)	3	110 4	13	Ū		0.5	0.5	20.0	20.0		0			02.00
372, 373)	1	sov			8	2420.4		10.9	9.8	1.2	8.4	7.5	0.9	57.36
(372, 373)	2	sov			4	994.8		10.1	9.6	0.5	7.8	7.4	0.4	62.02

(372,	373)	3	sov			2	672.3		9.8	9.5	0.3	7.5	7.3	0.2	64.24	
i	372,	373)	4	HOV	13	13	0	13.0	13.0	9.7	9.6	0.1	7.5	7.4	0.0	64.70	
	372,		9	sov			Ö	323.8		10.8	9.7	1.1	8.4	7.5	0.9	57.91	
,	3/2,	3737	,	50V			U	343.6		10.6	9.7	1.1	0.4	7.5	0.9	57.91	
(373,	374)	1	sov			3	2050.6		6.6	6.2	0.4	5.1	4.8	0.3	59.82	
(373,	374)	2	sov			3	1148.6		6.2	6.0	0.2	4.8	4.7	0.2	63.47	
	373,		3	sov			5	744.4		6.1	6.0						
	373,	-	4	HOV	13		0					0.2	4.7	4.6	0.1	64.68	
			_			13	•	13.0	13.0	6.1	6.1	0.0	4.7	4.7	0.0	64.57	
,	373,	3/4)	9	sov			3	456.9		6.2	5.9	0.3	4.8	4.6	0.2	64.06	
(374,	375)	1	sov			7	1905.1		10.6	10.0	0.6	8.1	7.7	0.4	59.31	
(374,	375)	2	sov			3	1211.8		9.8	9.5	0.2	7.6	7.4	0.2	64.00	
(374,	375)	3	sov			4	785.2		9.6	9.4	0.2	7.4	7.3	0.2	65.20	
	374,	-	4	HOV	13	13	0	13.0	13.0	9.7	9.6	0.1	7.5				
	374,		9	sov			4	488.6						7.4	0.1	64.44	
`	3/4/	3,3,	,	501			•	400.0		10.2	10.1	0.2	7.9	7.8	0.1	61.15	
(375,	376)	1	sov			9	1304.5		17.4	16.5	0.8	13.4	12.8	0.6	60.24	
(375,	376)	2	sov			9	1273.0		16.4	16.0	0.4	12.6	12.3	0.3	63.87	
	375,	-	3	sov			6	867.3		16.0	15.6	0.4	12.4	12.1	0.3	65.31	
	375,	-	4	HOV	13	13	Ö	13.0	13.0	16.2	16.1	0.1	12.5	12.4			
`	3,3,	3,0,	•	поч	13	13	v	13.0	13.0	10.2	10.1	0.1	12.5	12.4	0.1	64.55	
(376,	377)	1	sov			4	1443.9		8.6	7.9	0.6	6.6	6.1	0.5	58.84	
(376,	377)	2	sov			4	1306.8		8.0	7.7	0.3	6.1	5.9	0.2	63.31	
(376,	377)	3	sov			3	949.8		7.7	7.5	0.2	6.0	5.8	0.1	65.32	
(376,	377)	4	HOV	13	13	0	13.0	13.0	7.8	7.7	0.1	6.0	6.0	0.0	64.58	
(376,	377)	9	sov			0	26.4		10.3	8.8	1.5	8.0	6.8	1.2	48.84	
•	,	,	-				·				0.0	1.5	0.0	0.0	1.2	40.04	
(377,	378)	1	sov			7	1827.2		15.3	13.9	1.4	11.8	10.7	1.1	57.98	
(377,	378)	2	sov			3	1277.0		14.1	13.6	0.5	10.9	10.5	0.4	62.86	
(377,	378)	3	sov			4	913.0		13.6	13.2	0.3	10.5	10.2	0.3	65.37	
(377,	378)	4	HOV	13	13	0	13.0	13.0	13.7	13.6	0.1	10.6	10.5	0.1	64.48	
	377,		9	sov			0	18.9		18.1	15.1	3.0	14.0	11.7	2.3	48.91	
`	• • • •	,		201			·	2015			13.1	3.0	14.0		2.5	40.31	
(381,	382)	1	sov			0	90.4		3.3	3.3	0.1	2.6	2.5	0.0	45.01	
(381,	382)	2	sov			0	1091.6		3.6	3.6	0.0	2.8	2.8	0.0	40.96	
,	370	2041		G017				1042 7									
-	378,		1	sov			1	1843.7		2.3	2.1	0.2	1.8	1.7	0.1	59.28	
	378,		2	sov			0	1269.6		2.2	2.1	0.1	1.7	1.6	0.1	63.28	
(378,	384)	3	sov			1	923.6		2.1	2.0	0.0	1.6	1.6	0.0	65.69	
(378,	384)	4	HOV	13	13	0	13.0	13.0	2.1	2.1	0.0	1.6	1.6	0.0	64.69	
(384,	385)	1	sov			3	1793.1		15.0	14.1	0.9	11.6	10.9	0.7	59.16	
	384,		2	sov			3	1276.8		14.0	13.6	0.4	10.8	10.5	0.3	63.49	
	384,		3	sov			2	966.7		13.5	13.2	0.3	10.4		0.3		
			4											10.2		65.72	
(384,	383)	4	HOV	13	13	0	13.0	13.0	13.7	13.6	0.1	10.6	10.5	0.1	64.47	
(385,	386)	1	sov			6	1075.8		28.8	27.7	1.1	22.2	21.4	0.8	60.44	

.

(385,	386)	2	sov			8	1265.7		27.5	26.8	0.7	21.2	20.7	0.6	63.20
(385,	386)	3	sov			4	1067.1		26.6	25.9	0.7	20.6	20.0	0.6	65.45
(385,	386)	4	HOV	13	12	1	12.7	12.7	27.0	26.8	0.2	20.9	20.7	0.2	64.47
	400	4021		COLL			•	F0F 7				4.5				44.55
	402,	-	1	sov			3	505.7		11.2	9.5	1.7	8.7	7.3	1.3	44.35
(402,	403)	2	sov			2	712.2		10.9	9.8	1.1	8.4	7.6	0.8	45.43
(401,	381)	1	sov			0	75.1		2.8	2.7	0.0	2.1	2.1	0.0	51.32
((401,	381)	2	sov			2	1107.2		2.8	2.8	0.0	2.2	2.2	0.0	49.91
	(395,	396)	1	sov			3	1231.4		12.9	12.3	0.7	10.0	۰.		
	395,	-	2	sov			9	1514.7						9.5	0.5	60.82
	(395,	-	3	sov			9	1297.5		12.6	12.1	0.5	9.7	9.4	0.4	62.61
	(395,	-	4	HOV	0	0				12.6	12.0	0.6	9.8	9.3	0.5	62.26
,	393,	390)	4	HOV	U	U	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	394,	-	1	sov			3	1849.0		6.5	6.1	0.4	5.0	4.7	0.3	58.47
((`394,	395)	2	sov			4	1497.9		6.1	5.9	0.2	4.7	4.5	0.2	62.70
	(394,	395)	3	sov			6	1281.8		6.1	5.8	0.3	4.7	4.5	0.2	62.16
	(394,	395)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(394,	395)	9	sov			0	434.7		6.4	6.2	0.1	4.9	4.8	0.1	60.08
	(393,	304)	1	sov			4	1945.0		10.7	10.0	0.7				
	(393,	-	2	sov			5	1456.0		10.7	9.9	0.7	8.2	7.7	0.5	60.10
	(393,	-	3	sov			5	1264.9		10.3			7.9	7.6	0.3	62.37
	(393,		4	HOV	0	0	0	0.0	0.0		9.8	0.5	8.0	7.6	0.4	62.23
	(393, (393,		9	SOV			1	397.6		0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	(393,	334)	,	50V			_	397.0		10.2	9.6	0.6	7.9	7.4	0.4	63.05
	(392,	393)	1	sov			8	2194.4		6.6	5.9	0.7	5.1	4.6	0.5	58.03
	(392,	393)	2	sov			4	1368.3		6.2	5.9	0.3	4.8	4.5	0.2	61.85
((392,	393)	3	sov			1	1239.5		6.2	5.8	0.3	4.8	4.5	0.2	62.08
((392,	393)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	(392,	393)	9	sov			2	259.8		6.8	5.8	0.9	5.2	4.5	0.7	56.54
	(391,	3921	1	sov			3	1548.5		12.5	11.4	1.1	9.7	8.8	0.9	58.95
	(391,		2	sov			9	1537.2		12.0	11.4	0.6	9.2	8.8	0.4	61.67
	(391,	-	3	sov			6	1395.0		12.0	11.3	0.7	9.3	8.7	0.5	61.51
	(391,	- •	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.7				
	(391,	-	9	SOV			0	24.2					0.0	0.0	0.0	0.00
	(391,	394)	9	SOV			U	44.4		16.7	13.0	3.7	12.9	10.0	2.9	44.13
	(390,	391)	1	sov			1	1052.6		17.3	16.5	0.9	13.4	12.7	0.7	61.30
	(390,	391)	2	sov			5	1641.9		17.1	16.4	0.7	13.2	12.7	0.5	62.19
	(390,	391)	3	sov			4	1461.9		17.3	16.3	1.0	13.4	12.6	0.8	61.43
	(390,	391)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	(389,	390)	1	sov			13	2328.2		17.6	16.0	1.6	13.6	12.3	1.3	58.07
	(389, (389,		2	SOV			10	1631.7		16.4	15.7	0.7				
	-	-	3				6						12.7	12.2	0.5	62.18
'	(389,	390)	3	sov			0	1434.7		16.6	15.7	0.9	12.8	12.1	0.7	61.64

(389,	390)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(388,	389)	1	sov			4	2441.6		5.8	5.2	0.7	4.5	4.0	0.5	57.34
(388,	389)	2	sov			3	1540.2		5.4	5.2	0.3	4.2	4.0	0.2	61.70
(388,	389)	3	sov			5	1409.7		5.4	5.2	0.3	4.2	4.0	0.2	61.82
(388,	389)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(387,	388)	1	sov			8	1913.4		17.1	15.7	1.4	13.2	12.1	1.1	59.73
(387,	388)	2	sov			8	1746.6		16.6	15.8	0.8	12.8	12.2	0.6	61.62
(387,	388)	3	sov			9	1713.1		16.8	15.8	1.0	13.0	12.2	0.8	61.01
(387,	388)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(387,	388)	9	sov			0	17.5		21.4	17.4	4.0	16.5	13.4	3.1	47.74
(166,	404)	1	sov			4	1599.5		8.3	7.9	0.4	6.4	6.1	0.3	61.82
(166,	404)	2	sov			5	1798.9		8.2	7.9	0.3	6.3	6.1	0.2	62.28
(166,	404)	3	sov			3	1869.1		8.2	7.9	0.4	6.4	6.1	0.3	61.99
(166,	404)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(404,	387)	1	sov			7	1434.1		17.7	17.0	0.8	13.7	13.1	0.6	62.37
(404,	387)	2	sov			9	1789.2		17.9	17.1	0.8	13.8	13.2	0.6	61.93
-	-	387)	3	sov			11	1857.2		18.0	17.0	1.0	14.0	13.2	0.8	61.30
(404,	387)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
-		405)	1	sov			3	917.4		6.3	6.2	0.1	4.9	4.8	0.1	53.29
(306,	405)	2	sov			1	283.3		5.9	5.8	0.1	4.6	4.5	0.1	56.74
	-	406)	1	sov			2	709.5		5.1	5.0	0.2	4.0	3.8	0.1	43.83
		406)	2	sov			0	432.4		4.7	4.7	0.1	3.7	3.6	0.0	47.49
(558,	406)	3	sov			0	58.9		4.4	4.4	0.0	3.4	3.4	0.0	51.68
•		408)	1	sov			0	239.2		5.4	4.5	0.9	4.2	3.5	0.7	40.17
(351,	408)	2	sov			1	730.1		5.1	4.9	0.2	3.9	3.8	0.2	42.65
(408,	409)	1	sov			0	573.9		10.3	9.5	0.8	7.9	7.3	0.6	41.34
(408,	409)	2	sov			0	395.1		10.3	9.5	0.8	7.9	7.4	0.6	41.39
(410,	405)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(413,	409)	1	sov			3	810.8		12.0	11.8	0.2	9.3	9.1	0.2	43.33
(413,	409)	2	sov			2	389.2		11.1	11.0	0.1	8.6	8.5	0.1	46.88
(349,	350)	1	sov			0	219.3		15.1	14.9	0.2	11.7	11.5	0.2	52.31
(349,	350)	2	sov			0	745.1		16.4	16.1	0.3	12.6	12.4	0.2	48.35
(350,	351)	1	sov			0	305.5		12.6	12.4	0.2	9.7	9.6	0.2	47.46
(350,	351)	2	sov			3	664.2		13.7	13.4	0.2	10.5	10.4	0.2	43.70
																,

(559,407)	1 50	v	 4	878.7	 21.9	21.2	0.7	16.9	16.4	0.5	47.62
(559, 407)	6 so	v	 0	535.2	 20.5	20.0	0.5	15.8	15.5	0.4	51.05
(559, 407)	7 so		 2	759.8							
(559, 407)	/ 50	v	 2	759.8	 21.8	21.2	0.6	16.8	16.3	0.5	47.93
(407, 411)	1 50	ν	 1	331.3	 5.7	5.6	0.1	4.4	4.3	0.1	49.46
(10// 111/	- 50	•	_	331.3	 3.7	3.0	0.1	*.*	4.3	0.1	49.40
(406, 413)	1 so	v	 2	843.3	 6.7	6.6	0.1	5.2	5.1	0.1	43.28
(406, 413)	2 so	v	 0	356.6	 6.2						
(100, 110,	- 50	•	Ū	330.0	 0.2	6.1	0.1	4.8	4.8	0.0	46.79
(161,7031)	1 so	v	 1	252.7	 4.4	4.2	0.2	3.4	3.3	0.1	48.00
(161,7031)	2 50		 2	331.9							
(101,7031)	2 50	•	 4	331.9	 4.4	4.2	0.2	3.4	3.3	0.1	48.26
(7032, 435)	1 so	v	 1	1126.1	 3.6	3.2	0.4	2.8	2.5	0.3	44.31
								_,,		0.5	
(435, 436)	1 so	v	 1	1042.3	 3.1	3.0	0.2	2.4	2.3	0.1	48.23
(425 200)	4										
(436, 372)	1 so	v	 1	1041.1	 3.9	3.7	0.3	3.0	2.8	0.2	50.23
(395, 437)	1 so	v	 1	449.2	 6.6						
(395, 437)	2 SO					6.5	0.1	5.1	5.0	0.1	55.68
(395, 437)	2 SO	v	 1	572.0	 7.0	6.8	0.1	5.4	5.3	0.1	52.72
(437,7033)	1 so	v	 2	452.6	 5.5	5.1	0.4	4.3	3.9	0.3	48.52
(437,7033)	2 so	v	 1	567.0	 5.7	5.3	0.4	4.4	4.1	0.3	46.55
,,		•	_	30710	3.,	3.3	0.4	•••	4.1	0.3	40.55
(7034, 440)	1 so	v	 0	676.3	 3.3	2.9	0.4	2.5	2.2	0.3	43.86
(440, 441)	1 so	v	 0	621.9	 2.7	2.5	0.2	2.1	2.0	0.1	47.84
(7035, 443)	1 so	v	 1	311.5	 3.9	2.9	1.0	3.0	2.2	0.8	33.67
(443, 444)	1 so	v	 1	283.8	 3.2	2.9	0.3	2.5	2.2	0.3	44.54
(444, 376)	1 so	v	 0	285.0	 9.2	8.8	0.4	7.1	6.8	0.3	52.45
(111, 5/0)	1 50	•	·	205.0	3.2	0.0	0.4	7.1	0.0	0.3	32.43
(375, 442)	1 so	v	 1	494.1	 4.5	4.4	0.1	3.4	3.4	0.1	55.57
(375, 442)	2 50		 0	450.7	 4.8	4.7	0.1	3.7	3.6	0.1	
(3/3, 442)	2 50	•	 U	450.7	 4.0	4.7	0.1	3.7	3.0	0.1	51.79
(442,7036)	1 so	v	 1	501.9	 3.3	3.2	0.1	2.5	2.5	0.1	52.23
(442,7036)	2 SO	v	 1	441.4	 3.6	3.4	0.2	2.8	2.6	0.1	47.48
(7037, 454)	1 so	v	 0	337.4	 3.5	3.1	0.4	2.7	2.4	0.3	45.02
/ AEA AEE	1		_	212.6			• •				
(454, 455)	1 so	v	 0	312.6	 3.5	3.4	0.1	2.7	2.6	0.1	49.01
(455, 377)	1 so	v	 0	314.6	 5.0	4.8	0.2	3.9	3.7	0.2	52.02
(200, 077)	_ 50	-	Ū	522.5	 3.0		V.2	3.9	3.7	0.2	J2.V2
(390, 458)	1 so	v	 1	1208.6	 13.8	8.7	5.1	10.6	6.7	3.9	34.07

	(456, 457)	1	sov	 	0	349.0	 2.4	2.2	0.2	1.8	1.7	0.2	45.62	
	(457, 391)	1	sov	 	0	349.0	 2.0	1.9	0.2	1.6	1.5	0.1	48.71	
	(7038, 456)	1	sov	 	0	403.4	 2.0	1.6	0.5	1.6	1.2	0.4	39.67	
	(458,7039)	1	sov	 	1	1056.7	 12.0	4.0					10.01	
		-	501		-		 12.0	4.8	7.2	9.3	3.7	5.6	12.01	
	(7040, 466)	1	sov	 	1	608.9	 3.4	3.0	0.4	2.6	2.3	0.3	44.01	
	(466, 467)	1	sov	 	1	559.8	 3.1	2.9	0.1	2.4	2.3	0.1	48.42	
	(467, 392)	1	sov	 	2	559.9	 4.0	3.7	0.2	3.1	2.9	0.2	51.04	
•	(309,7043)	1	sov	 	2	697.5	 5.5	5.3	0.1	4.2	4.1	0.1	49.22	
	(309,7043)	2	sov	 	1	770.6	 5.6	5.5	0.2	4.3	4.2	0.1	47.90	
	(7044, 483)	1	sov	 	4	884.7	 6.1	5.3	0.8	4.7	4.1	0.6	43.98	
	(484, 318)	1	sov	 	1	841.2	 4.9	4.5	0.4	3.8	3.5	0.3	49.77	
	(483, 484)	1	sov	 	1	841.4	 3.7	3.5	0.2	2.9	2.7	0.2	47.29	
	(303, 487)	1	sov	 	0	952.0	 3.9	3.7	0.2	3.0	2.9	0.1	52.46	
	(487, 488)	1	sov	 	2	952.3	 7.0	6.7	0.3	5.4	5.2	0.2	48.72	
	(488,7046)	1	sov	 	3	949.3	 4.3	4.0	0.3	3.3	3.1	0.2	46.56	
	(489, 490)	1	sov	 	1	1069.4	 6.3	4.3	2.0	4.9	3.3	1.5	32.03	
	(489, 490)	2	sov	 	1	333.2	 8.2	4.6	3.6	6.3	3.5	2.8	24.75	
	(7047, 489)	1	sov	 	0	459.8	 5.0	2.9	2.1	3.8	2.2	1.6	29.33	
	(7047, 489)	2	sov	 	0	1074.0	 5.0	2.9	2.1	3.8	2.2	1.6	29.26	
	(7045, 531)	1	sov	 	3	674.5	 4.5	2.3	2.2	3.5	1.8	1.7	35.55	
	(7045, 531)	2	sov	 	1	56.8	 5.4	2.3	3.1	4.1	1.8	2.4	29.94	
	/ 521 522)		0017		•	675 5	2.1	2.2	0.0	2.4		0.7	45 54	
	(531, 532)	1	sov	 	0	675.5	 3.1	2.3	0.9	2.4	1.7	0.7	45.54	
	(531, 532)	2	sov	 	0	0.5	 13.1	4.3	8.8	10.1	3.3	6.8	10.85	
	(532, 299)	1	sov	 	1	675.8	 2.7	2.3	0.4	2.1	1.8	0.3	51.70	
	(322, 522)	1	sov	 	1	826.4	 3.0	3.0	0.0	2.3	2.3	0.0	54.25	
	(322, 522)	2	sov	 	1	851.8	 3.0	2.9	0.1	2.3	2.3	0.1	53.67	
	(344, 344)	4	50 V	 	-	031.0	 3.0	4.5	0.1	4.3	4.3	0.1	33.07	

(7049, 523)	1	sov			0	132.2		3.2	2.9	0.2	2.4	2.3	0.2	38.86
(523, 524)	1	sov			0	120.0		6.2	5.7	0.5	4.8	4.4	0.4	45.76
(524, 323)	1	sov			2	119.4		5.1	4.9	0.2	3.9	3.8	0.1	53.26
(298, 533)	1	sov			4	1018.4		20.2	18.4	1.8	15.7	14.3	1.4	59.73
(298, 533)	2	sov			10	1716.7		19.7	18.6	1.1	15.2	14.4	0.8	61.31
(298, 533)	3	sov			6	1659.0		19.3	18.4	0.8	14.9	14.3	0.6	62.62
(298, 533)	4	sov			8	1466.4		19.7	18.7	1.0	15.1	14.4	0.8	61.26
(298, 533)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	_			•	•	•••	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(7050, 529)	1	sov			0	537.4		4.1	2.9	1.2	3.1	2.2	0.9	29.68
(7050, 529)	2	sov			0	1345.3		4.1	2.8	1.2	3.1	2.2	1.0	29.72
					_						3.1		1.0	23.72
(529, 530)	1	sov			0	667.8		3.9	1.9	2.0	3.0	1.5	1.5	28.77
(529, 530)	2	sov			0	1025.6		4.1	2.5	1.6	3.2	1.9	1.2	26.94
														20.52
(530, 533)	1	sov			0	1701.9		8.4	6.4	2.1	6.5	4.9	1.6	40.34
(7051, 525)	1	sov			0	300.7		3.3	3.0	0.3	2.5	2.3	0.2	45.82
(525, 526)	1	sov			0	277.0		5.5	5.4	0.1	4.2	4.2	0.1	49.31
(526, 324)	1	sov			0	277.0		6.7	6.5	0.2	5.2	5.0	0.2	52.80
(298, 534)	1	sov			2	1123.4		14.4	6.0	8.4	11.2	4.6	6.5	23.04
(534,7052)	1	sov			2	1059.3		14.5	4.8	9.7	11.3	3.7	7.6	12.54
(313, 347)	1	sov			1	621.4		5.2	5.1	0.2	4.1	3.9	0.1	53.01
(313, 347)	2	SOV			0	340.1		5.2	5.1	0.2	4.0	3.9	0.1	53.38
(313, 347)	-	50V			U	340.1		3.2	3.1	0.2	4.0	3.9	0.1	33.36
(522,7048)	1	sov			2	829.9		3.3	3.3	0.0	2.6	2.5	0.0	51.15
(522,7048)	2	sov			2	846.7		3.3	3.3	0.1	2.6	2.5	0.1	50.74
(322,7,020,	-	501			_	020.7		3.3	3.3	***	2.0	2.5	0.1	30.74
(405, 558)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(405, 558)	6	sov			0	884.6		2.8	2.8	0.0	2.1	2.1	0.0	51.22
(405, 558)	7	sov			1	315.5		2.6	2.6	0.0	2.0	2.0	0.0	55.53
(403, 330)	•	501			-	313.3		2.0	2.0	0.0	2.0	2.0	0.0	33.33
(409, 559)	1	sov			1	801.2		5.2	5.0	0.2	4.0	3.9	0.1	43.20
(409, 559)	2	sov			1	451.3		4.8	4.7	0.1	3.7	3.7	0.1	46.47
(409, 559)	6	sov			0	916.5		5.2	5.0	0.2	4.0	3.9	0.1	43.26
,,	•				•	320.3						2.5	***	-51-20
(369, 560)	1	sov			2	749.9		11.0	10.7	0.3	8.5	8.3	0.2	62.11
(369, 560)	2	sov			0	812.2		10.6	10.3	0.3	8.2	8.0	0.2	64.48
(369, 560)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	-		-	-	-				- · ·	- • •	J	- • •	- • •	

•

(369,	560)	9	sov			2	594.6		11.4	10.7	0.7	8.8	8.3	0.5	59.91
(369,	560)	10	sov			1	601.0		11.0	10.2	0.8	8.5	7.9	0.6	62.22
i	369.	560)	11	sov			3	635.1		11.4	10.8	0.6	8.8	8.3	0.5	59.75
•		,					_									
(97.	563)	1	sov			10	1331.2		17.9	15.6	2.3	13.8	12.1	1.7	57.22
ì	-	563)	2	sov			6	1399.1		17.2	16.4	0.9	13.4	12.7	0.7	59.30
ì	-	563)	3	sov			8	1329.1		16.3	15.7					
(563)	4	SOV			7	1166.6				0.5	12.5	12.1	0.4	62.92
(-	563)	5	HOV			-			15.9	15.3	0.6	12.2	11.8	0.5	64.40
•	-		_		_	-	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(97,	563)	9	sov			0	34.5		26.8	19.9	6.9	20.8	15.4	5.4	38.16
			_													
(10,	11)	1	sov			4	1224.5		6.7	6.3	0.4	5.1	4.9	0.3	60.54
(10,	11)	2	sov			2	1020.3		6.4	6.1	0.3	4.9	4.7	0.2	63.42
(10,	11)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
																-
(11,	12)	1	sov			4	1184.7		6.4	6.1	0.3	5.0	4.7	0.2	60.92
(11,	12)	2	sov			4	1059.9		6.2	5.9	0.3	4.8	4.6	0.2	63.51
(11,	12)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(12,	13)	1	sov			0	1157.8		3.7	3.5	0.2	2.9	2.7	0.1	60.98
(12,	13)	2	sov			3	1083.2		3.6	3.4	0.1	2.7	2.6	0.1	63.62
(12,	13)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
٠		:				•	•			•••	0.0	•••	0.0	0.0	0.0	0.00
(13,	14)	1	sov			3	1143.5		3.7	3.6	0.2	2.9	2.8	0.1	60.90
ì	13,	14)	2	sov			1	1095.3		3.6	3.4	0.1	2.8	2.7	0.1	63.73
ì	13,	14)	3	HOV	0	0	ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
`	,	,	-		Ū	·	•	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(14,	15)	1	sov			0	1129.3		3.8	3.7	0.2	3.0	2.8	0.1	60.85
ì	14,	15)	2	sov			1	1109.7		3.7	3.5	0.2	2.8			63.71
-	-	-				0								2.7	0.1	
(14,	15)	3	HOV	0	U	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
			_				_									
(15,	16)	1	sov			2	1276.2		11.3	10.6	0.7	8.7	8.2	0.5	60.30
(15,	16)	2	sov			5	1143.2		10.7	10.3	0.4	8.3	8.0	0.3	63.52
(15,	16)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(15,	16)	9	sov			3	1301.8		12.3	10.7	1.7	9.5	8.3	1.3	55.27
(16,	17)	1	sov			0	1279.7		5.5	5.3	0.2	4.3	4.1	0.2	61.83
(16,	17)	2	sov			0	1169.9		5.4	5.2	0.2	4.1	4.0	0.2	63.57
(16,	17)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
Ċ	16,	17)	9	sov			2	1273.4		5.6	5.3	0.3	4.3	4.1	0.2	61.26
•	,	,	-				_					•••			• • • •	02.20
(17,	18)	1	sov			2	1279.0		11.0	10.6	0.4	8.5	8.2	0.3	62.07
ì	17,	18)	2	sov			6	1189.9		10.7	10.3	0.4	8.3	8.0	0.3	63.54
ì	17,	18)	3	HOV	0	0	Ö	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
ì	17,	18)	9	sov			4	1257.2		11.1	10.6	0.5	8.6	8.2	0.4	61.31
'	±,,	10)	9	504	-		•	1431.4	-	11.1	10.0	0.5	0.0	0.4	0.4	01.31
,	18,	19)	1	sov			5	1264.1		9.8	0 F	0.2	7 6	7 2	0.2	63.00
'	10,	13)	-	auv			3	140#.I		9.8	9.5	0.3	7.6	7.3	0.3	62.09

•

.

(:	18,	19)	2	SOV			4	1206.4		9.6	9.2	0.4	7.4	7.1	0.3	63.37
(:	18,	19)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(:	18,	19)	9	sov			4	1251.7		10.0	9.5	0.5	7.7	7.3	0.4	61.20
	•															
(:	19,	20)	1	sov			4	1265.4		8.6	8.3	0.3	6.6	6.4	0.2	62.10
-	19,	20)	2	sov			3	1217.1		8.4						
		•	_				-				8.0	0.4	6.5	6.2	0.3	63.15
-	19,	20)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(19,	20)	9	sov			3	1234.3		8.7	8.3	0.4	6.7	6.4	0.3	61.23
-	20,	21)	1	sov			2	1275.1		8.6	8.3	0.3	6.7	6.4	0.2	62.06
(:	20,	21)	2	sov			1	1218.1		8.5	8.1	0.4	6.5	6.3	0.3	63.21
(:	20,	21)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(:	20,	21)	9	sov			4	1223.9		8.8	8.3	0.4	6.8	6.4	0.3	61.17
(:	21,	22)	1	sov			2	1274.7		6.1	5.9	0.2	4.7	4.5	0.2	62.12
(21,	22)	2	sov			4	1223.0		6.0	5.7	0.3	4.6	4.4	0.2	63.25
-	21,	22)	3	HOV	0	0	ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
-	21,	22)	9	sov			2	1216.4		6.2	5.9	0.3				
` '	,	22,	,	504			_	1210.4		0.2	5.9	0.3	4.8	4.5	0.2	61.15
(:	22,	23)	1	sov			-	1072 4		10.0	10 5					
-	22,		2				.5	1273.4		12.9	12.5	0.4	10.0	9.7	0.3	62.30
-		23)	_	sov			9	1241.9		12.7	12.2	0.6	9.8	9.4	0.4	63.18
-	22,	23)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(:	22,	23)	9	sov			12	1199.4		13.2	12.5	0.7	10.2	9.7	0.5	61.13
(:	24,	25)	1	sov			1	2078.3		9.3	8.4	1.0	7.2	6.4	0.8	57.32
(24,	25)	2	sov			1	838.7		8.6	8.0	0.5	6.6	6.2	0.4	62.29
(24,	25)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(24,	25)	9	sov			1	805.3		8.7	8.2	0.5	6.8	6.3	0.4	61.36
(25,	26)	1	sov			2	1834.6		5.7	5.4	0.3	4.4	4.1	0.3	60.06
-	25,	26)	2	sov			1	961.4		5.4	5.1	0.2	4.1	4.0	0.2	63.60
-	25,	26)	3	HOV	0	0	ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
-	25,	26)	9	sov			0	934.3		5.4						
•	25,	20)	,	BUV			U	934.3		3.4	5.2	0.2	4.2	4.0	0.2	62.69
							•	4-04-0								
-	26,	27)	1	sov			3	1731.3		11.6	10.9	0.7	9.0	8.4	0.5	58.80
-	26,	27)	2	sov			2	1031.5		10.6	10.2	0.4	8.2	7.9	0.3	64.20
-	26,	27)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(26,	27)	9	sov			5	966.0		11.4	11.0	0.4	8.8	8.5	0.3	59.79
(1	90,	255)	1	sov			2	446.7		11.0	10.8	0.2	8.5	8.3	0.2	61.81
(1	90,	255)	2	sov			0	352.9		10.2	10.1	0.1	7.9	7.8	0.1	66.61
(2	55.	257)	1	sov			2	803.6		9.3	8.6	0.7	7.2	6.6	0.5	58.78
	-	257)	2	sov			0	441.5		8.4	8.1	0.3	6.5	6.3	0.2	65.10
-	-	257)	9	sov			Ö	31.6		11.3	9.6	1.8	8.7	7.4	1.4	48.06
` _	55,	23//	,	B0 ¥	-		0	31.0	-	11.3	3.0	1.0	0.7	/ • ·	1.4	40.00
, ,	E 7	2001	1	0017			•	765 3		F 6	E 4		4.2	4.5		61 01
, 2	3/,	280)	_	sov			0	765.2		5.6	5.4	0.2	4.3	4.2	0.2	61.01

(257,	280)	2	sov			0	515.4		5.2	5.1	0.1	4.0	3.9	0.1	65.64
(280,	2821	1	sov			5	1352.3		17.3	16.1	1.3	13.4	12.4	1.0	59.06
	280,		6	sov			2	697.1		15.6	15.2	0.4	12.1	11.8	0.3	65.47
		282)	9	sov			ő	47.3		18.7	17.4	1.3				
`	200,	202)	,	204			U	47.3		10.7	17.4	1.3	14.5	13.4	1.0	54.62
	282,		1	sov			4	1285.6		8.4	8.1	0.3	6.5	6.3	0.3	60.78
(282,	32)	2	sov			3	810.9		7.8	7.6	0.1	6.0	5.9	0.1	65.87
(32,		1	sov			1	846.3		8.3	8.1	0.2	6.4	6.2	0.2	61.84
(32,	33)	2	sov			0	1018.7		8.0	7.7	0.3	6.2	6.0	0.2	63.81
(32,	33)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	32,	33)	9	sov			2	906.7		7.8	7.6	0.1	6.0	5.9	0.1	65.75
(32,	33)	10	sov			5	1190.9		8.4	8.1	0.3	6.5	6.3	0.2	60.78
((33,	34)	1	sov			3	1125.4		8.4	8.1	0.3	6.5	6.3	0.2	60.75
į	33,		2	sov			4	972.9		7.8	7.6	0.1	6.0	5.9	0.1	65.98
	33,	-	3	sov			3	865.4		8.2	8.0	0.2	6.3	6.2	0.1	62.24
	33,	-	4	sov			1	995.2		8.0	7.7	0.3	6.2	6.0	0.1	
	33,		5	HOV	0	0	ō	0.0	0.0	0.0	0.0	0.0				63.61
· ·	, ,,	34,	,	1101	J	Ū	Ū	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(34,	35)	1	sov			1	1074.9		8.5	8.2	0.3	6.6	6.3	0.2	60.65
•	34,	35)	2	sov			2	1042.9		7.8	7.7	0.1	6.0	5.9	0.1	65.87
	34,	35)	3	sov			1	873.3		8.3	8.1	0.2	6.4	6.2	0.1	62.45
	34,	35)	4	sov			3	971.6		8.1	7.8	0.3	6.3	6.1	0.2	63.41
•	34,	35)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
((35,	36)	1	sov			4	1041.3		8.9	8.6	0.3	6.9	6.6	0.2	60.52
-	35,	36)	2	sov			3	1084.2		8.2	8.0	0.1	6.3	6.2	0.1	65.72
	35,	36)	3	sov			2	880.7		8.6	8.4	0.2	6.6	6.5	0.1	62.63
	35,	-	4	sov			0	958.5		8.5	8.2	0.3	6.6	6.3	0.2	63.37
	35,	-	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	(36,	37)	1	sov			2	1000.0		9.8	9.5	0.3	7.6	7.3	0.3	60 E0
	(36,		2	SOV			4	1117.1		9.8	8.9					60.50
	-						_					0.2	7.0	6.9	0.1	65.51
	(36,		3	sov			4	913.7		9.4	9.2	0.2	7.3	7.1	0.1	62.99
	(36,		4	sov			6	926.6		9.4	9.0	0.4	7.2	7.0	0.3	63.19
•	(36,	37)	5	HOV	0	. 0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	(37,		1	sov			4	953.6		11.3	10.9	0.4	8.7	.8.4	0.3	60.36
	(37,	-	2	sov			3	1156.5		10.4	10.2	0.2	8.0	7.9	0.2	65.22
	(37,	54)	3	sov			3	923.8		10.8	10.5	0.2	8.3	8.1	0.2	63.04
	(37,	54)	4	sov			1	919.7		10.7	10.3	0.4	8.3	8.0	0.3	63.22
,	(37,	54)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	(54,	55)	1	sov			2	1023.8		7.4	7.1	0.3	5.7	5.4	0.3	59.90
	(54,		2	sov			3	1190.6		6.8	6.7	0.2	5.3	5.1	0.1	65.00
	,	,	_				-			0.0	0.7	0.2	3.3	~	0.1	03.00

,	(54,	55)	3	sov			2	936.3		7.0	6.9	0.2	5.4	5.3	0.1	63.02
,	(54,	55)	4	sov			2	915.6		7.0	6.8	0.3	5.4	5.2	0.2	63.10
	(54,	55)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	į.	54.	55)	9	sov			0	12.0		8.8	7.6	1.2	6.8	5.9	0.9	50.34
	•	,	,	-				•						•••		• • • •	
	(55,	56)	1	sov			1	1010.7		5.6	5.4	0.2	4.3	4.2	0.1	60.55
	(55,	56)	2	sov			2	1195.1		5.2	5.1	0.1	4.1	4.0	0.1	64.94
	(55,	56)	3	sov			2	969.6		5.4	5.3	0.1	4.2	4.1	0.1	63.17
	(55,	56)	4	sov			3	905.8		5.4	5.2	0.2	4.2	4.0	0.1	63.14
	Ċ	55,	56)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
								_			• • • • • • • • • • • • • • • • • • • •		•••	•••	0.0	0.0	0.00
	(56,	57)	1	sov			3	1237.6		10.5	10.3	0.3	8.1	7.9	0.2	64.67
	(56,	57)	2	sov			3	993.2		10.8	10.5	0.3	8.3	8.1	0.2	63.30
	(56,	57)	3	sov			1	899.2		10.8	10.4	0.4	8.3	8.0	0.3	63.19
	(56,	57)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	Ċ	56,	57)	9	sov			4	1198.2		11.4	10.8	0.6	8.8	8.3	0.5	59.75
	(56,	57)	10	sov			0	17.8		13.9	11.6	2.3	10.7	9.0	1.7	49.19
	•	•						•					2.5	10.7	3.0	,	49.19
	(57,	58)	1	sov			1	1251.5		5.3	5.1	0.1	4.1	4.0	0.1	64.77
	Ĺ	57,	58)	2	sov			0	1006.4		5.4	5.3	0.1	4.2	4.1	0.1	63.34
	(57,	58)	3	sov			3	903.8		5.4	5.2	0.2	4.2	4.0	0.1	63.23
	ì	57,	58)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	ì	57,	58)	9	sov			1	1183.7		5.6	5.4	0.2	4.3	4.2	0.2	60.76
	•	• • •	,	-				_			3.0	J.=	0.2	1.5	1.4	0.2	00.70
	(58,	59)	1	sov			1	1254.5		6.1	6.0	0.1	4.7	4.6	0.1	64.68
	(58,	59)	2	sov			3	996.9		6.2	6.1	0.2	4.8	4.7	0.1	63.35
	(58,	59)	3	sov			1	881.2		6.3	6.0	0.2	4.8	4.7	0.2	63.21
	(58,	59)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	(58,	59)	9	sov			2	1211.6		6.5	6.3	0.2	5.0	4.8	0.2	60.92
	(59,	60)	1	sov			6	1122.1		8.9	8.7	0.2	6.9	6.7	0.2	64.59
	(59,	60)	2	sov			2	878.3		9.0	8.8	0.2	7.0	6.8	0.1	63.75
	Ċ	59,	60)	3	sov			0	781.1		9.1	8.8	0.3	7.0	6.8	0.2	63.46
	Ċ	59,	60)	4	HOV	0	0	Ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	Ċ	59,	60)	9	sov			5	1558.8		9.5	9.0	0.5	7.4	7.0	0.4	60.24
	•		•	-				_									
	(60,	61)	1	sov			7	1427.3		17.1	16.0	1.1	13.2	12.3	0.8	59.95
	Ċ	60,	61)	2	sov			4	1479.0		16.6	15.9	0.7	12.8	12.3	0.5	61.79
	Ċ	60,	61)	3	sov			1	822.5		16.0	15.6	0.4	12.4	12.1	0.3	63.97
	ì	60,	61)	4	sov			4	605.9		16.0	15.7	0.4	12.4	12.1	0.3	63.83
	ì	60,	61)	5	HOV	0	0	ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	`	,	J-,	-		J	•	•			0.0	0.0	0.0	0.0	0.0	0.0	0.00
	(61,	62)	1	sov			4	1317.1		11.0	10.6	0.4	8.5	8.2	0.3	62.00
	(61,	62)	2	sov			2	898.6		10.6	10.4	0.2	8.2	8.0	0.2	64.47
	ì	61,	62)	3	sov			3	634.6		10.6	10.4	0.3	8.2	8.0	0.2	64.06
	١.							_									
	(61,	62)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00

(62,	63)	1	sov			9	1226.3		12.3	11.8	0.4	9.5	9.1	0.3	61.51
į	62,	63)	2	sov			5	955.5		11.7	11.5	0.2	9.1	8.9	0.2	64.43
į	62,	63)	3	sov			4	665.2		11.8	11.5	0.3	9.1	8.9	0.2	64.20
ì	62,	63)	4	HOV	0	0	ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
`	·-,	00,	-		•	·	Ū	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(63,	64)	1	sov			7	1119.7		12.8	12.3	0.5	9.9	9.5	0.4	61.24
(63,	64)	2	sov			4	1024.6		12.2	11.9	0.3	9.4	9.2	0.2	64.25
(63,	64)	3	sov			2	693.2		12.2	11.9	0.3	9.4	9.2	0.2	64.24
(63,	64)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(64,	65)	1	sov			4	1428.3		11.6	10.7	0.9	8.9	8.3	0.7	58.85
(64,	65)	2	sov			6	1111.3		10.7	10.4	0.3	8.3	8.0	0.2	63.66
(64,	65)	3	sov			2	739.3		10.6	10.3	0.3	8.2	8.0	0.2	64.30
(64,	65)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(64,	65)	9	sov			0	33.1		14.1	11.9	2.2	10.8	9.1	1.7	48.47
(65,	66)	1	sov			•	1252 6								
,	65,	66)	1 2				2	1352.6 1169.6		5.6	5.4	0.2	4.3	4.1	0.2	60.62
(65,	-		sov			1.			5.3	5.2	0.1	4.1	4.0	0.1	63.91
(66)	3	sov			0	790.6		5.3	5.1	0.1	4.1	4.0	0.1	64.47
(65,	66)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(66,	67)	1	sov			4	1385.5		10.5	10.1	0.5	8.1	7.8	0.3	60.88
(66,	67)	2	sov			3	1147.2		10.0	9.8	0.2	7.7	7.5	0.2	64.01
(66,	67)	3	sov			1	783.9		9.9	9.6	0.3	7.7	7.4	0.2	64.56
į	66,	67)	4	HOV	0	0	ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
•	,	.,			•	•	•		0.0	•••	•••	0.0	0.0	0.0	0.0	0.00
(67,	68)	1	sov			6	1881.7		15.0	13.9	1.2	11.6	10.7	0.9	59.09
(67,	68)	2	sov			2	872.7		13.9	13.5	0.4	10.7	10.4	0.3	63.94
(67,	68)	3	sov			2	558.5		13.6	13.3	0.3	10.5	10.3	0.2	65.12
(67,	68)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(68,	69)	1	sov			7	1779.6		17.3	16.2	1.1	13.4	10 5		F0 00
(68,	69)	2	sov			6	912.0		15.9	15.6	0.3	12.3	12.5 12.1	0.8 0.2	59.08 64.35
(68,	69)	3	sov			8	615.6		15.7	15.3					
•	68,	-	_									0.3	12.1	11.8	0.2	65.34
(68,	69)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(69,	70)	1	sov			4	618.3		19.1	18.7	0.4	14.7	14.4	0.3	60.56
į	69,	70)	2	sov			5	901.9		18.0	17.7	0.3	13.9	13.7	0.2	64.22
į	69,	70)	3	sov			3	652.2		17.6	17.3	0.3	13.6	13.4	0.3	65.52
ì	69,	70)	4	HOV	0	0	ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
`	/	,	-		•	,	•		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(70,	71)	1	sov			2	606.4		8.7	8.5	0.2	6.7	6.6	0.1	60.77
(70,	71)	2	sov			2	865.6		8.3	8.1	0.2	6.4	6.3	0.1	63.93
(70,	71)	3	sov			2	691.5		8.1	7.9	0.2	6.3	6.1	0.1	65.53
(70,	71)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00

(71,	72)	1	sov			6	874.1		17.1	16.3	0.8	13.2	12.6	0.6	59.90
ì	71,	72)	2	sov			3	906.5		16.0	15.7	0.3	12.4	12.1	0.2	63.84
ì	71,	72)	3	sov			3	730.0		15.6	15.3	0.4	12.1	11.8	0.3	65.43
ì	71,	72)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
ì	71,	72)	9	sov			Ö	14.3		19.8	18.0	1.8	15.2	13.8	1.4	51.68
`	, _ ,	, 2 ,	,	501			·	14.5		13.0	20.0		20.2			5_110
(72,	73)	1	sov			4	679.5		24.8	24.0	0.8	19.1	18.5	0.6	60.96
(72,	73)	2	sov			5	1242.1		24.1	23.3	0.8	18.6	18.0	0.6	62.70
(72,	73)	3	sov			2	599.2		23.2	22.6	0.6	17.9	17.5	0.5	65.07
(72,	73)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
							_									
(73,	74)	1	sov			7	1427.4		16.8	16.2	0.6	13.0	12.5	0.5	60.73
(73,	74)	2	sov			3	504.6		15.6	15.3	0.3	12.0	11.8	0.2	65.66
(73,	74)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(73,	74)	9	sov			3	589.1		16.9	16.5	0.4	13.0	12.7	0.3	60.52
(74,	75)	1	sov			3	584.5		23.2	22.8	0.4	17.9	17.6	0.3	61.72
ì	74,	75)	2	sov			5	551.5		21.7	21.4	0.3	16.8	16.5	0.2	65.88
(74,	75)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.00
'	/ 4 ,	75)	3	HOV	U	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(75,	76)	1	sov			0	789.7		6.0	5.6	0.3	4.6	4.3	0.2	60.24
(75,	76)	2	sov			0	585.3		5.5	5.4	0.1	4.2	4.2	0.1	65.33
(75,	76)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
Ì	75,	76)	9	sov			0	26.0		6.9	6.3	0.6	5.3	4.9	0.4	52.25
,				go			_	064.0		2.0	2.4	0.6	2.0	2.6	0.3	E7 00
(76,	77)	1	sov			2	964.2		3.8	3.4	0.4	3.0	2.6	0.3	57.02
(76,	77)	2	sov			1	661.7		3.4	3.3	0.1	2.6	2.5	0.1	64.52
(76,	77)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(76,	77)	9	sov			1	60.7		5.3	3.8	1.5	4.1	2.9	1.1	41.56
(568.	569)	1	sov			5	1431.9		2.6	2.2	0.4	2.0	1.7	0.3	52.37
•		569)	2	sov			3	756.8		2.7	2.1	0.6	2.1	1.6	0.5	49.86
-	-	569)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,		==0\					-	755 0		12 0	13.1	0.7	10.7	10.1	0.6	61.12
	-	570)	1	sov			5	755.2		13.8		0.7				
		570)	2	sov			5	721.7		13.9	13.0	1.0	10.8	10.0	0.7	60.66
(569,	570)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(570.	571)	1	sov			2	959.0		9.0	8.6	0.4	6.9	6.6	0.3	62.60
		571)	2	sov			4	736.0		9.0	8.6	0.4	6.9	6.6	0.3	62.66
-	-	571)	3	HOV	0	0	ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
-		571)	9	sov			4	1087.9		9.7	8.9	0.8	7.5	6.8	0.6	58.17
'	370,	3/1/	9	50 V			•	2007.5	_	3.7	0.3	0.0	,.,	0.5	0.0	55.17
(571,	572)	1	sov			9	1225.0		16.9	16.0	0.9	13.0	12.3	0.7	60.66
(571,	572)	2	sov			7	1066.2		16.0	15.6	0.4	12.3	12.0	0.3	64.04
(571,	572)	3	sov			3	757.4		16.3	15.6	0.7	12.6	12.1	0.5	62.88
-	_	572)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
•																

(571,	572)	9	sov			0	13.3		20.4	17.2	3.2	15.8	13.4	2.5	50.03
(572,	573)	1	sov			5	1234.9		24.5	23.5	1.1	18.9	18.1	0.8	60.97
(572,	573)	2	sov			4	1091.2		23.3	22.8	0.6	18.0	17.6	0.4	64.13
(572,	573)	3	sov			0	736.4		23.6	22.7	0.8	18.2	17.6	0.7	63.42
(572,	573)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(573,	574)	1	sov			11	1311.0		17.0	16.2	0.8	13.1	12.5	0.6	60.21
(573,	574)	2	sov			8	1044.1		16.0	15.6	0.4	12.3	12.0	0.3	64.04
(573,	574)	3	sov			2	706.7		16.0	15.5	0.5	12.3	11.9	0.4	64.07
(573,	574)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
											•••	•••	0.0	0.0	0.00
(574,	575)	1	sov			2	885.1		14.2	13.7	0.5	10.9	10.6	0.4	60.89
(574,	575)	2	sov			3	1049.4		13.5	13.2	0.3	10.4	10.2	0.2	63.99
(574,	575)	3	sov			4	748.8		13.4	13.0	0.4	10.4	10.0	0.3	64.24
(574,	575)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
												•••	0.0	0.0	0.00
(575,	576)	1	sov			3	790.9		19.5	18.8	0.8	15.1	14.5	0.6	60.72
(575,	576)	2	sov			6	1105.3		18.7	18.2	0.4	14.4	14.1	0.3	63.57
(575,	576)	3	sov			5	792.5		18.4	17.8	0.6	14.2	13.8	0.4	64.47
(575,	576)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	-				_						•••	•••	•••	0.0	0.00
(576,	577)	1	sov			12	2122.3		19.8	15.9	3.8	15.2	12.3	2.9	51.77
(576,	577)	2	sov			4	1518.3		16.9	15.8	1.2	13.1	12.1	0.9	60.44
(576,	577)	3	sov			1	972.9		16.0	15.3	0.7	12.4	11.8	0.6	63.74
(576,	577)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(576,	-	9	sov			1	100.4		26.2	20.5	5.6	20.2	15.9	4.4	39.09
															05105
(577,	578)	1	sov			6	1907.5		14.3	13.6	0.7	11.1	10.5	0.6	60.69
(577,		2	sov			6	1654.8		13.8	13.4	0.4	10.7	10.3	0.3	62.89
(577,	578)	3	sov			4	1152.0		13.5	13.0	0.5	10.4	10.0	0.4	64.39
(577,	578)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
												•••	•••	•••	0.00
(578,	579)	1	sov			9	2302.2		12.3	11.3	1.1	9.5	8.7	0.8	58.67
(578,		2	sov			4	1440.0		11.5	11.1	0.4	8.9	8.6	0.3	62.97
(578,	579)	3	sov			2	971.6		11.1	10.8	0.3	8.6	8.3	0.2	65.13
(578,	-	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
														•••	
(579,	580)	1	sov			6	2260.6		5.8	5.3	0.5	4.5	4.1	0.3	58.88
(579,	580)	2	sov			3	1448.9		5.4	5.2	0.2	4.2	4.0	0.1	63.28
(579,		3	sov			2	999.1		5.2	5.1	0.1	4.0	3.9	0.1	65.34
(579,		4	HOV	0	0.	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,,	,	_		•	3.	•	2.0					0.0	0.0	0.0	0.00
(580,	581)	1	sov			10	2181.7		11.6	10.8	0.8	9.0	8.4	0.6	58.53
(580,	-	2	sov			3	1463.9		10.8	10.5	0.3	8.3	8.1	0.2	63.32
(580,		3	sov			5	1058.3		10.5	10.1	0.3	8.1	7.8	0.3	65.11
(580,		4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,,	/	_		•	_	•		2.0				0.0	0.0	0.0	0.00

(581,	582)	1	sov			5	1203.8		11.8	11.3	0.5	9.1	8.7	0.4	60.33
(581,	582)	2	sov			7	1436.3		11.3	11.0	0.3	8.7	8.5	0.2	63.27
(581,		3	sov			5	1120.9		10.9	10.6	0.3	8.4	8.2	0.2	65.28
	582)	4	HOV	0	0	Ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	552,	_			•	•	•••	•••	•••	•••	•••	0.0	•••	•••	••••
582,	583)	1	sov			3	1144.7		13.9	13.4	0.5	10.7	10.3	0.4	61.02
582,	583)	2	sov			5	1437.6		13.5	13.1	0.4	10.4	10.1	0.3	62.85
582,	583)	3	sov			7	1176.0		13.0	12.6	0.4	10.1	9.7	0.3	65.03
582.	583)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
		_		, •	•	•	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
583,	584)	1	sov			10	1773.8		12.5	10.7	1.8	9.7	8.2	1.4	54.40
583,	584)	2	sov			6	1590.7		11.1	10.5	0.6	8.6	8.1	0.4	61.35
583,	584)	3	sov			5	1262.8		10.5	10.1	0.4	8.1	7.8	0.3	64.70
583,	584)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	584)	9	sov			1	72.4		15.6	12.1	3.6	12.1	9.3	2.8	43.59
	-•	-				_	. =				2.0		٠.٥	2.0	-3.33
-	585)	1	sov			15	2506.6		20.9	16.0	4.9	16.1	12.3	3.8	48.97
584,	585)	2	sov			9	1819.6		17.2	15.8	1.4	13.3	12.2	1.1	59.37
584,	585)	3	sov			5	1376.2		16.0	15.2	0.7	12.3	11.8	0.6	64.04
584,	585)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
584,	585)	9	sov			1	126.9		20.8	19.9	0.9	16.1	15.4	0.7	49.21
-	-														
585,	586)	1	sov			3	2650.6		8.9	7.7	1.2	6.9	5.9	1.0	54.89
585,	586)	2	sov			1	1768.1		8.0	7.6	0.5	6.2	5.8	0.3	60.99
585,	586)	3	sov			2	1414.3		7.6	7.3	0.3	5.9	5.6	0.2	64.21
585,	586)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
									_						
586,	587)	1	sov			4	2547.9		7.7	7.0	0.7	5.9	5.4	0.5	58.19
586,	587)	2	sov			2	1817.5		7.2	6.9	0.3	5.5	5.3	0.2	62.22
586	587)	3	sov			1	1474.5		6.9	6.7	0.3	5.3	5.2	0.2	64.43
	587)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
		-		•	,	•									3.30
587,	588)	1	sov			3	2502.9		5.8	5.3	0.4	4.4	4.1	0.3	59.28
587,	588)	2	sov			3	1821.7		5.5	5.3	0.2	4.2	4.1	0.2	62.40
587	588)	3	sov			1	1521.1		5.3	5.1	0.2	4.1	3.9	0.2	64.29
587	588)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
-	589)	1	sov			3	2448.2		11.7	10.8	0.9	9.1	8.3	0.7	58.06
-	589)	2	sov			3	1839.6		11.0	10.5	0.4	8.5	8.1	0.3	62.20
	589)	3	sov			3	1565.7		10.6	10.2	0.4	8.2	7.9	0.3	64.14
588,	589)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
500	590)	1	sov			4	1184.8		9.4	8.9	0.5	7.2	6.8	0.4	59.23
		2	SOV		,	8	1738.8								
	590)	3				_			9.0	8.6	0.4	6.9	6.7	0.3	61.72
_	590)	_	sov		1604	8	1638.4		8.7	8.4	0.4	6.7	6.4	0.3	63.51
283	590)	4	HOV	0	1624	2	322.9	322.9	8.7	8.3	0.4	6.7	6.4	0.3	63.90

.

(590,	591)	1	sov			1	202.9		6.6	6.1	0.5	5.1	4.7	0.4	63.01
(590,	591)	2	sov			3	1309.8		6.9	6.7	0.2	5.3	5.2	0.1	60.85
(590,	591)	3	sov			3	1725.3		6.7	6.5	0.3	5.2	5.0	0.2	62.09
(590,	591)	4	sov			6	1639.9		6.6	6.3	0.3	5.1	4.8	0.2	63.78
(590,	591)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(591,	592)	1	sov			3	335.1		7.1	6.9	0.2	5.5	5.3	0.2	65.68
(591,	592)	2	sov			1	1214.4		7.6	7.5	0.1	5.9	5.8	0.1	61.00
-	591,	-	3	sov			6	1673.9		7.5	7.2	0.3	5.8	5.6	0.2	61.93
	591,		4	sov			7	1650.9		7.3	7.0	0.3	5.6	5.4	0.2	63.66
-	591,		5	HOV	0	0	ó	0.0	0.0	0.0	0.0	0.0	0.0			
٠,	331,	332,	-	1101	Ū	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(592,	5931	1	sov			1	406.1		10.3	10.1	0.2	8.0	7.8	0.2	66.10
-	592,		2	sov			5	1501.5		11.3	10.1	0.2				
-	592,		3	sov			5	1590.2		11.1	10.6		8.7	8.3	0.4	60.47
-	592,		4	sov			4	1376.0				0.5	8.5	8.2	0.4	61.70
	592, 592,						_			10.7	10.2	0.5	8.3	7.9	0.4	63.71
(594,	593)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	F03	E041		sov			_									
	593,		1				1	648.2		5.5	5.0	0.5	4.3	3.9	0.4	61.66
-	593,		2	sov			3	2380.3		5.9	5.3	0.5	4.5	4.1	0.4	58.14
-	593,		3	sov			3	1123.6		5.6	5.4	0.2	4.3	4.1	0.2	61.16
	593,		4	sov			2	719.0		5.2	5.1	0.1	4.0	3.9	0.1	65.11
(593,	594)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
			_				_									
	594,		1	sov			4	1009.4		10.6	10.2	0.5	8.2	7.8	0.4	64.17
	594,		2	sov			9	2055.9		11.4	10.7	0.6	8.8	8.3	0.5	59.94
-	594,	-	3	sov			6	1030.3		11.0	10.7	0.3	8.5	8.3	0.2	61.96
	594,		4	sov			4	775.8		10.4	10.2	0.2	8.0	7.9	0.2	65.56
(594,	595)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
			_				_									
-	595,	-	1	sov			3	985.0		7.3	7.1	0.2	5.6	5.5	0.1	62.12
-	595,	-	2	sov			4	813.0		6.9	6.7	0.2	5.3	5.2	0.2	65.50
-	595,	-	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	595,		9	sov			6	1947.8		8.1	7.6	0.6	6.3	5.8	0.4	55.74
(595,	596)	10	sov			5	1116.1		7.6	7.3	0.2	5.8	5.7	0.2	59.92
(596,	597)	1	sov			3	953.8		7.8	7.6	0.2	6.0	5.9	0.2	61.80
(596,	597)	2	sov			2	845.4		7.4	7.3	0.2	5.7	5.6	0.1	65.42
(596,	597)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(597,	598)	1	sov			2	923.5		9.1	8.9	0.2	7.0	6.8	0.2	61.59
	597,		2	sov			2	876.9		8.6	8.4	0.2	6.6	6.5	0.2	65.26
(597,	598)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(598,	599)	1	sov			3	884.6		4.8	4.7	0.1	3.7	3.6	0.1	61.53
(598,	599)	2	sov			2	914.1		4.5	4.4	0.1	3.5	3.4	0.1	65.00
	_															

(5	98,	599)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(6	.00	601)	1	sov			0	832.2		6.6	6.4	0.2	5.1	4.9	0.1	61.47
		601)	2	sov			Ö	967.6		6.2	6.1	0.2	4.8	4.7	0.1	64.81
	-	601)	3	HOV	0	0	ő	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
, ,	,,,,	00-,	•		•	•	·	•••	•••	•••	•••	•••	•••	0.0	0.0	0.00
(6	01,	602)	1	sov			2	1019.5		8.6	8.0	0.6	6.6	6.1	0.5	59.31
(6	501,	602)	2	sov			1	1021.5		7.9	7.7	0.3	6.1	5.9	0.2	64.35
(6	501,	602)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(6	501,	602)	9	sov			10	1554.2		9.7	7.9	1.7	7.4	6.1	1.3	52.94
(6	501,	602)	10	sov			1	91.9		11.2	9.6	1.6	8.6	7.4	1.2	45.73
, ,	-00	603)		sov			_									
-	-		1 2				2	1161.8		8.3	8.0	0.3	6.4	6.1	0.3	61.51
	-	603) 603)	3	sov			1	1082.5		8.0	7.7	0.3	6.1	5.9	0.2	64.21
-		603)	9	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(0	002,	603)	9	SOV			4	1445.2		8.5	8.0	0.6	6.6	6.1	0.4	59.87
(6	503,	604)	1	sov			2	1183.2		7.0	6.8	0.2	5.4	5.2	0.1	62.62
(6	503,	604)	2	sov			1	1096.2		6.8	6.6	0.2	5.2	5.1	0.2	64.39
(6	503,	604)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(6	503,	604)	9	sov			3	1412.9		7.1	6.8	0.3	5.5	5.2	0.2	61.68
		:	_				_									
-	-	605)	1	sov			2	1220.0		7.9	7.7	0.2	6.1	5.9	0.2	62.70
	-	605)	2	sov			1	1099.9		7.7	7.5	0.2	5.9	5.8	0.2	64.36
		605)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(6	04,	605)	9	sov			3	1378.6		8.1	7.7	0.4	6.2	5.9	0.3	61.31
(6	505,	606)	1	sov			5	1228.7		10.4	10.1	0.3	8.0	7.8	0.2	62.60
(6	505,	606)	2	sov			1	1124.3		10.1	9.8	0.4	7.8	7.5	0.3	64.12
(6	505,	606)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(6	505,	606)	9	sov			7	1341.2		10.6	10.1	0.5	8.2	7.8	0.4	61.15
		505)					-	1000 3								co ==
	_	607)	1	sov			3	1228.3		8.2	8.0	0.2	6.3	6.2	0.2	62.57
•	•	607)	2	sov			3	1152.9		8.0	7.8	0.3	6.2	6.0	0.2	64.04
-	-	607)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(6	006,	607)	9	sov			1	1305.7		8.5	8.0	0.4	6.5	6.2	0.3	60.91
(6	507,	608)	1	sov			0	1240.1		7.2	6.9	0.2	5.5	5.4	0.2	62.54
(6	507,	608)	2	sov			1	1160.6		7.0	6.7	0.3	5.4	5.2	0.2	64.06
-	-	608)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
•		608)	9	sov			1	1284.5		7.4	7.0	0.4	5.7	5.4	0.3	60.91
•			-				_									
(6	508,	609)	1	sov			4	1253.1		8.9	8.6	0.3	6.9	6.6	0.2	62.49
(6	508,	609)	2	sov			2	1180.6		8.7	8.4	0.3	6.7	6.5	0.3	64.00
(6	508,	609)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(6	508,	609)	9	sov			1	1251.6		9.1	8.7	0.4	7.0	6.7	0.3	60.95

600, 610) 2 SOV 1 1180.0 9.9 9.5 0.4 7.6 7.3 0.3 63.98																	
(619, 610) 9 80V 3 1236.4 10.4 9.9 0.5 8.0 7.6 0.4 60.9 60.9 (609, 610) 9 80V 1 1561.3 10.4 9.9 0.5 8.0 7.6 0.4 60.92 (610, 611) 1 80V 1 1039.0 7.6 7.3 0.3 5.9 5.7 0.2 63.87 (610, 611) 2 80V 1 1039.0 7.6 7.3 0.3 5.9 5.7 0.2 63.87 (610, 611) 3 80V 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-	-		1	sov			3	1261.3		10.1	9.8	0.3	7.8	7.5	0.2	62.54
(609, 610) 9 SOV 3 1236.4 10.4 9.9 0.5 8.0 7.6 0.4 60.92 (610, 611) 1 SOV 1 1561.3 7.9 7.5 0.4 6.1 5.8 0.3 61.55 (610, 611) 2 SOV 1 1039.0 7.6 7.3 0.3 5.9 5.7 0.2 63.87 (610, 611) 3 BOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.																	
(610, 611) 1 SOV 1 1561.3	•	-	-			0	0										
6 10. 611.) 2 SOV 1 1039.0 7.6 7.3 0.3 5.9 5.7 0.2 63.87 6 10. 611.) 3 BOV 0 1076.8 8.0 7.6 0.4 6.2 5.9 0.3 61.0 6 11. 612.) 1 SOV 0 1076.8 8.0 7.6 0.4 6.2 5.9 0.3 63.02 (611. 612.) 2 SOV 0 784.7 8.0 7.6 0.4 6.2 5.9 0.3 63.22 (611. 612.) 9 SOV 0 810.6 8.3 7.8 0.4 6.4 6.1 0.3 63.22 (612. 613.) 2 SOV 11 1816.7 15.8 15.3 0.5 12.2 11.8 0.3 64.2 (612. 613.) 3 HOV 0 0 0 0 0 0 0 0 0	(6	09,	610)	9	sov			3	1236.4		10.4	9.9	0.5	8.0	7.6	0.4	60.92
610, 611) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(6	10,	611)	1	sov			1	1561.3		7.9	7.5	0.4	6.1	5.8	0.3	61.55
(610, 611) 9 SOV 0 1076.8 8.0 7.6 0.4 6.2 5.9 0.3 61.02 (611, 612) 1 SOV 0 1076.8 8.0 7.6 0.4 6.2 5.9 0.3 61.02 (611, 612) 2 SOV 0 784.7 8.0 7.6 0.4 6.2 5.9 0.3 61.02 (611, 612) 2 SOV 0 784.7 8.0 7.6 0.4 6.2 5.9 0.3 61.02 (611, 612) 2 SOV 0 784.7 8.0 7.6 0.4 6.2 5.9 0.3 63.22 (611, 612) 9 SOV 0 810.6 8.7 7.9 0.8 6.7 6.1 0.6 58.67 (611, 612) 9 SOV 0 810.6 8.0 7.6 0.4 6.2 5.9 0.3 63.22 (611, 612) 9 SOV 0 810.6 8.3 7.8 0.4 6.4 6.1 0.3 61.55 (612, 613) 1 SOV 1 11816.7 17.2 16.2 1.0 13.2 12.5 0.7 59.62 (612, 613) 2 SOV 6 912.2 15.8 15.3 0.5 12.2 11.8 0.3 64.91 (612, 613) 3 BOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(6	10,	611)	2	sov			1	1039.0		7.6	7.3	0.3	5.9	5.7	0.2	63.87
(610, 611) 9 SOV 0 1076.8 8.0 7.6 0.4 6.2 5.9 0.3 61.02 (611, 612) 1 SOV 0 784.7 8.0 7.6 0.4 6.2 5.9 0.3 61.02 (611, 612) 2 SOV 0 784.7 8.0 7.6 0.4 6.2 5.9 0.3 63.22 (611, 612) 3 BOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(6	10,	611)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
(611, 612) 1 SOV 3 2085.5 8.7 7.9 0.8 6.7 6.1 0.6 58.67 (611, 612) 2 SOV 0 784.7 8.0 7.6 0.4 6.2 5.9 0.3 63.22 (611, 612) 9 SOV 0 810.6 8.3 7.8 0.4 6.4 6.1 0.3 61.55 (611, 612) 9 SOV 0 810.6 8.3 7.8 0.4 6.4 6.1 0.3 61.55 (612, 613) 1 SOV 6 912.2 15.8 15.3 0.5 12.2 11.8 0.3 64.91 (612, 613) 3 BOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(6	10,	611)	9	sov			0	1076.8								
(611, 612) 2 SOV 0 784.7 8.0 7.6 0.4 6.2 5.9 0.3 63.22 (611, 612) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0														•••		•••	V
(611, 612) 3 ROV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(6	11,	612)	1	sov			3	2085.5		8.7	7.9	0.8	6.7	6.1	0.6	58.67
(611, 612) 9 SOV 0 810.6	(6	11,	612)	2	sov			0	784.7		8.0	7.6	0.4	6.2	5.9	0.3	63.22
(612, 613) 1 SOV 11 1816.7 17.2 16.2 1.0 13.2 12.5 0.7 59.62 (612, 613) 2 SOV 6 912.2 15.8 15.3 0.5 12.2 11.8 0.3 64.91 (612, 613) 3 BOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(6	11,	612)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(612, 613) 2 SOV 6 912.2 15.8 15.3 0.5 12.2 11.8 0.3 64.91 (612, 613) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(6	11,	612)	9	sov			0	810.6		8.3	7.8	0.4	6.4	6.1	0.3	61.55
(612, 613) 2 SOV 6 912.2 15.8 15.3 0.5 12.2 11.8 0.3 64.91 (612, 613) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	, -		613 \		201 5				4044 =								
(612, 613) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		_	-														
(612, 613) 9 SOV 7 946.3 16.9 16.3 0.6 13.0 12.6 0.5 60.48 (613, 614) 1 SOV 0 939.0 3.6 3.4 0.2 2.8 2.6 0.2 59.41 (613, 614) 2 SOV 0 872.2 3.3 3.2 0.1 2.5 2.5 0.1 64.80 (613, 614) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	-	-															
(613, 614) 1 SOV 0 939.0 3.6 3.4 0.2 2.8 2.6 0.2 59.41 (613, 614) 2 SOV 0 872.2 3.3 3.2 0.1 2.5 2.5 0.1 64.80 (613, 614) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		_															
(613, 614) 2 SOV 0 872.2 3.3 3.2 0.1 2.5 2.5 0.1 64.80 (613, 614) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(6	12,	613)	9	sov			7	946.3		16.9	16.3	0.6	13.0	12.6	0.5	60.48
(613, 614) 2 SOV 0 872.2 3.3 3.2 0.1 2.5 2.5 0.1 64.80 (613, 614) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(6	13,	614)	1	sov			0	939.0		3.6	3.4	0.2	2.8	2.6	0.2	59.41
(613, 614) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		-	-					_									
(614, 615) 1 SOV 1 942.0 3.2 3.1 0.1 2.5 2.4 0.1 60.79 (614, 615) 2 SOV 2 870.4 3.0 2.9 0.1 2.3 2.3 0.1 65.02 (614, 615) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	-	-	-														
(614, 615) 2 SOV 2 870.4 3.0 2.9 0.1 2.3 2.3 0.1 65.02 (614, 615) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	. •			-		•	-	•		2.0				0.0	•••	•••	0.00
(614, 615) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(6	14,	615)	1	sov			1	942.0		3.2	3.1	0.1	2.5	2.4	0.1	60.79
(614, 615) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(6	14,	615)	2	sov			2	870.4		3.0	2.9	0.1	2.3	2.3	0.1	65.02
(615, 616) 1 SOV 3 940.3 5.5 5.4 0.2 4.3 4.1 0.1 61.50 (615, 616) 2 SOV 2 871.3 5.2 5.1 0.1 4.0 3.9 0.1 65.10 (615, 616) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(6	14,	615)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(615, 616) 2 SOV 2 871.3 5.2 5.1 0.1 4.0 3.9 0.1 65.10 (615, 616) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0																	
(615, 616) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		_															61.50
(616, 617)		_		2	sov							5.1		4.0	3.9	0.1	65.10
(616, 617) 2 SOV 3 866.5 10.5 10.3 0.3 8.1 7.9 0.2 64.91 (616, 617) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(6	15,	616)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(616, 617) 2 SOV 3 866.5 10.5 10.3 0.3 8.1 7.9 0.2 64.91 (616, 617) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(6	16.	617)	1	sov			5	946.0		11.2	10.9	0.4	8.7	8.4	0.3	60.73
(616, 617) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		_															64.91
(617, 618) 1 SOV 6 706.0 11.0 10.7 0.3 8.5 8.3 0.2 61.77 (617, 618) 2 SOV 4 845.8 10.5 10.2 0.3 8.1 7.9 0.2 64.67 (617, 618) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-	-	-				0										0.00
(617, 618) 2 SOV 4 845.8 10.5 10.2 0.3 8.1 7.9 0.2 64.67 (617, 618) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	, ,		·,	-		•	-			• • •							
(618, 619) 1 SOV 6 823.6 9.5 9.2 0.2 7.6 7.4 0.2 61.97 (618, 619) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(6	17,	618)	1	sov			6	706.0		11.0	10.7	0.3	8.5	8.3	0.2	61.77
(618, 619) 1 SOV 6 823.6 9.5 9.2 0.2 7.6 7.4 0.2 61.97 (618, 619) 3 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(6	17,	618)	2	sov			4	845.8		10.5	10.2	0.3	8.1	7.9	0.2	64.67
(618, 619) 1 SOV 3 720.1 9.9 9.7 0.2 7.6 7.4 0.2 61.97 (618, 619) 2 SOV 6 823.6 9.5 9.2 0.2 7.3 7.1 0.2 64.49 (618, 619) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		_			HOV	0	0	0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(618, 619) 2 SOV 6 823.6 9.5 9.2 0.2 7.3 7.1 0.2 64.49 (618, 619) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	. •		,	-		-	-	,									•
(618, 619) 3 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-	-	-														61.97
(619, 620) 1 sov 2 721.7 4.6 4.5 0.1 3.5 3.5 0.1 61.93 (619, 620) 2 sov 0 819.2 4.4 4.3 0.1 3.4 3.3 0.1 64.50	-	-	-														64.49
(619, 620) 2 sov 0 819.2 4.4 4.3 0.1 3.4 3.3 0.1 64.50	(6	18,	619)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(619, 620) 2 sov 0 819.2 4.4 4.3 0.1 3.4 3.3 0.1 64.50	, ,	:10	620)	1	SOV			2	721 7		4 6	4 5	0 1	3 E	3 5	0 1	61 03
		_															
(0.25, 0.20, 5 800 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0								-									
	, 6	177,	0 2 0)	3	HOV	U	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00

(599, 600)	1	sov			0	858.2		4.3	4.2	0.1	3.3	3.2	0.1	61.50
(599,600)	2	sov			0	937.7		4.1	4.0	0.1	3.1	3.1	0.1	64.89
(599, 600)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(77,7053)	1	sov			0	987.0		2.2	2.0	0.2	1.7	1.6	0.1	57.93
(77,7053)	2	sov			0	698.4		2.0	1.9	0.0	1.5	1.5	0.0	64.51
(77,7053)	3	HOV	0	0	0	0.0	0.0	0.0	0.0					
(77,7033)	,	nov	U	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(7054, 568)	1	sov			2	1494.5		3.2	2.3	0.9	2.5	1.8	0.7	48.81
(705 4, 568)	2	sov			1	880.2		3.3	2.3	1.0	2.6	1.8	0.8	47.36
(7054, 568)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(396, 397)	1	sov			13	1277.3		25.4	24.2	1.3	19.7	18.7	1.0	61.21
(396, 397)	2	sov			8	1458.5		25.0	24.0	1.0	19.3	18.5	0.8	62.38
(396, 397)	3	sov			9	1295.5		25.0	23.8	1.2	19.3			
(396, 397)	4	HOV	0	0	Ó	0.0	0.0	0.0		0.0	0.0	18.4	0.9	62.32
(330, 337)	•	HOV	U	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(397, 398)	1	sov			2	2050.2		8.3	7.4	0.8	6.4	5.7	0.6	57.61
(397, 398)	2	sov			2	1187.9		7.7	7.3	0.3	5.9	5.7	0.3	62.24
(397, 398)	3	sov			0	1025.7		7.6	7.3	0.3	5.8	5.6	0.2	63.17
(397, 398)	4	HOV	0	0	ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(397, 398)	9	sov			Ö	386.0		8.3	7.3	1.0	6.4	5.6	0.8	57.47
(33., 330,	_	501			•	300.0		0.5	7.3	1.0	0.4	5.0	0.8	37.41
(398, 564)	1	sov			7	1766.9		9.1	8.6	0.5	7.0	6.6	0.4	60.25
(398, 564)	2	sov			4	1274.7		8.7	8.4	0.3	6.7	6.5	0.2	62.87
(398, 564)	3	sov			1	1065.3		8.7	8.3	0.3	6.7	6.4	0.3	63.04
(398, 564)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(398, 564)	9	sov			0	542.3		8.5	8.2	0.4	6.6	6.3	0.3	63.86
,,	•									•••	•••	•••	0.5	00.00
(620, 369)	1	sov			1	714.2		5.4	5.3	0.1	4.2	4.1	0.1	62.00
(620, 369)	2	sov			1	825.8		5.2	5.1	0.1	4.0	3.9	0.1	64.49
(620, 369)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(617, 114)	1	sov			0	254.0		8.1	8.0	0.1	6.3	6.2	0.1	54.57
(114, 115)	1	sov			1	254.0		11.5	11.2	0.2	8.8	8.7	0.2	50.02
(117, 416)	1	sov			1	251.6		8.9	8.7	0.2	6.9	6.7	0.1	49.12
(399, 402)	1	sov			1	599.5		20.2	19.9	0.2	15.6	15.4	0.2	55.74
(399, 402)	2	sov			3	618.7		21.3	21.0	0.2	16.5	16.2	0.2	52.68
(333, 402)	-	504	-		3	010.7	_	2	21.0	0.3	10.5	10.2	0.2	34.00
(625, 132)	1	sov			0	851.0		3.2	2.7	0.5	2.5	2.1	0.4	43.76
(626, 627)	1	sov			0	463.4		4.6	4.5	0.1	3.6	3.5	0.1	61.54
(626,627)	2	sov			0	336.6		4.3	4.2	0.1	3.4	3.3	0.1	65.82
,,	_				-				- 			- · ·	- • -	

(627,	190)	1	sov	 	0	460.2	 3.5	3.5	0.1	2.7	2.7	0.0	62.09
(627,	190)	2	sov	 	0	339.8	 3.3	3.2	0.0	2.5	2.5	0.0	66.70
(629,	255)	1	sov	 	1	476.3	 4.9	4.3	0.6	3.7	3.3	0.4	47.36
(628,	629)	1	sov	 	2	476.2	 5.9	5.3	0.6	4.6	4.1	0.5	39.92
(631,	280)	1	sov	 	0	813.3	 6.6	6.2	0.4	5.1	4.8	0.3	51.20
			_											
(630,	631)	1	sov	 	2	811.5	 6.0	5.8	0.3	4.7	4.5	0.2	48.32
,	633	c221		~~~		_								
	632,		1 2	sov	 	3	960.6	 8.3	8.0	0.3	6.4	6.2	0.2	53.45
(632,	633)	2	sov	 	4	902.7	 8.4	8.1	0.3	6.5	6.3	0.2	52.83
,	635,	54)	1	sov	 	0	122.0	 8.4	7.9					F4 40
,	033,	J 4 /	-	SUV	 	U	122.0	 0.4	7.9	0.5	6.5	6.1	0.4	51.18
(634,	635)	1	sov	 	0	122.0	 7.6	7.1	0.6	5.9	5.5	0.4	41.74
•	,	000,	_	201		•		,	,	0.0	3.3	3.3	0.4	41./4
(637,	56)	1	sov	 	3	265.9	 8.1	8.0	0.1	6.3	6.2	0.1	54.18
											• • • • • • • • • • • • • • • • • • • •	***	***	01.10
(636,	637)	1	sov	 	2	265.8	 5.7	5.6	0.1	4.4	4.3	0.1	54.04
													• • •	
(61,	638)	1	sov	 	3	619.0	 5.7	5.6	0.1	4.4	4.3	0.1	53.40
(638,	639)	1	sov	 	0	132.2	 4.4	4.2	0.2	3.4	3.2	0.1	52.70
(638,	639)	2	sov	 	0	487.1	 4.4	4.2	0.2	3.4	3.2	0.1	52.79
(62,	640)	1	sov	 	2	859.4	 5.2	5.0	0.2	4.0	3.9	0.2	52.76
			_			_								
-	640,	-	1	sov	 	0	250.2	 2.9	2.8	0.1	2.2	2.1	0.1	52.55
(640,	641)	2	sov	 	0	607.8	 2.8	2.7	0.1	2.2	2.1	0.1	52.90
,	642	64)	4	sov		2	477.4	 7 5	7.3	0 0	E 0	F 6		E2 02
(643,	64)	1	SUV	 	4	4//.4	 7.5	7.3	0.2	5.8	5.6	0.2	52.83
,	642,	643)	1	sov	 	2	320.6	 6.6	5.9	0.7	5.1	4.6	0.5	48.95
	642,		2	sov	 	ő	158.0	 6.8	6.1	0.7	5.3	4.7	0.6	47.71
,	042,	0437	-	501		·	130.0	0.0	٠.٠	0.7	3.3	•••	0.0	47.72
(69.	644)	1	sov	 	0	836.0	 4.6	4.4	0.2	3.6	3.4	0.2	51.85
ì	_	644)	2	sov	 	0	286.0	 4.6	4.3	0.3	3.5	3.3	0.2	52.30
`	,	,	_			-								3
(644,	645)	1	sov	 	0	12.8	 3.4	3.3	0.2	2.7	2.5	0.1	49.19
	644,		2	sov	 	0	332.6	 3.3	3.2	0.1	2.5	2.5	0.0	51.81
(644,	645)	3	sov	 	0	776.6	 3.4	3.3	0.1	2.6	2.5	0.1	49.99
(647,	71)	1	sov	 	0	361.1	 9.5	8.8	0.7	7.3	6.8	0.5	50.57

(646,	647)	1	sov	 	2	358.8	 8.2	7.6	0.6	6.4	5.9	0.5	41.41
(74	648)	1	sov	 	0	611.5	 5.9	5.8	0.1	4.6	4.5	0.1	53.49
ì	-	648)	2	sov	 	1	776.1	 5.9	5.8	0.1	4.6	4.4	0.1	53.69
,	/4,	040)	4	50V	 	_	//0.1	 3.9	3.0	0.1	4.0		0.1	33.03
	648,	-	1	sov	 	0	632.9	 5.0	4.9	0.1	3.9	3.8	0.1	53.68
(648,	649)	2	sov	 	1	753.6	 5.0	4.9	0.1	3.9	3.8	0.1	53.56
(651,	75)	1	sov	 	1	269.8	 5.4	4.9	0.5	4.2	3.8	0.4	49.03
(650,	651)	1	sov	 	1	269.2	 5.3	4.7	0.6	4.1	3.6	0.4	40.18
(653,	76)	1	sov	 	1	287.2	 3.1	3.1	0.1	2.4	2.4	0.1	53.48
(652,	653)	1	sov	 	0	288.0	 3.6	3.4	0.1	2.8	2.7	0.1	53.14
(569,	654)	1	sov	 	2	435.9	 3.5	3.3	0.2	2.7	2.5	0.2	51.36
(569,	654)	2	sov	 	0	267.2	 3.5	3.2	0.3	2.7	2.4	0.3	51.27
										• • • •			•••	J_1_,
(656,	570)	1	sov	 	2	1304.3	 6.5	5.8	0.7	5.0	4.5	0.5	48.15
(655,	656)	1	sov	 	0	1301.9	 7.6	6.8	0.7	5.8	5.3	0.6	40.56
(658,	571)	1	sov	 	2	275.4	 6.7	6.6	0.1	5.1	5.1	0.1	54.10
(657,	658)	1	sov	 	4	276.4	 5.6	5.6	0.1	4.3	4.3	0.1	53.99
(574,	660)	1	sov	 	0	374.0	 2.8	2.8	0.1	2.2	2.1	0.0	53.97
(660,	661)	1	sov	 	0	374.3	 2.8	2.7	0.1	2.2	2.1	0.1	51.46
(663,	576)	1	sov	 	2	1753.7	 7.8	6.2	1.6	6.0	4.8	1.2	43.67
(663,	576)	2	sov	 	1	276.4	 9.8	7.1	2.7	7.6	5.5	2.1	34.54
(662,	663)	1	sov	 	0	183.7	 6.9	4.5	2.4	5.4	3.5	1.9	32.92
(662,	663)	2	sov	 	2	1843.8	 5.9	4.5	1.4	4.5	3.4	1.1	38.76
(581,	664)	1	sov	 	2	935.7	 7.5	7.2	0.3	5.8	5.6	0.2	52.93
(664,	665)	1	sov	 	0	936.0	 2.9	2.8	0.1	2.2	2.1	0.1	52.71
(667,	583)	1	sov	 	6	945.7	 12.6	10.9	1.7	9.7	8.4	1.3	46.61
(666,	667)	1	sov	 	3	948.9	 4.3	4.0	0.3	3.3	3.1	0.2	34.06
(669.	584)	1	sov	 	4	1006.1	 7.9	7.3	0.6	6.1	5.6	0.5	50.52
		584)	2	sov	 	1	120.1	 8.3	7.6	0.7	6.4	5.9	0.5	47.74
,		,	_			_								

(6	68,	669)	1	SOV	 	0	56.3	 6.8	4.2	2.6	5.2	3.2	2.0	32.02	
		669)	2	sov	 	5	1075.3	 4.3	3.9	0.4	3.3	3.0	0.3	50.41	
(0	00,	009)	4	50V	 	3	10/5.5	 ■.3	3.3	0.4	3.3	3.0	0.5	30.41	
(5	89,	670)	1	sov	 	1	971.6	 3.0	2.8	0.1	2.3	2.2	0.1	52.65	
•	,	,													
						_									
(6	70,	671)	1	sov	 	0	972.8	 2.8	2.7	0.1	2.2	2.1	0.1	53.01	
1 6	72	673)	1	sov	 	0	914.5	 						45 40	
, 0	14,	0/3)	_	SUV	 	U	914.5	 6.4	6.0	0.4	4.9	4.6	0.3	47.13	
(6	74,	675)	1	sov	 	2	961.5	 3.9	3.8	0.2	3.0	2.9	0.1	52.51	
	-														
, ,		c== \				_	4000								
		677)	1	sov	 	8	1726.7	 19.9	18.6	1.3	15.4	14.3	1.0	51.40	
(6	76,	677)	2	sov	 	2	1061.0	 19.6	18.9	0.7	15.1	14.6	0.5	52.17	
(6	76.	677)	3	sov	 	0	43.2	 19.6	19.3	0.3	15.1	14.9	0.2	52.09	
		677)	9			_	244.8								
(0	70,	6//)	9	sov	 	1	244.8	 19.3	18.8	0.5	15.0	14.5	0.4	52.86	
(6	77,	680)	1	sov	 	4	636.0	 16.5	16.1	0.3	12.7	12.4	0.3	55.54	
(6	77.	680)	2	sov	 	3	915.2	 17.5	17.0	0.4	13.4	13.1	0.3	52.36	
, ,	,	,	_	20.		•	7-512	_,,,	_,,,	•••			0.5	32.30	
						_									
-		678)	1	sov	 	0	588.0	 5.1	5.1	0.0	3.9	3.9	0.0	50.28	
(6	77,	678)	2	sov	 	0	942.2	 5.3	5.2	0.1	4.1	4.0	0.1	48.37	
(6	78	679)	1	sov	 	1	616.2	 5.5	5.5	0.0	4.3	4.3	0.0	50.38	
							915.6	5.8							
(0	70,	679)	2	sov	 	1	915.0	 5.8	5.7	0.2	4.5	4.4	0.1	47.95	
(6	80,	681)	1	sov	 	1	722.0	 8.9	8.7	0.2	6.8	6.7	0.1	55.68	
16	80	681)	2	sov	 	2	833.3	 9.5	9.2	0.3	7.3	7.1	0.2	51.95	
, ,	00,	001,	-	201			00010	2.0		•••	, , ,	,		5-155	
			_			_									
		682)	1	sov	 	0	753.0	 9.2	9.0	0.2	7.1	7.0	0.1	55.69	
(6	81,	682)	2	SOV	 	3	800.4	 9.9	9.6	0.3	7.6	7.4	0.2	51.84	
, ,		COE \	4	G011		0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(0	84,	685)	1	sov	 	U	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(6	86,	111)	1	sov	 	0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00	
, ,		CO1 \	4			0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(6	85,	681)	1	SOV	 	U	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(6	82,	683)	1	sov	 	2	781.5	 9.2	9.0	0.2	7.1	7.0	0.1	55.67	
		683)	2	sov	 	4	770.1	 9.9	9.6	0.2	7.6	7.4	0.2	51.81	
, ,	02,	0037	-	BOV		•	,,,,,	3.3	3.0	٠	,	, . . -		32.02	
(6	87,	688)	1	sov	 	1	800.7	 6.8	6.7	0.1	5.3	5.2	0.1	46.36	
(6	87,	688)	2	sov	 	1	745.1	 7.3	7.1	0.2	5.6	5.5	0.2	43.16	
	-														
, ,		70271	1	5037		2	794.5	 4.4	4.4	0.0	3.4	3.4	0.0	40.73	
		(027)	1	SOV		2									
(6	88,7	7027)	2	sov	 	1	748.8	 4.8	4.8	0.1	3.7	3.7	0.1	37.37	

(7056, 626)	1	sov		 1	499.6	 5.3	4.6	0.7	4.0	3.5	0.5	54.93
(7056, 626)	2	sov		 0	335.2	 4.7	4.2	0.5	3.6	3.3	0.4	61.27
(7050) 020)	-	501		·	333.2			0.5	3.0	3.3	0.4	01.17
(679,7058)	1	sov		 0	631.9	 3.1	3.1	0.0	2.4	2.4	0.0	50.05
	2	SOV		0								
(679,7058)	4	SOV		 U	900.1	 3.3	3.2	0.1	2.5	2.4	0.1	47.08
(7059, 684)	1	sov		 0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00
(7060, 628)	1	sov		 1	519.1	 4.3	4.1	0.2	3.3	3.1	0.2	33.94
(7061, 630)	1	sov		 1	858.6	 4.8	4.4	0.4	3.7	3.4	0.3	46.18
(7062, 674)	1	sov		 0	1068.6	 2.4	2.0	0.3	1.8	1.6	0.3	47.94
(7063, 672)	1	sov		 1	951.7	 7.5	6.8	0.7	5.8	5.2	0.5	41.27
(671,7064)	1	sov		 0	973.5	 2.4	2.3	0.1	1.8	1.8	0.1	52.65
(633,7065)	1	sov	,	 1	949.2	 4.2	4.1	0.1	3.3	3.2	0.1	53.35
(633,7065)	2	sov		 2	912.2	 4.3		0.1				
(033,7003)	4	50V		 4	912.2	 4.3	4.2	0.1	3.3	3.2	0.1	52.58
(7066, 634)	1	sov		 0	133.1	 4.1	3.9	0.2	3.1	3.0	0.1	34.93
(7067, 636)	1	sov		 1	280.0	 5.1	4.7	0.4	3.9	3.6	0.3	50.84
(665,7068)	1	sov		 1	935.8	 2.7	2.6	0.2	2.1	2.0	0.1	51.16
(7069, 666)	1	sov		 2	1054.1	 3.4	3.3	0.1	2.6	2.6	0.1	35.45
(7070, 668)	1	sov		 0	266.8	 4.5	3.9	0.7	3.5	3.0	0.5	47.04
(7070, 668)	2	sov		 1	935.6	 4.1	3.9	0.3	3.2	3.0	0.2	51.91
(639,7071)	1	sov		 0	50.0	 2.2	2.0	0.2	1.7	1.5	0.2	50.60
(639,7071)	2	sov		 ō	570.0	 2.2	2.1	0.1	1.7	1.6	0.1	50.88
(000, 1012,	_	20.		•	2.000			***			0.1	30.00
(7072, 642)	1	sov		 0	133.4	 2.3	1.9	0.5	1.8	1.4	0.3	45.31
(7072, 642)	2	sov		 0	404.2	 2.2	1.9	0.3	1.7	1.4	0.3	47.55
/ 641 7072)				•	F2 0	2 2	2.2			4.5		F0 00
(641,7073)	1	sov		 0	52.0	 2.2	2.2	0.0	1.7	1.7	0.0	52.93
(641,7073)	2	sov		 0	806.8	 2.3	2.3	0.0	1.8	1.8	0.0	50.72
(661,7074)	1	sov		 0	376.0	 2.8	2.6	0.2	2.1	2.0	0.1	46.75
(7075, 662)	1	sov		 0	549.7	 4.5	3.8	0.7	3.5	2.9	0.5	43.73
(7075, 662)	2	sov		 3	1604.8	 4.2	3.9	0.3	3.2	3.0	0.2	46.62
(645,7076)	1	sov		 0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00

(645,7076)	2	sov	 	0	121.0		3.1	3.0	0.1	2.4	2.3	0.1	51.80
				Ö	1002.9		3.4	3.3	0.1	2.6	2.5	0.1	47.62
(645,7076)	3	sov	 	U	1002.9		3.4	3.3	0.1	2.0	2.5	0.1	47.02
(7077, 646)	1	sov	 	1	402.0		3.2	3.0	0.2	2.4	2.3	0.1	34.40
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	201											
(7078, 657)	1	sov	 	0	294.3		4.5	4.3	0.2	3.5	3.3	0.2	52.37
(7000 CEO)				•	206.0								
(7080, 650)	1	sov	 	0	286.0		6.0	5.8	0.2	4.6	4.5	0.2	34.70
(7081, 655)	1	sov	 	0	1415.2		4.2	4.0	0.2	3.3	3.1	0.2	34.06
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_	201		·				0	0.2	3.3	3.1	0.2	34.00
(649,7082)	1	sov	 	1	642.3		3.8	3.7	0.1	2.9	2.8	0.1	52.92
(649,7082)	2	sov	 	1	744.5		3.9	3.7	0.3	3.0	2.8	0.2	51.20
(015), (001)	_	501		-	/44.5		3.3	3.7	0.3	3.0	4.0	0.2	31.20
(7083, 652)	1	sov	 	1	312.1		3.2	2.9	0.4	2.5	2.2	0.3	49.54
	_			_									
(7084, 857)	1	sov	 	Ō	429.2		2.6	2.3	0.3	2.0	1.8	0.2	49.22
(857, 858)	1	sov	 	0	391.0		4 0	3.9	0.1	2 1	2.0	0 1	53.22
(857, 858)		SUV	 	U	391.0		4.0	3.9	0.1	3.1	3.0	0.1	53.22
(859,7085)	1	sov	 	0	303.0		6.2	6.0	0.2	4.8	4.7	0.2	52.98
(000), 000,	_			•				• • • • • • • • • • • • • • • • • • • •			-•,	• • • •	52175
(7086, 860)	1	sov	 	0	48.9		5.9	5.8	0.1	4.5	4.5	0.1	54.06
(050 051)		~~		•	45.0								E4 40
(860, 861)	1	sov	 	0	47.0		5.7	5.6	0.0	4.4	4.4	0.0	54.40
(866,7087)	1	sov	 	0	68.0		3.8	3.7	0.1	2.9	2.9	0.0	54.74
(000,7007)	-	504		U	00.0		3.0	3.,	0.1	2.5	2.5	0.0	34.74
(873,7088)	1	sov	 	0	47.0		6.9	6.9	0.0	5.3	5.3	0.0	54.99
.=	_			_									
(7089, 874)	1	sov	 	0	225.0		3.8	3.6	0.2	2.9	2.8	0.2	51.73
(874, 875)	1	sov	 	0	211.0		3.7	3.6	0.1	2.9	2.8	0.1	53.92
(8/4, 8/3)	_	SUV	 	U	211.0		3.7	3.0	0.1	2.9	2.0	0.1	33.34
(876,7090)	1	sov	 	0	31.0		6.0	6.0	0.0	4.7	4.6	0.0	53.45
(0.0,.000,													
				_									
(7091, 877)	1	sov	 	0	65.0		5.0	3.6	1.5	3.9	2.8	1.1	39.85
(077 070)	4	COTT	 	0	61.0		4.5	4.3	0.2	3.5	3.3	0.2	51.89
(877, 878)	1	sov	 	U	61.0		4.5	4.3	0.2	3.3	3.3	0.2	31.09
(879,880)	1	sov	 	5	993.1		13.9	13.7	0.2	10.8	10.6	0.1	64.28
													64.21
(879, 880)	2	sov	 	4	1034.3		13.9	13.7	0.2	10.7	10.6	0.1	04.41
(880, 881)	1	sov	 	6	981.8		19.9	19.5	0.3	15.4	15.1	0.3	63.84
(880, 881)	2	sov	 	6	1015.3		19.9	19.5	0.4	15.4	15.1	0.3	63.79
(881, 882)	1	sov	 	7	993.1		16.4	16.0	0.4	12.7	12.4	0.3	63.22
(001, 002)	_	204	 	,	333.I	-	10.4	10.0	0.4	14.7		0.5	05.22

(881,	882)	2	sov	 	5	1004.7		16.4	16.0	0.5	12.7	12.4	0.4	63.14
(882,	883)	1	sov	 	4	997.7		16.3	15.8	0.5	12.6	12.2	0.4	62.73
	-		2			_									
(882,	883)	4	sov	 	3	1002.8		16.3	15.7	0.5	12.6	12.2	0.4	62.91
-	883,	-	1	sov	 	2	945.7		13.0	12.6	0.4	10.1	9.8	0.3	62.79
(883,	884)	2	sov	 	2	1007.7		13.0	12.6	0.4	10.1	9.8	0.3	62.76
(883,	873)	1	sov	 	0	47.0		7.5	7.4	0.0	5.8	5.7	0.0	55.00
(884,	885)	1	sov	 	4	953.7		12.1	11.6	0.4	9.3	9.0	0.3	62.63
(884,	885)	2	sov	 	4	1002.1		12.1	11.6	0.4	9.3	9.0	0.3	62.63
(885,	886)	1	sov	 	4	956.3		14.9	14.4	0.6	11.5	11.1	0.4	62.63
(885,	886)	2	sov	 	3	999.1		15.0	14.4	0.6	11.6	11.2	0.4	62.45
														•••	
	886,	-	1	sov	 	4	1112.9		16.7	15.7	0.9	12.9	12.2	0.7	61.34
-	886,		2	sov	 	1	1046.7		16.5	15.8	0.7	12.8	12.2	0.6	62.04
(886,	887)	9	sov	 	0	10.9		20.2	17.1	3.1	15.7	13.3	2.4	50.52
(887,	888)	1	sov	 	11	1087.1		17.0	16.2	0.7	13.1	12.6	0.6	62.01
(887,	888)	2	sov	 	13	1080.1		16.9	16.2	0.7	13.1	12.5	0.6	62.16
											0.,	13.1	12.5	0.0	02.10
(875,	886)	1	sov	 	0	211.0		5.3	5.3	0.1	4.1	4.1	0.0	54.33
(888,	889)	1	sov	 	2	1074.4		18.4	17.6	0.8	14.3	13.6	0.6	62.02
(888,	889)	2	sov	 	2	1090.3		18.4	17.6	0.8	14.2	13.6	0.6	62.18
(889,	890)	1	sov	 	4	1085.1		12.2	11.6	0.6	9.4	9.0	0.4	61.95
-	889,	-	2	sov	 	2	1078.7		12.1	11.6	0.5	9.4	9.0		
,	003,	030)	-	500	 	4	10/8./		12.1	11.6	0.5	9.4	9.0	0.4	62.08
(890,	891)	1	sov	 	9	1088.4		19.2	18.3	0.9	14.8	14.1	0.7	61.90
(890,	891)	2	sov	 	2	1076.8		19.1	18.3	0.8	14.8	14.2	0.6	62.05
(891,	892)	1	sov	 	3	1081.9		14.4	13.7	0.7	11.2	10.6	0.5	61.77
-	891,	-	2	sov	 	4	1086.2		14.4	13.7	0.7	11.2	10.6	0.5	61.94
,	031,	032,	-	501		•	1000.2		11.1	13.7	0.7	11.2	10.0	0.5	01.94
(892,	893)	1	sov	 	9	1085.5		33.9	32.2	1.7	26.3	24.9	1.3	61.63
(892,	893)	2	sov	 	11	1075.9		33.7	32.2	1.5	26.1	24.9	1.2	62.03
(893,	894)	1	sov	 	9	1052.0		40.0	38.0	2.0	31.0	29.4	1.5	61.60
(893,	894)	2	sov	 	10	1112.6		39.8	37.9	1.9	30.8	29.3	1.5	61.97
-															
	894,	-	1	sov	 	12	1054.8		24.5	23.3	1.2	18.9	18.0	0.9	61.69
(894,	895)	2	sov	 	8	1107.2		24.5	23.2	1.3	19.0	18.0	1.0	61.60
(895,	896)	1	sov	 	11	1075.9	·	38.2	36.2	2.0	29.5	28.0	1.5	61.61

(895,	896)	2	sov	 	12	1085.1	 38.3	36.3	2.0	29.7	28.1	1.6	61.40	
(896,	897)	1	sov	 	10	1073.9	 41.1	38.8	2.3	31.8	30.0	1.8	61.39	
-		-													
(896,	897)	2	sov	 	10	1091.5	 41.1	38.8	2.2	31.8	30.1	1.7	61.36	
	897,		1	sov	 	6	1080.2	 22.7	21.4	1.3	17.6	16.6	1.0	61.16	
(897,	898)	2	sov	 	5	1090.0	 22.6	21.4	1.2	17.5	16.6	0.9	61.48	
(898,	899)	1	sov	 	6	1085.8	 16.8	15.8	1.0	13.0	12.2	0.8	60.83	
- (898,	899)	2	sov	 	2	1082.3	 16.6	15.7	0.9	12.9	12.2	0.7	61.50	
`	,	000,	-	501		_	1002.5	 10.0	13.7	0.9	12.9	12.2	0.7	61.50	
(899,	900)	1	sov	 	7	1006.9	 18.4	17.4	1.0	14.2	13.4	0.8	61.17	
(899,	900)	2	sov	 	9	1089.7	 18.2	17.3	0.9	14.1	13.4	0.7	61.71	
(899,	866)	1	sov	 	0	68.0	 7.7	7.6	0.1	5.9	5.9	0.0	55.18	
(900,	901)	1	sov	 	3	1017.2	 21.5	20.4	1.1	16.6	15.8	0.9	61.36	
(900,	901)	2	sov	 	7	1087.3	 21.5	20.3	1.2	16.6	15.7	0.9	61.41	
-															
	901,		1	sov	 	3	1290.9	 17.5	15.8	1.7	13.5	12.2	1.3	58.50	
(901,	902)	2	sov	 	4	1180.2	 16.8	15.7	1.1	13.0	12.2	0.8	60.88	
(901,	902)	9	sov	 	0	19.6	 23.2	18.5	4.8	17.9	14.3	3.7	44.00	
(902,	903)	1	sov	 	9	1259.4	 16.8	15.9	0.9	13.0	12.3	0.7	61.14	
(902,	903)	2	sov	 	7	1223.9	 16.8	15.8	1.0	13.0	12.2	0.8	61.32	
(858,	901)	1	sov	 	0	391.0	 10.2	9.9	0.3	7.8	7.6	0.2	53.45	
(903,	904)	1	sov	 	13	1236.5	 19.3	18.2	1.1	15.0	14.1	0.9	61.02	
-	903,		2	sov	 	7		 19.2	18.1	1.1	14.9	14.0	0.8	61.45	
,	903,	904)	4	50V	 	,	1237.0	 19.2	10.1	1.1	14.9	14.0	0.8	01.45	
(904,	905)	1	sov	 	6	1205.8	 15.0	14.1	0.8	11.6	10.9	0.6	61.04	
(904,	905)	2	sov	 	6	1259.0	 14.9	14.0	0.8	11.5	10.9	0.6	61.48	
(906,	907)	1	sov	 	5	1247.5	 14.3	14.1	0.2	11.1	10.9	0.2	64.24	
(906.	907)	2	sov	 	6	1284.5	 14.4	14.2	0.3	11.2	11.0	0.2	63.77	
,	300,	50,,	-			_									
(907,	908)	1	sov	 	6	1272.5	 21.9	21.3	0.6	17.0	16.5	0.5	63.37	
(907,	908)	2	sov	 	7	1223.1	 22.0	21.4	0.6	17.0	16.6	0.4	63.25	
									45.0			40.0			
•		909)	1	sov	 	4	1338.5	 16.6	15.8	0.8	12.8	12.3	0.6	61.61	
(908,	909)	2	sov	 	6	1158.9	 16.3	15.7	0.6	12.6	12.2	0.4	62.80	
(909,	910)	1	sov	 	6	1033.1	 14.5	13.9	0.6	11.2	10.8	0.4	62.40	
(909,	910)	2	sov	 	4	1164.8	 14.4	13.9	0.5	11.1	10.7	0.4	62.78	
(909,	859)	1	sov	 	1	302.9	 9.6	9.5	0.2	7.5	7.3	0.1	53.91	

(910	, 9:	L1)	1	sov	 	5	1057.6	 17.3	16.7	0.6	13.4	12.9	0.5	62.78
(910	. 9:	11)	2	sov	 	7	1135.7	 17.3	16.7	0.6	13.4	12.9	0.5	62.61
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, -	,	_			•		_,.,		0.0		,	0.5	02.02
(911		121	1	sov	 	6	1088.5	15.0	15 3		40.0			co ==
-	-	-				-		 15.9	15.3	0.6	12.3	11.8	0.5	62.75
(911	, 9	12)	2	sov	 	5	1105.1	 16.0	15.4	0.6	12.4	11.9	0.5	62.31
(861	., 9	12)	1	sov	 	0	47.0	 6.3	6.3	0.0	4.9	4.9	0.0	54.36
									0.0	0.0	,	,	0.0	54.50
(912	. 9	13)	1	sov	 	6	1143.0	 16.3	15.7	0.6	10.6	40.4		
(912		-	2	sov	 	5	1095.5				12.6	12.1	0.5	62.70
•			_			-		 16.4	15.8	0.6	12.7	12.2	0.5	62.28
(912	, 9	13)	9	sov	 	0	1.5	 18.8	17.8	1.0	14.5	13.7	0.8	54.39
(913	, 9	14)	1	sov	 	7	1144.1	 17.1	16.4	0.7	13.2	12.7	0.5	62.57
(913	, 9	14)	2	sov	 	5	1097.1	 17.2	16.5	0.7	13.3	12.8	0.6	62.16
														02.10
(914	. 9	15)	1	sov	 	16	1126.3	 33.9	32.4	1.5	26.3	25.1	1.0	co 01
(914	-		2	sov	 	15	1108.9						1.2	62.21
()14	, ,	13,	4	SUV	 	13	1108.9	 34.0	32.5	1.5	26.3	25.2	1.2	62.05
			_											
(915	-	-	1	sov	 	5	1121.0	 34.3	32.7	1.6	26.5	25.3	1.2	62.09
(915	, 9	16)	2	sov	 	11	1109.4	 34.3	32.8	1.6	26.5	25.3	1.2	62.05
(916	, 9	17)	1	sov	 	9	1120.8	 31.2	29.7	1.5	24.2	23.0	1.1	61.99
(916		-	2	sov	 	7	1109.8	 31.2	29.8	1.4	24.1	23.0	1.1	62.01
, , , , ,	, ,	,	_	201		,	1103.0	 31.2	29.0	1.4	24.1	23.0	1.1	02.01
(917		10\		sov		_								
-		-	1		 	6	1117.5	 24.5	23.3	1.2	18.9	18.0	0.9	61.86
(917	, 9	18)	2	sov	 	. 6	1120.0	 24.5	23.3	1.2	18.9	18.0	0.9	61.81
(918	, 9	19)	1	sov	 	10	1121.4	 31.5	30.0	1.5	24.4	23.2	1.2	61.86
(918	, 9	19)	2	sov	 	11	1117.0	 31.5	29.9	1.6	24.4	23.2	1.2	61.86
(919	9	201	1	sov	 	9	1133.0	 32.8	31.1	1.7	25.4	24.1	1.3	61.72
(919		,	2	sov	 	13	1105.7	 32.7	31.1	1.7	25.3	24.0		
()13	, ,	20)	4	SUV	 	13	1105.7	 34.1	31.1	1.7	45.3	24.0	1.3	61.81
			_											
(920	-	-	1	sov	 	4	1145.4	 20.1	19.0	1.1	15.5	14.7	0.8	61.60
(920	, 9	21)	2	sov	 	8	1089.6	 20.0	19.0	1.0	15.5	14.7	0.8	61.79
(921	., 9	22)	1	sov	 	4	1139.7	 19.2	18.1	1.1	14.9	14.0	0.8	61.39
(921			2	sov	 	4	1097.4	 19.1	18.1	1.0	14.8	14.0	0.8	61.66
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	., -	,	-	501		_	1037.1		10.1		14.0	14.0	0.0	01.00
,							4400 -	40.0						
(922			1	sov	 	14	1139.5	 19.3	18.3	1.1	15.0	14.1	0.8	61.36
(922	, 9	23)	2	sov	 	6	1107.3	 19.3	18.2	1.1	14.9	14.1	0.8	61.55
(923	, 9	24)	1	sov	 	8	1127.8	 21.7	20.5	1.2	16.8	15.9	0.9	61.35
(923	, 9	24)	2	sov	 	6	1099.2	 21.7	20.4	1.3	16.8	15.8	1.0	61.43
			_			•								32.20
(924		251	1	sov	 	6	1144.9	 20.5	19.4	1.2	15.0	15 ^	0 0	61 00
, 344	, ,	/	-	204	 	0	1144.9	 40.5	19.4	1.2	15.9	15.0	0.9	61.22

(924, 925)	2	sov	 	5	1075.7	 20.4	19.3	1.1	15.8	14.9	0.9	61.49
(925, 926)	1	sov	 	8	1110.5	 23.7	22.4	1.3	18.3	17.3	1.0	61.46
(925, 926)	2	sov	 	9	1081.9	 23.7	22.4	1.4	18.4	17.3	1.1	61.35
()25,)20,	_	501										
(925, 876)	1	sov	 	0	31.0	 10.3	10.2	0.1	7.9	7.9	0.0	53.44
/ 006 005		sov			4404 -	45.4						
(926, 927) (926, 927)	1 2	SOV	 	1	1121.5 1071.2	 17.4 17.5	16.4	1.0	13.5	12.7	0.8	61.36
(920, 927)	4	50V	 	-	10/1.2	 17.5	16.4	1.0	13.5	12.7	0.8	61.28
(878, 927)	1	sov	 	1	60.2	 3.7	3.7	0.0	2.9	2.8	0.0	54.54
(927, 928)	1	sov	 	4	1170.5	 16.7	15.7	1.0	12.9	12.2	0.8	61.30
(927, 928)	2	sov	 	3	1086.2	 16.7	15.7	0.9	12.9	12.2	0.7	61.41
(927, 928)	9	sov	 	0	2.0	 19.4	18.0	1.5	15.2	14.1	1.1	52.67
(928, 929)	1	sov	 	5	1172.6	 15.5	14.6	0.9	12.0	11.3	0.7	61.30
(928, 929)	2	sov	 	9	1092.6	 15.5	14.6	0.9	12.0	11.3	0.7	61.44
, , , , , , , , , , , , , , , , , , , ,											• • •	
(929, 930)	1	sov	 	3	1154.5	 19.2	18.1	1.1	14.8	14.0	0.8	61.33
(929, 930)	2	sov	 	5	1110.0	 19.1	18.0	1.0	14.8	14.0	0.8	61.60
(930, 931)	1	sov	 	5	1145.4	 12.8	12.1	0.7	9.9	9.3	0.5	61.34
(930, 931)	2	sov	 	4	1117.7	 12.8	12.1	0.7	9.9	9.3	0.5	61.48
(654,7079)	1	sov	 	0	20.0	 3.6	3.2	0.4	2.8	2.5	0.3	49.73
(654,7079)	2	sov	 	1	682.2	 3.7	3.3	0.4	2.8	2.5	0.3	48.28
(683, 687)	1	sov	 	1	788.6	 6.3	6.2	0.1	4.9	4.8	0.1	51.56
(683, 687)	2	sov	 	1	759.5	 6.8	6.6	0.2	5.2	5.1	0.1	48.07
(407, 369)	1	sov	 	1	657.5	 4.9	4.7	0.2	3.8	3.6	0.2	50.84
(407, 369)	2	sov	 	1	558.1	 4.6	4.4	0.2	3.6	3.4	0.2	54.16
(407, 369)	3	sov	 	1	635.6	 4.9	4.7	0.2	3.8	3.6	0.2	51.12
(107) 303)		501		_	00010						• • •	
(411, 416)	1	sov	 	0	332.4	 3.8	3.7	0.0	2.9	2.9	0.0	49.71
(115, 117)	1	sov	 	2	251.9	 13.9	13.6	0.3	10.7	10.5	0.2	49.22
(382, 383)	1	sov	 	0	103.6	 3.7	3.4	0.3	2.9	2.6	0.2	36.76
(382, 383)	2	sov	 	2	1078.2	 4.1	3.7	0.4	3.2	2.9	0.3	32.85
(302) 303)	_	201		_								
(412, 414)	1	sov	 	0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00
(281, 937)	1	sov	 	0	47.0	 5.7	0.3	5.4	4.4	0.2	4.2	24.10
(281, 937)	6	sov	 	0	1428.5	 3.0	2.8	0.2	2.3	2.1	0.2	45.70
(281, 937)	7	sov	 	0	1005.2	 2.8	2.8	0.1	2.2	2.1	0.1	48.15
				-								

(383,	414)	1	SOV			0	124.7		9.1	7.8	1.4	7.1	6.0	1.0	38.26
(383,	414)	2	sov			4	1053.4		8.9	7.9	1.0	6.9	6.1	0.8	39.10
(314,	553)	1	sov			0	927.0		7.8	7.5	0.3	6.0	5.8	0.2	52.88
	,	_				•				, , ,	•••	•••	3.0	٠	52.00
(553,	933)	1	sov			3	927.1		10.2	9.8	0.4	7.9	7.6	0.3	48.50
,,	,,	_	20.			•	347.1		10.2	3.0	0.4	1.3	7.0	0.3	40.50
(933,	934)	1	sov			5	924.7		10.0	9.6	0 E				45 64
,	202,	_	201			,	344.7		10.0	9.0	0.5	7.7	7.4	0.4	47.64
(935,	936)	1	sov			1	660.9		9.3	9.1	0.2	7 2			40 =4
(935,		2	sov			ō	809.8		9.6	9.3	0.2	7.2	7.0	0.2	49.51
(333,	350,	-	501			U	809.8		9.0	9.3	0.3	7.4	7.2	0.2	48.13
(934,	935)	1	sov			4	596.2		5.0	4.8	0.1	2.0			
(934,		6	sov			3	876.5		5.1			3.8	3.7	0.1	48.98
())=/	,,,,	٠	501			3	6/6.5		3.1	4.9	0.2	3.9	3.8	0.2	47.67
(936,	309)	1	sov			0	689.0		7.6	7.4	0.2				
(936,	-	2	SOV			4	781.5					5.9	5.7	0.1	49.63
(),	3037	4	204			*	781.5		7.8	7.6	0.2	6.0	5.9	0.2	48.07
(414,	415)	1	sov			0	0.0		0.0	0 0					
(414,		9	sov			0	1178.6			0.0	0.0	0.0	0.0	0.0	0.00
,	413)	•	50V			U	11/8.6		4.5	4.2	0.3	3.5	3.3	0.2	41.64
(937,	EEE\	1	sov			3	1395.2								
(937,		2	SOV			4	1065.1		4.8	4.4	0.4	3.7	3.4	0.3	49.17
(331,	333)	4	200			4	1062.1		4.7	4.3	0.3	3.6	3.3	0.3	50.58
(111,	6761	1	sov			0	0.0								
(111,	-	6	sov			4	1802.6		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(111,	-	7	SOV			_	1265.4		8.6	8.1	0.4	6.6	6.3	0.3	52.59
(111,	0/0)	,	SOV			3	1405.4		8.6	8.3	0.3	6.6	6.4	0.2	52.24
(416,	161\	1	sov			•	226.0								
	-		SOV			0	336.0		7.7	7.5	0.1	5.9	5.8	0.1	49.56
(416,	101)	9	SOV			0	248.7		7.7	7.6	0.1	6.0	5.8	0.1	49.21
/ 162	165)		sov			_	1560 0								
(162,	-	1 2	SOV			5 6	1560.8		9.7	9.4	0.3	7.5	7.3	0.2	63.29
(162,	-	_				-	1881.4		9.8	9.4	0.3	7.6	7.3	0.2	62.86
(162,	-	3	sov			4	1938.0		9.8	9.4	0.3	7.6	7.3	0.3	62.77
(162,	165)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
						_									
(165,	-	1	sov			5	1567.1		8.1	7.9	0.2	6.2	6.1	0.2	63.34
(165,		2	sov			4	1817.2		8.1	7.9	0.2	6.3	6.1	0.2	63.05
(165,		3	sov			5	1884.7		8.1	7.9	0.3	6.3	6.1	0.2	62.91
(165,	166)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(386,	-	1	sov			3	1260.2		8.7	8.1	0.6	6.7	6.2	0.5	58.91
(386,	-	2	sov			2	1285.1		8.1	7.9	0.3	6.3	6.1	0.2	62.77
(386,	-	3	sov			0	1142.3		7.8	7.6	0.3	6.1	5.9	0.2	65.15
(386,	167)	4	HOV	12	12	0	12.0	12.0	7.9	7.9	0.1	6.1	6.1	0.1	64.34
(386,	167)	9	sov			0	28.5		10.6	9.0	1.6	8.2	6.9	1.3	48.31

(167, 168)	1	sov			2	1252.2		8.5	8.1	0.4	6.6	6.3	0.3	60.06	
(167, 168)	2	sov			3	1298.1		8.1	7.9	0.2	6.3	6.1	0.2	62.91	
(167, 168)	3	sov			0	1167.5		7.9	7.6	0.3	6.1	5.9	0.2	64.98	
(167, 168)	4	HOV	12	12	o	12.0	12.0	7.9	7.9	0.1	6.1	6.1	0.1	64.34	
(107, 100)	*	HOV	12	12	U	12.0	12.0	7.9	7.3	0.1	0.1	0.1	0.1	04.54	
/ 160 160)	1	0017			-	1220 2		0 1	0.7	0.4	7.0	6 7	0.2	60.42	
(168, 169)	1	sov			6	1238.2		9.1	8.7	0.4	7.0	6.7	0.3	60.42	
(168, 169)	2	sov			2	1293.8		8.7	8.5	0.2	6.7	6.5	0.2	62.98	
(168, 169)	3	sov			6	1185.9		8.5	8.2	0.3	6.5	6.3	0.2	64.86	
(168, 169)	4	HOV	12	12	0	12.0	12.0	8.5	8.5	0.1	6.6	6.5	0.1	64.30	
	_														
(404, 170)	1	sov			0	185.0		3.6	3.6	0.0	2.8	2.8	0.0	54.16	
(7018, 171)	1	sov			0	336.6		2.9	2.5	0.3	2.2	1.9	0.3	43.98	
(171, 172)	1	sov			0	306.9		2.6	2.5	0.1	2.0	1.9	0.1	48.83	
(172, 387)	1	sov			1	307.0		2.7	2.5	0.2	2.1	1.9	0.1	50.54	
(7020, 174)	1	sov			0	337.4		3.3	3.0	0.3	2.5	2.3	0.2	45.69	
(174, 175)	1	sov			0	312.0		3.3	3.3	0.1	2.6	2.5	0.1	49.34	
(=:=, =:=,					•								***	-515-	
(175, 386)	1	sov			0	312.0		3.8	3.6	0.2	2.9	2.8	0.1	51.85	
(1/5, 500)	-	501			·	312.0		3.0	3.0	0.2	2.5	2.0	0.1	31.03	
(385, 173)	1	sov			1	633.0		3.3	3.2	0.1	2.6	2.5	0.1	52.92	
(305, 175)	_	SUV				633.0		3.3	3.4	0.1	2.0	2.5	0.1	52.92	
(172 7010)		2011				622 1		2 2	2 2	۸ 1	2 -	2 F		E0 E6	
(173,7019)	1	sov			1	632.1		3.2	3.2	0.1	2.5	2.5	0.1	50.56	
(450 5045)					•	105.0		2	2 5					F1 30	
(170,7017)	1	sov			0	185.0		3.7	3.7	0.0	2.9	2.8	0.0	51.38	
	_				_									=0.00	
(151, 344)	1	sov			2	1043.2		7.9	7.6	0.4	6.1	5.9	0.3	52.28	
(151, 344)	2	sov			0	85.0		8.1	7.2	0.9	6.3	5.6	0.7	51.15	
(344,7026)	1	sov			0	10.0		3.3	2.8	0.5	2.5	2.1	0.4	43.09	
(344,7026)	2	sov			1	1117.8		3.1	2.8	0.3	2.4	2.2	0.2	46.02	
(7007, 208)	1	sov			0	148.6		3.0	2.5	0.6	2.3	1.9	0.4	37.81	
(209, 180)	1	sov			0	133.0		3.8	3.5	0.3	2.9	2.7	0.2	50.48	
,,	_				-										
(315, 555)	1	sov			2	727.9		14.2	13.8	0.4	11.0	10.7	0.3	61.73	
(315, 555)	2	sov			3	1052.2		14.1	13.7	0.4	10.9	10.6	0.3	62.10	
(315, 555)	3	sov			6	941.3		13.5	13.3	0.2	10.4	10.2	0.2	64.94	
(315, 555)	4	SOV			4	600.8		13.3	13.1	0.3	10.3	10.1	0.2	65.66	
	_													0.00	
(315, 555)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	

(313,	248)	1	sov			7	1572.6		12.1	11.3	0.8	9.3	8.7	0.6	59.90
(313,	248)	2	sov			6	1212.5		11.6	11.2	0.4	9.0	8.7	0.3	62.42
(313,	248)	3	sov			3	924.8		11.1	10.9	0.2	8.6	8.4	0.1	65.07
(313,	248)	4	sov			1	541.2		11.1	10.9	0.2	8.5	8.4	0.1	65.41
(313,	-	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,,	,	•		•	•	•			• • • •	•••	•••	•••	•••	•••	
(258,	259)	1	sov			-1	1142.0		4.8	4.3	0.5	3.7	3.3	0.4	45.28
(258,	-	2	sov			1	299.7		5.0	4.6	0.4	3.9	3.6	0.3	43.36
						_			3.0	0	0.4	3.9	3.0	0.3	43.30
(259,	260)	1	sov			0	1106.3		9.6	9.0	0.6	7.4	6.9	0.5	51.13
(259,	260)	6	sov			2	920.8		9.2	8.9	0.3	7.1	6.9	0.3	53.46
(259,		7	sov			3	525.3		9.2	9.0	0.2	7.1	7.0	0.1	53.46
·,	,					•	323.3		3.2	3.0	0.2	/.1	7.0	0.1	33.40
(260,	261)	1	sov			6	1061.6		8.9	8.4	0.5	6.9	6.5	0.4	52.19
(260,		6	sov			1	946.5		8.7	8.4	0.2	6.7	6.5	0.4	53.48
(260,	_	7	sov			0	544.2		8.7	8.5	0.1	6.7	6.6		
,	,	•	201			·	344.2		0.7	0.5	0.1	0.7	0.0	0.1	53.53
(261,	262)	1	sov			10	1057.6		16.5	15.5	1.0	12.7	11.9	0.8	E1 E0
,	,	-	201				1037.0		10.5	13.3	1.0	14.7	11.9	0.8	51.50
(262,	263)	1	sov			6	1058.6		6.8	6.3	0.5	5.2	4.9	0.4	51.09
·,	,	_				•	1000.0		0.0	0.5	0.5	3.2	4.5	0.4	31.09
(263,	264)	1	sov			1	1059.9		7.5	7.0	0.5	5.8	5.4	0.4	50.88
•		_				_			,	,	0.5	3.0	3.4	0.4	30.00
(7008,	625)	1	sov			2	942.0		3.5	1.7	1.8	2.7	1.3	1.4	33.12
						_									33.12
(403,	310)	1	sov			1	980.3		5.3	4.2	1.1	4.1	3.2	0.9	43.02
(403,	310)	2	sov			2	237.8		6.3	4.7	1.6	4.9	3.7	1.2	36.35
													• • • • • • • • • • • • • • • • • • • •		50155
(307,	187)	1	sov			0	764.2		4.3	4.2	0.2	3.4	3.2	0.1	64.88
(307,	187)	2	sov			1	1471.9		4.7	4.5	0.2	3.6	3.5	0.2	60.21
(307,	187)	3	sov			2	1493.0		4.5	4.3	0.2	3.5	3.3	0.1	62.51
(307,	187)	4	sov			1	1250.8		4.5	4.3	0.2	3.5	3.3	0.2	62.60
(307,		5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
									• • • •	• • • •	• • • •	•••	•••		*****
(264,	187)	1	sov			4	1057.1		3.9	3.7	0.3	3.0	2.8	0.2	50.42
														• • •	
(261,	189)	1	sov			4	906.6		7.7	7.5	0.2	6.0	5.8	0.2	53.28
(261,	-	2	sov			0	586.0		7.7	7.5	0.2	6.0	5.8	0.1	53.45
	,										• • •			• • •	
(189,	265)	1	sov			3	852.4		8.2	8.0	0.2	6.4	6.2	0.2	49.19
(189,	-	2	sov			4	638.9		8.1	8.0	0.2	6.3	6.2	0.1	49.75
,,	,									• • • •	• • • •	• • • • • • • • • • • • • • • • • • • •	***	• • • •	25 7 7 5
(265,	266)	1	sov			1	821.1		6.6	6.4	0.2	5.1	4.9	0.1	44.46
(265,	-	2	sov			2	667.1		6.5	6.3	0.1	5.0	4.9	0.1	45.18
. =:•/	,	_				_								•••	
(266,	267)	1	sov			1	797.3		8.7	8.5	0.3	6.8	6.6	0.2	43.35
(266,		2	sov			3	696.3		8.6	8.4	0.2	6.6	6.5	0.1	44.27
,		_				-									

(267,	268)	1	sov			4	783.7		8.2	7.9	0.3	6.3	6.1	0.2	43.23
(267,	268)	2	sov			3	705.6		8.0	7.8	0.2	6.2	6.0	0.2	44.17
			_													
-	268,		1	sov			3	670.5		13.4	12.4	1.1	10.4	9.6	0.8	45.63
(268,	269)	2	sov			5	811.9		13.0	12.1	0.8	10.0	9.4	0.6	47.32
(441,	397)	1	sov			0	622.0		3.5	3.2	0.3	2.7	2.5	0.2	49.88
(564,	399)	1	sov			4	1709.3		8.2	7.6	0.6	6.3	5.9	0.4	58.19
(564,	399)	2	sov			2	1495.6		7.8	7.3	0.4	6.0	5.7	0.3	61.57
(564,	399)	3	sov			3	864.9		7.6	7.3	0.3	5.8	5.6	0.2	63.11
(564,	399)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(564,	399)	9	sov			1	577.1		8.0	7.8	0.2	6.2	6.0	0.1	59.87
(399,	400)	1	sov			0	1175.2		4.8	4.5	0.4	3.7	3.5	0.3	59.81
(399,	400)	2	sov			2	1383.7		4.7	4.5	0.2	3.6	3.5	0.2	61.07
(399,	400)	3	sov			0	867.3		4.5	4.4	0.2	3.5	3.4	0.1	63.43
(399,	400)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(269,	15)	1	sov			0	458.2		6.5	4.5	2.0	5.0	3.5	1.5	37.07
(269,	15)	2	sov			2	1022.8		5.6	4.5	1.2	4.4	3.5	0.9	42.63
•		,	_				_			3.0	4.5	1.2	4.4	3.5	0.9	42.03
(401)	1	sov			5	965.8		9.2	8.6	0.5	7.1	6.7	0.4	51.45
(10,	401)	2	sov			0	216.4		9.0	8.6	0.4	7.0	6.6	0.3	52.21
(400,	10)	1	sov			7	1300.1		16.7	15.9	0.8	12.9	12.3	0.6	61.32
-	400,	10)	2	sov			2	946.2		16.1	15.5	0.6	12.4	11.9	0.5	63.71
	400,	10)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
•	400,	10)	9	sov			6	1182.7		17.3	16.3	1.1	13.4	12.6		
`	400,	10,	,	504			•	1102.7		17.3	16.3	1.1	13.4	12.6	0.8	59.00
(270,	7)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(613,	7)	1	sov			1	948.7		2.8	2.7	0.1	2.1	2.1	0.1	52.98
	613,	7)	2	sov			0	905.6		2.8	2.7	0.1	2.1	2.1	0.1	52.63
•							•					0.1			0.1	32.03
(8)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(7,	8)	6	sov			1	993.9		2.8	2.7	0.1	2.2	2.1	0.1	53.08
(7,	8)	7	sov			2	861.1		2.8	2.7	0.1	2.2	2.1	0.1	53.26
(8,	9)	1	sov			- 1	846.2		2.8	2.7	0.2	2.2	2.1	0.1	51.07
(8,	9)	2	sov			3	344.3		2.8	2.7	0.1	2.1	2.1	0.1	52.30
(8,	9)	6	sov			0	662.5		2.8	2.7	0.1	2.2	2.1	0.1	51.66
(9,	273)	1	sov			1	560.3		3.3	3.3	0.1	2.6	2.5	0.1	50.76
(273,	274)	1	sov			1	271.3		3.5	3.5	0.0	2.7	2.7	0.0	47.57

(273,	274)	2	sov			0	289.9		3.8	3.6	0.1	2.9	2.8	0.1	44.72
(9.	271)	1	sov			0	643.0		4.0	3.9	0.1	3.1	3.0	0.1	48.47
ì	-	271)	2	sov			Ô	650.0		4.0	3.9	0.1	3.1	3.0	0.1	
'	9,	2/1)	4	50V			U	650.0		4.0	3.9	0.1	3.1	3.0	0.1	48.56
		272)	1	sov			0	645.1		3.7	3.6	0.1	2.8	2.8	0.1	46.26
(271,	272)	2	sov			0	653.6		3.7	3.6	0.1	2.8	2.8	0.1	45.96
(415,	276)	1	sov			0	1179.5		3.7	3.4	0.3	2.9	2.7	0.2	41.70
(415.	276)	2	sov			0	0.0		0.0	0.0	0.0				
•	,	_,,	_	201			v	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(272,	276)	1	sov			0	651.2		8.3	8.1	0.2	6.4	6.2	0.2	43.85
(272,	276)	2	sov			1	649.1		8.3	8.2	0.2	6.4	6.3	0.1	43.74
(276.	281)	1	sov			0	1035.8		4.4	4.0	0.4	3.4	3.1	0.3	44.00
		281)	9	sov			2	877.1								44.99
	-	281)	10	sov						4.3	4.1	0.2	3.3	3.1	0.2	46.02
'	2/0,	281)	10	SOV			2	566.4		4.3	4.0	0.3	3.3	3.1	0.2	46.17
(937,	277)	1	sov			0	19.0		3.8	2.6	1.2	2.9	2.0	0.9	43.75
(264,	279)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(274,	275)	1	sov			0	39.7		6.1	4.8	1.2	4.7	3.7	1.0	38.73
(274.	275)	2	sov			1	521.4		5.3	5.2	0.1	4.1	4.0	0.1	44.34
•	_,_,	_,,,	_	201			-	321.4		3.3	3.2	0.1	•	4.0	0.1	44.34
(275,	934)	1	sov			3	287.1		13.6	12.9	0.7	10.5	9.9	0.6	47.25
(275,	934)	2	sov			4	267.5		13.6	12.9	0.7	10.5	10.0	0.6	47.12
(490.	258)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
i	490	258)	6	sov			2	1443.9		3.5	3.0	0.5	2.7	2.3	0.4	41.52
`	-50,	2307	·	501			-	1443.9		3.3	3.0	0.5	2.7	2.3	0.4	41.52
(304,	259)	1	sov			3	610.2		9.1	9.0	0.1	7.0	6.9	0.1	54.95
(304,	259)	2	sov			3	503.5		9.4	9.2	0.1	7.3	7.1	0.1	53.29
(278,	490)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(27,	28)	1	sov			2	804.6		5.3	5.1	0.2	4.1	3.9	0.2	59.92
ì	-		2	sov			0	1060.2		5.0	4.8	0.2	3.9	3.7	0.1	64.22
ì			3	HOV	0	0	Ö	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	-,,	20)	,	1104	3	U	J	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(-	1	sov			0	810.5		4.5	4.4	0.1	3.5	3.4	0.1	61.29
(-	2	sov			1	1054.9		4.3	4.2	0.1	3.3	3.2	0.1	64.28
(28,	29)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(29,	30)	1	sov			0	819.5		5.1	4.9	0.1	3.9	3.8	0.1	61.59
-			2	sov			1	1046.5		4.9	4.7	0.1	3.8	3.6	0.1	64.28
(_				_				- • •		2.0			
(-	30)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00

(30,	31)	1	sov			1	831.9		4.9	4.8	0.1	3.8	3.7	0.1	61.58	
(30,	31)	2	sov			1	1036.4		4.7	4.6	0.1	3.7	3.6	0.1	64.20	
(30.	31)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
•	,	,	•		•	•	•			• • • • • • • • • • • • • • • • • • • •					•••		
,	23,	241		sov			4	1530.4		7 0	6.7	0.4	- 4	- 1		61 22	
(-		1				4			7.0		0.4	5.4	5.1	0.3	61.32	
(-	2	sov			4	1118.7		6.9	6.5	0.3	5.3	5.1	0.2	63.09	
(23,	24)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(23,	24)	9	sov			4	1060.8		7.1	6.7	0.3	5.5	5.2	0.3	61.25	
(31,	32)	1	sov			3	839.0		4.0	3.9	0.1	3.1	3.0	0.1	61.48	
į	-	-	2	sov			1	1029.5		3.9	3.7	0.1	3.0				
	31				0									2.9	0.1	64.05	
,	31,	32)	3	HOV	U	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(283,	632)	1	SOV			3	965.8		8.9	8.6	0.3	6.8	6.6	0.2	53.64	
(283	632)	2	sov			0	901.4		9.0	8.7	0.3	6.9	6.7	0.2	52.86	
																0_110	
(284	283)	1	sov	·		3	974.9	<u>:</u>	9.6	9.3	0.3	7.4	7.2	0.2	53.76	
		283)	2	sov			1	892.5									
'	204	203)	4	SUV				892.5		9.7	9.4	0.3	7.5	7.3	0.2	53.00	
			_														
	-	284)	1	sov			0	975.5		6.8	6.6	0.2	5.2	5.1	0.2	53.74	
(285	284)	2	sov			1	892.2		6.9	6.7	0.2	5.3	5.2	0.2	52.94	
(286	285)	1	sov			4	971.1		11.6	11.2	0.3	9.0	8.7	0.3	53.93	
		285)	2	sov			2	894.0		11.8	11.5	0.3	9.1	8.8	0.3	53.01	
٠,	200	200,	_	501			_	054.0		11.0	11.5	0.3	9.1	0.0	0.3	55.01	
,	22	2061					•	064 5									
		286)	1	sov			2	964.5		9.0	8.8	0.2	7.0	6.8	0.2	54.02	
(27	286)	2	sov			1	899.3		9.2	9.0	0.3	7.1	6.9	0.2	52.92	
(596	111)	1	sov			1	1253.0		7.8	7.5	0.2	6.0	5.8	0.2	55.16	
(596	, 111)	2	sov			2	1812.7		8.5	8.0	0.5	6.6	6.2	0.4	50.21	
•														**-	• • •		
,	673	675)	1	sov			0	916.0		5.4	5.0	0.3	4.2	3.9	0.3	51.16	
٠,	0/3	, 0/3/		SUV			U	910.0		J.4	5.0	0.3	4.2	3.9	0.3	31.10	
		, 287)	1	sov			1	923.1		9.7	9.3	0.4	7.4	7.2	0.3	52.91	
(675	, 287)	9	sov			2	955.5		9.6	9.3	0.3	7.4	7.2	0.2	53.40	
(287	289)	1	sov			0	955.6		9.6	9.3	0.3	7.4	7.2	0.2	53.33	
		289)	2	sov			1	922.0		9.7	9.3	0.4	7.4	7.2	0.3	52.93	
,	207	, 203)	-	501			-	322.0		3.,	3.3	0.4	/ • -	/ . 4	0.5	32.33	
			_				_										
-		, 294)	1	sov			0	938.4		13.0	12.5	0.5	10.0	9.6	0.3	53.01	
(289	, 294)	2	sov			1	939.1		13.0	12.5	0.5	10.0	9.6	0.4	52.92	
(294	296)	1	sov			1	930.0		11.7	11.3	0.4	9.0	8.7	0.3	52.87	
	-	296)	2	sov			1	947.9		11.7	11.3	0.4	9.0	8.7	0.3	52.92	
`		,	_				_	2				•••		•••			
,	206	297)	1	sov			6	944.1		17.7	16.9	0.7	13.6	13.0	0.6	52.61	
,	430	431)	_	504			0	744.I		1/./	10.3	0.7	13.0	13.0	0.0	34.01	

(:	296,	297)	6	sov	 	3	936.3	 17.6	16.9	0.7	13.6	13.0	0.5	52.79
•		601) 601)	1 2	sov			949.1 937.2		9.4 9.4	0.4		7.3 7.2	0.3	52.31 52.51
(282,	346)	1	sov	 	0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00
(297,	352)	1	sov	 	0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00

2038 ALTERNATIVE A PM Peak

			·
		·	
		,	

CENTENNIAL_2038_ALT-A_PM PEAK

CUMULATIVE FRESIM STATISTICS AT TIME 17 0 0

LINK STATISTICS

VEH-MIN/

SECONDS/VEHICLE VEH-MILE

							-											
	VEHIC			CURR	AVG	VEH-	VEH-	TOTAL						VOLUM				
LINK		IN		CHNG	CONT		MILES	MIN	TIME	TIME	TIME	M/T	TOTAL 1	DELAY	VPHPL	VPMPL	MILE/HR	
(153,	96)	7058	700	5 1405	79	30.0	1734.8	1799.2	15.3	13.8	1.5	0.90	0 1.04	0.10	1174.3	20.3	57.85	FRWY
(563,	98)	5730	572	7 2254	28	27.2	1627.6	1633.5	17.1	15.8	1.3	0.93	3 1.00	0.07	1145.8	19.2	59.78	FRWY
(154,	101)	4732	473	6 978	35	40.4	2545.5	2422.1	30.7	29.8	0.9	0.97	7 0.95	0.03	946.8	15.0	63.06	FRWY
(103,	104)	6704	665	1 2491	. 65	42.9	1011.1	2572.2	23.1	8.6	14.5	0.37	7 2.54	1.59	1186.4	50.3	23.59	FRWY
(158,	105)	7489	743	6 2960	88	68.3	2116.3	4096.7	33.0	15.8	17.2	0.48	8 1.94	1.01	1489.9	48.1	30.99	FRWY
(128,	97)	4999	499	6 691	. 42	33.2	2075.6	1990.9	23.9	23.1	0.8	0.9	6 0.96	0.03	999.0	16.0	62.55	FRWY
(156,	102)	7007	700	6 1985	28	30.7	1725.0	1840.4	15.8	13.7	2.1	0.87	7 1.07	0.14	1282.8	22.8	56.24	FRWY
(109,	7001)	1635	162	0 0	17	1.7	52.7	103.2	3.8	3 2.1	1.7	0.5	6 1.96	0.87	814.4	26.6	30.66	RAMP
(102,	103)	5729	567	1 1813	103	58.3	2457.3	3495.5	36.7	23.9	12.8	0.6	5 1.42	0.50	1142.6	27.1	42.18	FRWY
(160,	7002)	1278	127	8 0	1	. 1.0	51.8	57.8	2.7	2.7	0.1	. 0.9	8 1.11	0.02	639.2	11.9	53.83	RAMP
(7003,	106)	1113	106	6 365	47	16.8	94.6	1008.1	53.3	6.7	46.6	0.1	3 10.65	9.31	567.9	100.8	5.63	RAMP
(106,	103)	1066	5 103	3 278	33	15.1	121.9	903.8	51.7	7.6	44.1	0.1	5 7.41	L 6.32	842.7	104.1	8.10	RAMP
(7004,	107)	987	7 96	0 78	28	9.9	50.1	595.3	34.2	3.2	31.0	0.0	9 11.88	3 10.79	522.7	103.5	5.05	RAMP
(107,	104)	960	93	4 509	32	13.0	88.5	781.9	49.7	6.2	43.5	0.1	2 8.83	7.74	587.9	86.6	6.79	RAMP
(110,	109)	1664	163	5 46	30	1.9	58.1	113.9	4.1	L 2.3	1.8	0.5	6 1.96	0.87	824.5	26.9	30.60	RAMP
(96,	110)	1678	3 166	4 40	14	1.1	42.4	67.4	2.4	1.7	0.8	0.6	9 1.59	0.50	835.4	22.1	37.77	RAMP

(127,	97)	731	731	457	0	2.7	82.1	162.1	13.3	7.4	5.9	0.55	1.97	0.88	625.5	20.6	30.40	RAMP
(96,	128)	5327	5327	1056	26	24.3	1513.8	1459.7	16.4	15.8	0.6	0.96	0.96	0.04	1065.7	17.1	62.22	FRWY
(128,	129)	328	331	3	0	1.1	56.5	64.8	11.8	11.3	0.5	0.96	1.15	0.05	327.6	6.3	52.26	RAMP
(132,	130)	6369	6356	1692	25	16.7	946.1	1004.6	9.5	8.3	1.2	0.87	1.06	0.13	1141.8	20.2	56.51	FRWY
(131,	130)	720	720	0	0	0.6	31.1	37.5	3.1	2.9	0.3	0.91	1.20	0.10	720.0	14.5	49.81	RAMP
(151,	132)	5370	5370	543	24	24.5	1515.3	1468.4	16.4	15.7	0.8	0.95	0.97	0.04	1073.2	17.3	61.92	FRWY
(105,	137)	5780	5777	1254	22	22.6	1345.1	1356.0	14.1	12.9	1.1	0.92	1.01	0.08	1155.7	19.4	59.52	FRWY
(98,	138)	1166	1165	10	2	2.2	113.5	130.0	6.7	6.4	0.3	0.95	1.15	0.05	1134.7	21.7	52.35	RAMP
(138,	139)	1165	1166	72	0	0.8	44.2	49.8	2.6	2.5	0.1	0.97	1.13	0.03	582.9	10.9	53.25	RAMP
(141,	140)	2273	2269	923	4	7.7	182.1	462.4	12.2	5.3	6.9	0.43	2.54	1.44	1136.3	48.1	23.62	RAMP
(140,	101)	2269	2269	0	10	8.0	321.0	479.8	12.7	9.3	3.4	0.73	1.49	0.40	2269.0	56.5	40.14	RAMP
(105,	143)	1656	1652	0	7	6.8	97.1	410.4	14.9	3.8	11.0	0.26	4.23	3.13	1654.1	116.5	14.20	RAMP
(7005,	127)	730	731	25	0	0.7	16.9	42.8	3.0	1.6	1.4	0.53	2.54	1.20	432.3	18.3	23.67	RAMP
(129,	7006)	331	332	0	0	0.4	14.8	22.3	4.0	3.4	0.6	0.85	1.51	0.23	165.5	4.2	39.84	RAMP
(147,	148)	790	790	0	2	1.3	62.1	78.8	6.0	5.7	0.3	0.95	1.27	0.07	789.6	16.7	47.23	RAMP
(148,	137)	790	792	0	0	0.9	45.9	54.2	4.1	3.8	0.3	0.93	1.18	0.09	791.3	15.6	50.79	RAMP
(163,	149)	6647	6656	2560	60	63.6	3988.5	3815.6	34.2	33.0	1.2	0.97	0.96	0.03	1337.9	21.3	62.72	FRWY
(311,	150)	6058	6064	558	24	22.5	1369.1	1348.3	13.3	12.5	0.8	0.94	0.98	0.06	1212.9	19.9	60.93	FRWY
(152,	153)	7061	7058	1090	7	5.2	267.4	313.0	2.7	2.1	0.6	0.79	1.17	0.25	1283.7	25.0	51.27	FRWY
(130,	152)	7076	7061	5877	40	34.1	1741.8	2045.2	17.3	13.7	3.7	0.79	1.17	0.25	1323.2	25.9	51.10	FRWY
(100,	154)	4735	4732	315	28	23.5	1503.7	1409.9	17.7	17.4	0.3	0.98	0.94	0.01	957.1	15.0	63.99	FRWY
(101,	155)	7005	7008	3902	31	34.4	1725.0	2064.9	17.7	13.9	3.8	0.78	1.20	0.26	1310.5	26.1	50.12	FRWY
(155,	156)	7008	7007	1690	6	4.5	265.4	270.9	2.3	2.1	0.2	0.91	1.02	0.10	1401.3	23.8	58.79	FRWY
(104,	157)	7585	7498	4763	130	95.7	2143.0	5739.7	45.7	16.1	29.6	0.35	2.68	1.74	1414.4	63.1	22.40	FRWY

(157, 158)	7498	7489	883	18	11.0	283.8	657.2	5.3	2.1	3.2	0.40	2.32	1.39	1498.5	57.8	25.91	FRWY
(137, 159)	6569	6585	2809	8	20.1	1162.0	1206.3	11.0	9.8	1.2	0.89	1.04	0.11	1187.9	20.6	57.80	FRWY
(150, 151)	6064	6071	243	10	13.6	825.1	813.5	8.0	7.6	0.5	0.94	0.99	0.06	1213.5	19.9	60.85	FRWY
(325, 95)	6856	6847	1318	38	69.3	4254.1	4160.7	36.4	34.5	2.0	0.95	0.98	0.05	1370.9	22.3	61.35	FRWY
(102, 160)	1277	1278	34	2	1.9	101.6	115.1	5.4	5.2	0.2	0.96	1.13	0.04	638.9	12.1	52.98	RAMP
(98, 99)	4561	4560	633	29	31.1	1939.4	1867.2	24.6	23.6	1.0	0.96	0.96	0.04	912.7	14.6	62.32	FRWY
(99, 164)	4560	4542	440	30	20.4	1277.3	1225.1	16.2	15.6	0.6	0.97	0.96	0.03	910.2	14.5	62.56	FRWY
(295, 200)	1344	1348	207	2	3.1	149.2	187.6	8.4	8.3	0.1	0.99	1.26	0.01	535.9	11.2	47.71	FRWY
(203, 201)	1343	1343	35	1	0.7	46.6	44.1	1.8	1.7	0.0	0.98	0.95	0.02	745.9	11.7	63.49	FRWY
(200, 199)	1247	1246	59	4	2.3	102.9	138.7	6.7	6.6	0.1	0.99	1.35	0.01	623.3	14.0	44.52	FRWY
(179, 178)	544	544	8	0	0.9	51.5	56.7	6.3	6.2	0.0	0.99	1.10	0.01	272.0	5.0	54.48	FRWY
(180, 179)	545	544	154	3	1.9	103.1	113.7	12.5	12.5	0.1	0.99	1.10	0.01	222.1	4.1	54.40	FRWY
(181, 180)	415	415	4	0	0.7	39.1	42.9	6.2	6.2	0.0	1.00	1.10	0.00	207.5	3.8	54.64	FRWY
(199, 198)	1246	1248	94	2	2.9	129.4	174.7	8.4	8.3	0.1	0.99	1.35	0.01	623.2	14.0	44.42	FRWY
(198, 197)	1517	1514	446	11	6.7	347.7	400.9	15.9	15.1	0.8	0.95	1.15	0.06	638.8	12.3	52.04	FRWY
(197, 196)	1757	1754	429	8	9.3	498.5	560.1	19.2	18.7	0.5	0.97	1.12	0.03	762.9	14.3	53.40	FRWY
(196, 195)	1754	1751	287	20	16.0	855.2	959.8	32.9	32.1	0.8	0.98	1.12	0.03	874.8	16.4	53.46	FRWY
(182, 181)	416	415	23	3	2.5	134.8	148.0	21.3	21.2	0.1	1.00	1.10	0.00	208.2	3.8	54.63	FRWY
(183, 182)	1707	1713	189	8	9.2	485.7	553.7	19.4	18.7	0.7	0.96	1.14	0.04	854.8	16.2	52.63	FRWY
(184, 183)	1713	1707	626	17	11.6	627.2	696.2	24.2	23.9	0.3	0.99	1.11	0.01	862.9	16.0	54.05	FRWY
(205, 204)	244	244	0	0	0.2	8.5	11.5	2.8	2.8	0.0	0.98	1.35	0.02	244.0	5.5	44.33	RAMP
(204, 197)	244	243	0	1	0.3	14.2	19.2	4.7	4.7	0.1	0.99	1.35	0.02	243.8	5.5	44.46	RAMP
(182, 193)	1297	1293	248	5	2.6	144.1	155.0	7.2	6.2	1.0	0.87	1.08	0.14	868.7	15.6	55.78	RAMP

(193, 194)	1293	1294	81	0	1.6	93.3	93.4	4.3	4.0	0.3	0.93	1.00	0.07	621.3	10.4	59.96	RAMP
(208, 209)	130	130	0	0	0.2	11.2	14.0	6.4	6.2	0.2	0.97	1.25	0.04	130.0	2.7	48.02	RAMP
(207, 198)	269	269	0	0	0.4	17.0	23.7	5.3	5.1	0.2	0.96	1.40	0.06	269.0	6.3	42.89	RAMP
(206, 207)	269	269	0	0	0.2	7.6	12.5	2.8	2.6	0.2	0.93	1.63	0.12	269.0	7.3	36.83	RAMP
(200, 210)	101	101	0	0	0.1	5.2	7.0	4.1	4.1	0.0	0.99	1.34	0.01	101.0	2.2	44.89	RAMP
(210, 211)	101	101	0	0	0.1	4.1	5.9	3.5	3.5	0.0	1.00	1.44	0.00	101.0	2.4	41.71	RAMP
(178, 202)	544	544	2	0	0.3	15.9	17.2	1.9	1.6	0.3	0.86	1.08	0.16	272.0	4.9	55.35	FRWY
(139,7009)	1166	1165	0	1	0.7	36.6	41.3	2.1	2.1	0.1	0.97	1.13	0.04	582.8	10.9	53.23	RAMP
(7010, 141)	2273	2273	357	1	4.4	195.0	262.5	6.6	5.4	1.2	0.81	1.35	0.25	1186.2	26.6	44.57	RAMP
(211,7011)	101	101	0	0	0.1	4.6	7.8	4.6	4.6	0.1	0.98	1.72	0.03	101.0	2.9	34.98	RAMP
(7012, 206)	269	269	0	0	0.2	6.7	12.1	2.3	2.2	0.1	0.95	1.80	0.09	313.8	9.4	33.37	RAMP
(7014, 205)	244	244	0	0	0.3	12.4	17.4	4.0	3.7	0.2	0.94	1.41	0.08	263.0	6.2	42.48	RAMP
(194,7015)	1294	1295	0	0	0.7	41.7	45.0	2.1	1.8	0.3	0.86	1.08	0.15	431.4	7.8	55.58	RAMP
(201, 295)	1343	1344	15	3	3.3	189.5	198.2	8.9	8.8	0.0	1.00	1.05	0.00	671.7	11.7	57.38	FRWY
(149, 298)	6656	6664	559	28	30.7	1892.2	1840.8	16.6	15.7	0.8	0.95	0.97	0.05	1332.1	21.6	61.68	FRWY
(533, 299)	7057	7053	2118	16	15.3	741.5	920.6	7.8	6.0	1.9	0.76	1.24	0.29	1214.1	25.1	48.33	FRWY
(299, 300)	7769	7786	2002	29	39.6	2210.3	2377.4	18.3	15.8	2.6	0.86	1.08	0.15	1468.0	26.3	55.78	FRWY
(300, 301)	7786	7756	1389	92	71.4	3822.8	4281.3	33.0	27.3	5.8	0.83	1.12	0.20	1555.6	29.0	53.57	FRWY
(301, 302)	7756	7681	3897	107	41.3	1826.7	2480.9	19.3	13.1	6.2	0.68	1.36	0.43	1388.8	31.4	44.18	FRWY
(302, 303)	7681	7582	6817	130	49.3	2169.2	2957.0	23.2	15.8	7.4	0.68	1.36	0.44	1090.8	24.8	44.02	FRWY
(303, 304)	6778	6701	2399	103	30.6	1287.6	1834.8	16.3	10.7	5.7	0.65	1.42	0.49	1123.0	26.7	42.11	FRWY
(304, 305)	5598	5594	2206	13	16.3	968.6	976.3	10.5	9.6	0.9	0.92	1.01	0.08	1091.8	18.3	59.53	FRWY
(305, 306)	5594	5614	937	12	25.9	1592.0	1552.0	16.6	15.9	0.7	0.96	0.97	0.04	934.0	15.2	61.55	FRWY
(306, 307)	4110	4114	562	18	23.4	1463.1	1401.3	20.5	19.7	0.7	0.96	0.96	0.03	822.3	13.1	62.65	FRWY

(187, 310)	4968	4965	1155	9	10.5	635.7	629.8	7.6	7.1	0.5	0.93	0.99	0.07	876.4	14.5	60.57	FRWY	
(310, 311)	6070	6058	3035	42	29.0	1722.5	1738.4	17.2	15.8	1.4	0.92	1.01	0.08	1109.1	18.7	59.45	FRWY	
(159, 312)	6585	6590	271	7	11.9	707.6	715.6	6.5	6.0	0.6	0.92	1.01	0.09	1317.8	22.2	59.32	FRWY	
(312, 313)	6590	6598	339	14	19.4	1165.2	1162.7	10.6	9.9	0.7	0.93	1.00	0.07	1318.8	21.9	60.13	FRWY	
(248, 314)	5336	5341	444	26	24.7	1518.3	1484.8	16.7	15.9	0.8	0.95	0.98	0.05	1068.9	17.4	61.36	FRWY	
(314, 315)	4229	4241	228	6	9.4	582.9	562.3	8.0	7.7	0.3	0.96	0.96	0.04	846.6	13.6	62.19	FRWY	
(555, 316)	6940	6936	2267	44	47.3	2910.8	2835.9	24.5	23.3	1.2	0.95	0.97	0.05	1005.2	16.3	61.59	FRWY	
(316, 317)	6936	6941	1762	17	21.3	1314.3	1276.3	11.0	10.5	0.5	0.95	0.97	0.05	1156.6	18.7	61.78	FRWY	
(317, 318)	6941	6948	916	26	33.4	1972.2	2002.2	17.3	15.8	1.5	0.91	1.02	0.09	1301.7	22.0	59.10	FRWY	
(318, 319)	7864	7849	2260	49	41.6	2232.8	2498.4	19.1	15.9	3.2	0.83	1.12	0.19	1482.9	27.7	53.62	FRWY	
(319, 320)	7849	7845	288	19	18.0	1092.1	1080.9	8.3	7.7	0.5	0.94	0.99	0.06	1569.1	25.9	60.63	FRWY	
(320, 321)	7845	7832	4092	47	46.8	2476.5	2808.2	21.5	17.6	3.9	0.82	1.13	0.21	1567.9	29.6	52.91	FRWY	
(321, 322)	7832	7813	1763	51	38.6	2222.8	2314.7	17.8	15.9	1.9	0.90	1.04	0.11	1356.8	23.5	57.62	FRWY	
(322, 323)	5934	5934	674	22	32.1	1988.6	1927.3	19.5	18.6	0.9	0.96	0.97	0.04	1186.4	19.2	61.91	FRWY	
(323, 324)	6469	6469	968	21	18.1	1095.4	1086.6	10.1	9.4	0.7	0.93	0.99	0.07	1175.5	19.4	60.48	FRWY	
(324, 325)	6859	6856	1103	33	32.2	1947.3	1932.0	16.9	15.8	1.1	0.93	0.99	0.07	1293.3	21.4	60.48	FRWY	
(7023, 147)	792	790	0	2	0.8	30.5	48.7	3.4	2.8	0.5	0.84	1.60	0.26	870.3	23.2	37.55	RAMP	
(143,7025)	1652	1649	0	4	3.9	47.5	236.2	8.6	2.1	6.5	0.24	4.97	3.77	1651.3	136.7	12.08	RAMP	
(144, 131)	720	720	0	0	0.4	20.0	25.1	2.1	2.0	0.1	0.96	1.25	0.05	720.0	15.0	47.98	RAMP	
(7022, 144)	720	720	0	0	0.6	25.6	35.5	2.7	2.3	0.3	0.87	1.39	0.18	799.4	18.5	43.26	RAMP	
(347, 348)	1273	1274	44	0	1.0	52.6	61.8	2.9	2.9	0.0	0.98	1.17	0.02	636.7	12.5	51.07	RAMP	
(348, 349)	1274	1275	98	2	1.7	81.9	101.3	4.8	4.6	0.1	0.97	1.24	0.03	637.6	13.1	48.50	RAMP	
(560, 370)	4331	4325	793	8	6.5	409.9	388.6	5.4	5.3	0.1	0.98	0.95	0.02	721.3	11.4	63.27	FRWY	

(370, 371)	4325	4317 976	26	17.9 903.2	1074.5	14.9	11.6	3.3	0.78	1.19	0.26	732.0	14.5	50.44	FRWY
(371, 372)	4317	4280 1668	47	20.2 1199.5	1211.9	16.9	15.5	1.4	0.92	1.01	0.08	919.0	15.5	59.39	FRWY
(372, 373)	5436	5440 2535	9	16.4 946.9	982.9	10.8	9.7	1.2	0.89	1.04	0.11	1088.0	18.8	57.80	FRWY
(373, 374)	5440	5431 288	13	9.8 598.2	589.0	6.5	6.1	0.4	0.94	0.98	0.06	1087.2	17.8	60.93	FRWY
(374, 375)	5431	5426 284	16	15.4 944.9	923.5	10.2	9.8	0.4	0.96	0.98	0.04	1085.7	17.7	61.39	FRWY
(375, 376)	4565	4562 489	18	21.4 1324.4	1283.3	16.9	16.1	0.8	0.96	0.97	0.04	1140.4	18.4	61.92	FRWY
(376, 377)	5200	5190 1095	12	12.4 727.3	741.1	8.6	7.8	0.8	0.91	1.02	0.09	1127.4	19.1	58.88	FRWY
(377, 378)	5759	5747 2170	29	24.5 1416.6	1468.9	15.3	13.7	1.6	0.89	1.04	0.11	1323.9	22.9	57.87	FRWY
(381, 382)	1174	1175 31	2	1.2 48.7	70.4	3.6	3.6	0.0	0.99	1.45	0.01	587.2	14.2	41.50	RAMP
(378, 384)	5747	5748 65	4	3.6 217.7	217.1	2.3	2.1	0.2	0.93	1.00	0.07	1437.1	23.9	60.19	FRWY
(384, 385)	5748	5752 376	16	23.2 1415.2	1392.7	14.5	13.7	0.8	0.94	0.98	0.06	1437.0	23.6	60.97	FRWY
(385, 386)	4927	4922 721	31	38.4 2378.7	2304.9	28.1	26.9	1.2	0.96	0.97	0.04	1229.9	19.9	61.92	FRWY
(402, 403)	1107	1105 509	2	3.4 152.4	203.2	11.0	9.8	1.2	0.89	1.33	0.15	552.8	12.3	45.02	RAMP
(401, 381)	1174	1174 12	0	0.9 46.0	55.1	2.8	2.8	0.0	0.99	1.20	0.01	587.0	11.7	50.16	RAMP
(395, 396)	4250	4254 327	16	15.0 930.3	901.9	12.7	12.1	0.6	0.95	0.97	0.05	1063.2	17.2	61.89	FRWY
(394, 395)	5355	5346 154	14	9.3 567.2	561.0	6.3	6.0	0.3	0.95	0.99	0.05	1069.6	17.6	60.67	FRWY
(393, 394)	5364	5355 467	17	15.6 954.5	934.7	10.5	9.9	0.6	0.94	0.98	0.05	1072.3	17.5	61.27	FRWY
(392, 393)	5362	5364 1433	7	9.6 569.0	577.0	6.5	5.9	0.6	0.91	1.01	0.09	1073.0	18.1	59.17	FRWY
(391, 392)	4544	4551 1687	8	15.4 932.1	921.4	12.2	11.4	0.8	0.94	0.99	0.06	1030.1	17.0	60.70	FRWY
(390, 391)	4219	4222 443	19	20.2 1244.6	1209.4	17.2	16.4	0.8	0.95	0.97	0.05	1054.5	17.1	61.75	FRWY
(389, 390)	5248	5247 447	30	24.6 1489.6	1474.3	16.9	15.8	1.0	0.94	0.99	0.06	1310.8	21.6	60.62	FRWY
(388, 389)	5250	5248 210	10	8.1 487.9	484.8	5.5	5.2	0.4	0.93	0.99	0.07	1311.7	21.7	60.38	FRWY
(387, 388)	5249	5250 2115	23	24.7 1490.9	1483.8	17.0	15.8	1.2	0.93	1.00	0.07	1220.5	20.2	60.29	FRWY
(166, 404)	5030	5026 230	16	11.5 714.3	690.0	8.2	7.9	0.3	0.96	0.97	0.04	1257.2	20.2	62.12	FRWY

(404, 387)	4738	4744	492	16	23.5	1456.5	1408.8	17.8	17.0	0.8	0.96	0.97	0.04	1185.3	19.1	62.03	FRWY
(306, 405)	1504	1507	106	0	2.6	140.6	157.9	6.3	6.1	0.2	0.97	1.12	0.03	752.7	14.1	53.42	RAMP
(558, 406)	1508	1504	83	5	2.1	94.1	125.9	5.0	4.9	0.1	0.97	1.34	0.03	653.9	14.6	44.87	FRWY
(351, 408)	1273	1273	334	2	1.8	76.4	109.8	5.2	4.8	0.4	0.93	1.44	0.10	636.4	15.2	41.77	RAMP
(408, 409)	1273	1274	166	3	3.8	150.4	225.2	10.6	9.5	1.1	0.89	1.50	0.16	859.4	21.4	40.07	RAMP
(410, 405)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY
(413, 409)	1507	1512	132	1	5.0	218.4	298.8	11.9	11.6	0.3	0.98	1.37	0.03	754.8	17.2	43.86	FRWY
(349, 350)	1275	1277	171	4	5.7	280.6	344.1	16.2	15.9	0.3	0.98	1.23	0.02	637.6	13.0	48.93	RAMP
(350, 351)	1277	1273	107	7	4.7	211.5	284.6	13.4	13.1	0.3	0.98	1.35	0.03	637.3	14.3	44.57	RAMP
(559, 407)	2785	2791	816	12	16.8	809.3	1008.7	21.7	20.9	0.8	0.96	1.25	0.04	929.1	19.3	48.14	FRWY
(407, 411)	366	366	0	0	0.6	28.5	34.7	5.7	5.6	0.1	0.98	1.22	0.02	366.0	7.4	49.25	FRWY
(406, 413)	1504	1507	89	4	2.8	121.6	166.6	6.6	6.5	0.2	0.97	1.37	0.03	753.5	17.2	43.78	FRWY
(161,7031)	676	675	0	1	0.8	39.9	49.1	4.4	4.2	0.1	0.97	1.23	0.03	337.6	6.9	48.80	FRWY
(7032, 435)	1154	1155	0	0	1.3	55.5	76.0	3.7	3.2	0.4	0.88	1.37	0.17	1246.4	28.5	43.80	RAMP
(435, 436)	1155	1155	0	1	1.0	48.3	60.5	3.1	3.0	0.1	0.96	1.25	0.05	1154.8	24.1	47.92	RAMP
(436, 372)	1155	1156	0	0	1.3	63.5	76.1	4.0	3.6	0.3	0.91	1.20	0.11	1155.6	23.1	50.02	RAMP
(395, 437)	1096	1096	38	1	2.2	111.7	130.3	7.1	6.7	0.4	0.94	1.17	0.07	548.0	10.7	51.43	RAMP
(437,7033)	1096	1094	0	3	4.9	80.9	296.1	16.2	5.3	10.9	0.32	3.66	2.47	547.7	33.4	16.40	RAMP
(7034, 440)	625	625	0	2	0.6	27.2	36.6	3.2	2.9	0.4	0.89	1.34	0.15	680.4	15.3	44.61	RAMP
(440, 441)	625	625	0	0	0.5	22.4	27.5	2.6	2.6	0.1	0.97	1.23	0.04	625.0	12.8	48.81	RAMP
(7035, 443)	638	638	0	0	0.8	25.5	45.2	3.9	2.9	0.9	0.76	1.77	0.43	698.9	20.6	33.89	RAMP
(443, 444)	638	639	0	0	0.6	25.2	33.8	3.2	2.9	0.3	0.90	1.34	0.14	638.5	14.3	44.68	RAMP
(444, 376)	639	638	0	1	1.6	85.3	97.8	9.2	8.8	0.4	0.96	1.15	0.05	638.1	12.2	52.35	RAMP

(375, 442)	861	860	10	1	1.1	59.1	66.1	4.6	4.5	0.1	0.98	1.12	0.02	430.1	8.0	53.65	RAMP
(442,7036)	860	859	0	1	0.8	40.7	49.5	3.5	3.3	0.2	0.96	1.22	0.05	429.5	8.7	49.29	RAMP
(7037, 454)	566	567	0	0	0.6	26.7	35.7	3.5	3.1	0.4	0.90	1.34	0.14	613.0	13.7	44.87	RAMP
(454, 455)	567	568	0	0	0.6	27.0	33.0	3.5	3.4	0.1	0.98	1.22	0.03	567.7	11.6	49.00	RAMP
(455, 377)	568	569	0	0	0.8	41.2	47.7	5.0	4.7	0.3	0.94	1.16	0.07	569.0	11.0	51.76	RAMP
(390, 458)	1028	1024	0	4	2.7	133.6	164.8	9.6	8.6	1.1	0.89	1.23	0.14	1025.0	21.1	48.64	RAMP
(456, 457)	322	322	0	0	0.2	9.8	12.8	2.4	2.2	0.2	0.92	1.31	0.11	322.0	7.1	45.67	RAMP
(457, 391)	322	322	0	0	0.2	8.9	10.9	2.0	1.8	0.2	0.90	1.22	0.13	322.0	6.6	49.05	RAMP
(7038, 456)	322	322	0	0	0.2	8.4	12.7	2.0	1.6	0.4	0.80	1.51	0.31	372.0	9.4	39.64	RAMP
(458,7039)	1024	1023	0	1	1.6	40.9	95.4	5.6	2.8	2.8	0.51	2.33	1.15	1023.5	39.8	25.72	RAMP
(7040, 466)	811	811	0	1	0.8	36.8	50.1	3.4	3.0	0.4	0.88	1.36	0.16	882.1	20.1	43.99	RAMP
(466, 467)	811	811	0	0	0.7	33.6	41.7	3.1	3.0	0.1	0.97	1.24	0.04	811.0	16.8	48.42	RAMP
(467, 392)	811	811	0	0	0.9	45.6	53.9	4.0	3.7	0.3	0.92	1.18	0.09	811.0	16.0	50.83	RAMP
(309,7043)	1759	1756	0	3	2.8	131.9	165.5	5.6	5.4	0.2	0.96	1.25	0.05	879.0	18.4	47.81	FRWY
(7044, 483)	919	916	0	3	1.6	71.3	94.6	5.9	5.3	0.6	0.90	1.33	0.13	962.8	21.3	45.24	RAMP
(484, 318)	917	916	0	2	1.2	62.1	74.3	4.9	4.4	0.4	0.91	1.20	0.10	916.6	18.3	50.20	RAMP
(483, 484)	916	917	0	0	0.9	45.0	56.0	3.7	3.5	0.1	0.96	1.24	0.04	916.7	19.0	48.21	RAMP
(303, 487)	804	804	0	0	0.9	45.4	51.7	3.9	3.7	0.2	0.96	1.14	0.05	804.0	15.3	52.66	RAMP
(487, 488)	804	802	0	2	1.5	75.5	92.3	6.9	6.7	0.2	0.97	1.22	0.04	802.2	16.4	49.06	RAMP
(488,7046)	802	803	0	0	0.9	44.4	56.7	4.2	4.0	0.3	0.94	1.28	0.08	802.2	17.1	46.91	RAMP
(489, 490)	1339	1340	117	3	2.2	75.1	133.7	6.0	4.1	1.9	0.68	1.78	0.58	1001.5	29.7	33.71	RAMP
(7047, 489)	1341	1339	703	3	1.7	58.8	101.2	4.2	2.9	1.2	0.70	1.72	0.52	728.8	20.9	34.86	RAMP
(7045, 531)	720	718	127	2	1.0	34.5	58.7	4.5	2.5	2.1	0.54	1.70	0.78	388.0	11.0	35.32	RAMP
(531, 532)	718	718	4	0	0.6	28.3	37.1	3.1	2.2	0.9	0.70	1.31	0.39	484.9	10.6	45.74	RAMP

(532,	299)	718	716	0	2	0.5	28.2	32.6	2.7	2.2	0.5	0.80	1.15	0.23	716.7	13.8	52.03	RAMP
(322,	522)	1879	1881	40	0	2.9	84.4	174.1	5.6	2.9	2.6	0.53	2.06	0.97	940.4	32.3	29.10	RAMP
(7049,	523)	533	534	0	1	0.5	20.2	32.4	3.3	3.1	0.2	0.93	1.61	0.11	587.9	15.7	37.35	RAMP
(523,	524)	534	533	0	3	0.9	41.9	56.2	6.3	5.7	0.6	0.90	1.34	0.14	533.4	11.9	44.78	RAMP
(524,	323)	533	535	0	1	0.8	40.3	47.1	5.3	4.9	0.3	0.94	1.17	0.07	535.0	10.4	51.39	RAMP
(298,	533)	5588	5588	738	26	30.2	1870.8	1809.7	19.4	18.6	0.9	0.95	0.97	0.04	1117.4	18.0	62.03	FRWY
(7050,	529)	1469	1468	653	2	1.7	54.4	102.7	3.8	3.0	0.8	0.80	1.89	0.38	811.8	25.5	31.80	RAMP
(529,	530)	1468	1466	83	5	1.4	45.3	84.5	3.5	2.2	1.2	0.65	1.87	0.66	815.7	25.4	32.14	RAMP
(530,	533)	1466	1469	0	5	3.2	138.7	193.6	7.9	6.2	1.7	0.78	1.40	0.30	1467.8	34.1	42.99	RAMP
(7051,	525)	390	390	0	0	0.4	17.6	23.1	3.3	3.0	0.3	0.91	1.32	0.12	423.5	9.3	45.54	RAMP
(525,	526)	390	389	0	1	0.6	29.3	35.8	5.5	5.4	0.1	0.98	1.22	0.02	389.1	7.9	49.16	RAMP
(526,	324)	389	390	0	0	0.7	38.5	43.9	6.8	6.5	0.3	0.96	1.14	0.05	389.4	7.4	52.61	RAMP
(298,	534)	1076	1076	0	0	1.7	99.2	99.1	5.5	5.1	0.4	0.93	1.00	0.07	1076.0	17.9	60.08	RAMP
(534,	7052)	1076	1076	0	0	1.1	54.4	63.5	3.5	2.8	0.7	0.79	1.17	0.24	1076.0	20.9	51.45	RAMP
(313,	347)	1273	1273	79	2	1.9	98.3	112.7	5.3	5.1	0.2	0.95	1.15	0.05	1006.2	19.2	52.35	RAMP
(522,	7048)	1881	1879	0	2	6.7	88.3	399.7	12.8	3.3	9.4	0.26	4.53	3.35	939.9	70.9	13.25	RAMP
(405,	558)	1507	1508	9	0	1.2	59.7	69.3	2.8	2.7	0.0	0.99	1.16	0.01	502.6	9.7	51.70	FRWY
(409,	559)	2786	2785	270	2	4.0	173.6	239.8	5.2	5.0	0.2	0.97	1.38	0.05	928.8	21.4	43.44	FRWY
(369,	560)	4328	4331	530	5	13.4	819.8	802.7	11.1	10.5	0.6	0.95	0.98	0.05	721.4	11.8	61.28	FRWY
(97,	563)	5727	5730	1428	18	27.0	1627.5	1622.6	17.0	15.8	1.2	0.93	1.00	0.07	1080.9	18.0	60.18	FRWY
(10,	11)	2582	2584	101	3	4.7	288.9	283.0	6.6	6.2	0.4	0.94	0.98	0.06	860.5	14.0	61.27	FRWY
(11,	12)	2584	2577	105	9	4.5	281.1	272.1	6.3	6.0	0.3	0.95	0.97	0.04	860.5	13.9	61.98	FRWY
(12,	13)	2577	2571	54	7	2.6	161.8	156.3	3.6	3.5	0.2	0.96	0.97	0.04	857.7	13.8	62.11	FRWY

(13	3,	14)	2571	2575	33	3	2.6	162.9	157.1	3.7	3.5	0.2	0.96	0.96	0.04	858.1	13.8	62.19	FRWY
(14	4,	15)	2575	2575	47	4	2.7	167.3	161.6	3.8	3.6	0.2	0.96	0.97	0.04	858.3	13.8	62.11	FRWY
(1	5,	16)	4170	4172	629	11	13.5	790.0	810.6	11.7	10.5	1.2	0.90	1.03	0.10	1042.8	17.8	58.48	FRWY
(1	6,	17)	4172	4169	126	8	6.4	394.9	384.6	5.5	5.3	0.3	0.95	0.97	0.05	1042.6	16.9	61.62	FRWY
(1	7,	18)	4169	4168	276	15	12.8	788.8	765.1	11.0	10.5	0.5	0.95	0.97	0.05	1042.2	16.8	61.86	FRWY
(1	8,	19)	4168	4173	238	5	11.4	706.1	684.1	9.8	9.4	0.5	0.95	0.97	0.04	1042.5	16.8	61.93	FRWY
(1	9,	20)	4173	4176	193	4	10.0	616.7	597.3	8.6	8.2	0.4	0.95	0.97	0.04	1043.6	16.8	61.94	FRWY
(2	Ο,	21)	4176	4172	215	16	10.0	621.5	602.2	8.7	8.3	0.4	0.95	0.97	0.04	1043.7	16.9	61.92	FRWY
(2	1,	22)	4172	4165	151	13	7.0	436.6	423.0	6.1	5.8	0.3	0.95	0.97	0.04	1042.2	16.8	61.94	FRWY
(2	2,	23)	4165	4160	312	17	15.0	931.0	902.5	13.0	12.4	0.6	0.95	0.97	0.04	1040.6	16.8	61.90	FRWY
(2	4,	25)	4160	4163	705	9	10.5	619.0	630.5	9.1	8.2	0.8	0.91	1.02	0.09	1040.8	17.7	58.90	FRWY
(2	5,	26)	4163	4154	159	12	6.4	393.8	385.9	5.6	5.3	0.3	0.94	0.98	0.06	1039.7	17.0	61.23	FRWY
(2	6,	27)	4154	4137	161	25	13.0	785.3	778.9	11.3	10.7	0.6	0.95	0.99	0.05	1036.6	17.1	60.49	FRWY
(19	0,	255)	1672	1672	109	5	5.0	316.4	299.7	10.8	10.5	0.2	0.98	0.95	0.02	835.4	13.2	63.34	FRWY
(25	5,	257)	2663	2660	1302	8	6.9	403.4	416.0	9.4	8.4	0.9	0.90	1.03	0.10	1039.1	17.9	58.19	FRWY
(25	7,	280)	2660	2661	97	1	4.1	252.0	246.2	5.6	5.3	0.3	0.95	0.98	0.05	1330.5	21.7	61.42	FRWY
(28	0,	282)	3641	3644	1297	10	17.6	1034.8	1058.7	17.4	15.8	1.6	0.91	1.02	0.09	1437.8	24.5	58.64	FRWY
(28	2,	32)	3644	3651	211	0	8.5	520.2	510.2	8.4	7.9	0.5	0.94	0.98	0.05	1823.7	29.8	61.17	RAMP
(3	2,	33)	6211	6213	428	17	14.2	882.1	854.3	8.3	7.9	0.4	0.96	0.97	0.04	1241.9	20.0	61.95	FRWY
(3	3,	34)	6213	6220	333	12	14.2	883.0	853.6	8.2	7.9	0.4	0.96	0.97	0.04	1243.3	20.0	62.07	FRWY
(3	4,	35)	6220	6210	310	23	14.3	890.5	860.6	8.3	8.0	0.4	0.96	0.97	0.04	1242.3	20.0	62.09	FRWY
(3	5,	36)	6210	6202	332	18	14.9	927.4	896.0	8.7	8.3	0.4	0.96	0.97	0.04	1241.2	20.0	62.10	FRWY
(3	6,	37)	6202	6188	359	23	16.4	1019.8	985.4	9.5	9.1	0.4	0.96	0.97	0.04	1239.3	20.0	62.10	FRWY
(3	7,	54)	6188	6178	404	26	18.8	1166.1	1127.3	10.9	10.5	0.5	0.96	0.97	0.04	1236.4	19.9	62.07	FRWY

(54,	55)	6399	6399 50	2 17	12.8 787.6	766.8	7.2	6.8	0.4	0.95	0.97	0.05	1123.9	18.2	61.62	FRWY
(55,	56)	6399	6394 24	0 22	9.8 605.8	589.0	5.5	5.3	0.3	0.95	0.97	0.05	1279.4	20.7	61.71	FRWY
(56,	57)	6948	6931 114	6 25	21.8 1313.6	1309.9	11.3	10.5	0.8	0.93	1.00	0.07	1272.6	21.2	60.17	FRWY
(57,	58)	6931	6932 22	0 5	10.7 656.3	641.9	5.6	5.3	0.3	0.95	0.98	0.05	1386.2	22.6	61.35	FRWY
(58,	59)	6932	6928 124	5 16	12.3 761.3	739.7	6.4	6.1	0.3	0.95	0.97	0.05	1386.1	22.4	61.75	FRWY
(59,	60)	6928	6933 88	5 12	18.4 1106.2	1101.1	9.5	8.9	0.7	0.93	1.00	0.07	1385.7	23.0	60.28	FRWY
(60,	61)	6933	6929 401	9 32	33.2 1969.3	1990.1	17.2	15.8	1.4	0.92	1.01	0.08	1386.4	23.4	59.37	FRWY
(61,	62)	5924	5911 28	3 22	18.3 1120.9	1100.6	11.2	10.6	0.5	0.95	0.98	0.05	1183.6	19.4	61.11	FRWY
(62,	63)	4598	4594 39	4 13	15.6 965.3	934.7	12.2	11.7	0.5	0.96	0.97	0.04	1149.0	18.5	61.97	FRWY
(63,	64)	4594	4585 39	3 16	16.1 998.8	968.4	12.7	12.1	0.6	0.95	0.97	0.04	1147.4	18.5	61.88	FRWY
(64,	65)	5470	5465 157	8 15	18.5 1035.4	1109.9	12.2	10.6	1.6	0.87	1.07	0.14	1228.6	21.9	55.98	FRWY
(65,	66)	5465	5460 18	5 10	8.6 517.3	513.7	5.6	5.3	0.4	0.93	0.99	0.07	1365.6	22.6	60.41	FRWY
(66,	67)	5460	5459 193	2 17	15.8 969.8	948.7	10.4	9.9	0.6	0.95	0.98	0.05	1364.8	22.3	61.33	FRWY
(67,	68)	5459	5443 131	4 25	25.3 1341.5	1518.4	16.7	13.7	3.0	0.82	1.13	0.21	1362.1	25.7	53.01	FRWY
(68,	69)	5443	5439 31	4 27	25.9 1546.3	1553.0	17.1	15.9	1.2	0.93	1.00	0.07	1360.8	22.8	59.74	FRWY
(69,	70)	3350	3354 34	9 8	17.2 1076.7	1029.1	18.4	17.9	0.5	0.97	0.96	0.03	838.5	13.4	62.78	FRWY
(70,	71)	3354	3356 14	9 4	7.9 494.6	473.2	8.5	8.2	0.3	0.97	0.96	0.03	839.1	13.4	62.72	FRWY
(71,	72)	3735	3722 74	4 17	17.1 1058.2	1026.0	16.5	15.8	0.7	0.96	0.97	0.04	866.2	14.0	61.88	FRWY
(72,	73)	3722	3700 234	0 31	25.5 1556.8	1529.4	24.7	23.3	1.4	0.94	0.98	0.06	927.7	15.2	61.08	FRWY
(73,	74)	3700	3684 26	6 22	17.3 1048.3	1039.3	16.9	16.1	0.8	0.95	0.99	0.05	922.5	15.2	60.52	FRWY
(74,	75)	1398	1398 13	7 9	8.7 554.3	523.0	22.5	22.0	0.5	0.98	0.94	0.02	464.8	7.3	63.59	FRWY
(75,	76)	1821	1820 57	0 2	3.0 181.4	177.9	5.9	5.5	0.3	0.94	0.98	0.06	472.2	7.7	61.17	FRWY
(76,	77)	2151	2151 44	7 1	2.3 130.7	136.3	3.8	3.4	0.4	0.89	1.04	0.12	546.5	9.5	57.55	FRWY

/ E60 E60)	2152	2152	79	•	1.7	81.5	102.7	2.9	2.1	0.7	0 74	1.26	0 33	717.3	15.1	47.61	FRWY
(568, 569)	2152	2152	79	0	1.,			2.9		0.7							
(569, 570)	1320	1321	92	1	5.1	309.9	305.0	13.9	13.0	0.9	0.94	0.98	0.06	440.1	7.2	60.96	FRWY
(570, 571)	2642	2636	394	7	6.8	411.9	406.2	9.2	8.6	0.6	0.94	0.99	0.06	659.8	10.8	60.85	FRWY
(571, 572)	2899	2894	566	20	13.2	823.8	791.5	16.4	15.8	0.6	0.96	0.96	0.04	674.4	10.8	62.45	FRWY
(572, 573)	2894	2890	788	24	19.2	1203.0	1151.5	23.9	23.0	0.8	0.97	0.96	0.03	723.5	11.5	62.68	FRWY
(573, 574)	2890	2888	249	8	13.1	820.5	787.1	16.4	15.8	0.6	0.97	0.96	0.03	722.1	11.5	62.55	FRWY
(574, 575)	2594	2584	200	10	9.8	620.9	590.7	13.7	13.3	0.4	0.97	0.95	0.03	647.4	10.3	63.07	FRWY
(575, 576)	2584	2574	403	18	13.5	849.2	808.8	18.8	18.3	0.6	0.97	0.95	0.03	644.2	10.2	63.00	FRWY
(576, 577)	4440	4446	2952	18	22.5	1262.3	1352.7	18.3	15.8	2.4	0.87	1.07	0.14	1033.3	18.5	55.99	FRWY
(577, 578)	4446	4452	304	23	17.2	1074.4	1033.5	13.9	13.4	0.6	0.96	0.96	0.04	1111.5	17.8	62.38	FRWY
(578, 579)	4452	4442	1218	19	14.6	893.9	876.5	11.8	11.1	0.7	0.94	0.98	0.06	1111.1	18.2	61.19	FRWY
(579, 580)	4442	4442	144	11	6.8	420.7	409.9	5.5	5.2	0.3	0.95	0.97	0.05	1110.8	18.0	61.58	FRWY
(580, 581)	4442	4447	271	13	13.7	841.5	819.8	11.1	10.6	0.5	0.95	0.97	0.04	1110.8	18.0	61.59	FRWY
(581, 582)	3681	3677	249	11	11.6	727.8	695.0	11.3	11.0	0.4	0.97	0.96	0.03	919.3	14.6	62.83	FRWY
(582, 583)	3677	3680	294	7	13.8	866.4	827.0	13.5	13.0	0.5	0.97	0.95	0.03	920.1	14.6	62.86	FRWY
(583, 584)	4765	4764	1705	10	15.5	902.5	929.0	11.7	10.5	1.2	0.90	1.03	0.10	1070.8	18.4	58.29	FRWY
(584, 585)	5835	5815	2988	43	29.4	1653.3	1765.6	18.2	15.8	2.4	0.87	1.07	0.14	1283.8	22.8	56.19	FRWY
(585, 586)	5815	5808	373	20	13.3	790.3	798.0	8.2	7.5	0.7	0.91	1.01	0.09	1452.9	24.5	59.42	FRWY
(586, 587)	5808	5809	169	12	11.7	720.2	702.3	7.3	6.9	0.4	0.95	0.98	0.05	1451.5	23.6	61.53	FRWY
(587, 588)	5809	5804	122	13	8.9	549.8	534.0	5.5	5.2	0.3	0.95	0.97	0.05	1451.4	23.5	61.78	FRWY
(588, 589)	5804	5793	281	24	18.0	1097.8	1077.8	11.2	10.5	0.6	0.94	0.98	0.05	1449.1	23.7	61.11	FRWY
(589, 590)	4996	5006	299	7	12.5	771.1	747.6	9.0	8.5	0.4	0.95	0.97	0.05	1208.1	19.5	61.88	FRWY
(590, 591)	5006	5003	348	14	9.3	582.3	560.4	6.7	6.4	0.3	0.96	0.96	0.04	1001.5	16.1	62.35	FRWY
(591, 592)	5003	5002	245	8	10.3	647.1	620.9	7.4	7.2	0.3	0.96	0.96	0.04	1000.4	16.0	62.53	FRWY

(592,	593)	5002	4997	3945	16	15.2	946.5	912.5	11.0	10.5	0.5	0.96	0.96	0.04	999.5	16.1	62.24	FRWY
(593,	594)	4997	5001	632	2	7.8	473.3	466.3	5.6	5.2	0.3	0.94	0.99	0.06	999.7	16.4	60.91	FRWY
(594,	595)	5001	4985	371	20	15.1	945.8	907.9	10.9	10.5	0.4	0.96	0.96	0.04	998.8	16.0	62.51	FRWY
(595,	596)	4985	4981	80	8	10.5	626.9	627.6	7.6	7.2	0.3	0.96	1.00	0.04	996.9	16.6	59.93	FRWY
(596,	597)	2331	2329	89	5	5.0	313.8	299.5	7.7	7.5	0.2	0.97	0.95	0.03	776.7	12.4	62.86	FRWY
(597,	598)	2329	2325	107	9	5.8	362.6	346.4	8.9	8.6	0.3	0.97	0.96	0.03	775.5	12.3	62.81	FRWY
(598,	599)	2325	2324	58	5	3.0	190.2	181.9	4.7	4.5	0.2	0.97	0.96	0.03	775.0	12.3	62.76	FRWY
(600,	601)	2324	2323	73	4	4.2	260.4	249.3	6.4	6.2	0.2	0.97	0.96	0.03	774.1	12.4	62.67	FRWY
(601,	602)	4494	4485	1793	17	11.2	637.9	671.1	9.0	7.9	1.1	0.88	1.05	0.12	976.3	17.1	57.03	FRWY
(602,	603)	4485	4484	271	13	10.4	636.6	625.2	8.4	7.9	0.5	0.94	0.98	0.06	1120.4	18.3	61.10	FRWY
(603,	604)	4484	4487	133	4	8.7	545.3	524.9	7.0	6.8	0.3	0.96	0.96	0.04	1121.2	18.0	62.34	FRWY
(604,	605)	4487	4476	189	17	9.9	616.9	595.5	8.0	7.6	0.3	0.96	0.97	0.04	1120.2	18.0	62.16	FRWY
(605,	606)	4476	4471	251	11	13.0	806.9	781.9	10.5	10.0	0.5	0.96	0.97	0.04	1118.8	18.1	61.92	FRWY
(606,	607)	4471	4461	226	15	10.4	639.5	621.2	8.3	8.0	0.4	0.95	0.97	0.05	1116.5	18.1	61.76	FRWY
(607,	608)	4461	4468	176	2	9.0	556.2	540.4	7.3	6.9	0.3	0.95	0.97	0.05	1115.9	18.1	61.76	FRWY
(608,	609)	4468	4464	215	11	11.2	690.1	670.3	9.0	8.6	0.4	0.95	0.97	0.05	1116.3	18.1	61.77	FRWY
(609,	610)	4464	4461	272	15	12.7	783.7	762.2	10.2	9.7	0.5	0.95	0.97	0.05	1116.0	18.1	61.69	FRWY
(610,	611)	4461	4460	1599	13	9.9	602.9	592.0	8.0	7.5	0.5	0.94	0.98	0.06	1114.7	18.2	61.11	FRWY
(611,	612)	4460	4464	840	3	10.9	630.4	655.4	8.8	7.8	1.0	0.89	1.04	0.11	1115.5	19.3	57.71	FRWY
(612,	613)	4464	4450	513	23	21.0	1266.8	1257.2	16.9	16.0	0.9	0.95	0.99	0.05	1114.8	18.4	60.46	FRWY
(613,	614)	2240	2241	51	0	2.1	132.0	128.6	3.4	3.3	0.2	0.95	0.97	0.05	747.0	12.1	61.59	FRWY
(614,	615)	2241	2241	19	2	1.9	121.8	116.8	3.1	3.0	0.1	0.97	0.96	0.03	747.0	11.9	62.59	FRWY
(615,	616)	2241	2236	33	6	3.4	212.0	201.9	5.4	5.3	0.2	0.97	0.95	0.03	746.2	11.8	62.99	FRWY

(616, 617)	2236	2229	98	9	6.8	422.7	407.0	10.9	10.6	0.4	0.97	0.96	0.03	743.9	11.9	62.31	FRWY
(617, 618)	1918	1913	94	7	5.7	360.4	343.9	10.8	10.5	0.3	0.97	0.95	0.03	638.2	10.1	62.89	FRWY
(618, 619)	1913	1910	64	9	5.2	324.9	310.3	9.7	9.5	0.3	0.97	0.96	0.03	636.7	10.1	62.82	FRWY
(619, 620)	1910	1907	42	3	2.4	151.0	144.6	4.5	4.4	0.1	0.97	0.96	0.03	635.9	10.1	62.68	FRWY
(599, 600)	2324	2324	67	1	2.7	170.3	163.0	4.2	4.1	0.1	0.97	0.96	0.03	774.6	12.4	62.71	FRWY
(77,7053)	2151	2150	0	1	1.3	75.8	77.2	2.2	2.0	0.2	0.91	1.02	0.10	716.9	12.2	58.86	FRWY
(7054, 568)	2153	2152	398	1	2.1	101.9	127.1	3.3	2.4	0.9	0.74	1.25	0.33	776.6	16.1	48.11	FRWY
(396, 397)	4254	4242	1546	44	29.7	1836.2	1779.0	25.1	24.0	1.2	0.95	0.97	0.04	1061.2	17.1	61.93	FRWY
(397, 398)	4868	4865	1120	14	10.7	645.3	641.1	7.9	7.3	0.6	0.93	0.99	0.07	973.5	16.1	60.39	FRWY
(398, 564)	4865	4856	320	15	11.9	736.5	712.4	8.8	8.4	0.4	0.96	0.97	0.04	972.2	15.7	62.04	FRWY
(620, 369)	1907	1906	62	4	2.8	177.7	170.2	5.4	5.2	0.2	0.97	0.96	0.03	635.6	10.1	62.63	FRWY
(617, 114)	311	310	0	1	0.7	38.2	42.3	8.2	8.0	0.1	0.98	1.10	0.02	310.2	5.7	54.30	RAMP
(114, 115)	310	310	0	1	1.0	49.5	59.4	11.5	11.3	0.2	0.98	1.20	0.02	310.5	6.2	49.93	RAMP
(117, 416)	311	309	0	2	0.8	37.6	46.3	9.0	8.7	0.3	0.97	1.23	0.04	310.0	6.4	48.74	RAMP
(399, 402)	1097	1107	100	2	6.4	344.3	381.6	20.8	20.5	0.3	0.99	1.11	0.01	551.5	10.2	54.13	RAMP
(625, 132)	1000	999	0	1	0.9	39.0	53.7	3.2	2.6	0.7	0.79	1.38	0.29	999.6	23.0	43.55	RAMP
(626, 627)	1675	1673	47	5	2.1	132.8	126.7	4.5	4.4	0.1	0.97	0.95	0.03	836.4	13.3	62.87	FRWY
(627, 190)	1673	1672	25	3	1.6	101.3	95.6	3.4	3.4	0.1	0.98	0.94	0.02	835.9	13.1	63.61	FRWY
(629, 255)	991	991	0	1	1.3	63.5	80.9	4.9	4.2	0.7	0.86	1.27	0.18	991.5	21.1	47.07	RAMP
(628, 629)	994	991	0	3	1.6	65.1	98.2	5.9	5.2	0.7	0.88	1.51	0.17	993.2	25.0	39.76	RAMP
(631, 280)	980	980	0	1	1.8	92.2	108.9	6.7	6.2	0.5	0.93	1.18	0.09	979.1	19.3	50.77	RAMP
(630, 631)	975	980	0	0	1.6	79.2	98.7	6.1	5.9	0.2	0.97	1.25	0.04	977.1	20.3	48.13	RAMP
(632, 633)	1557	1555	51	4	3.6	191.7	215.9	8.3	8.1	0.2	0.97	1.13	0.03	777.5	14.6	53.28	RAMP
(635, 54)	220	221	0	0	0.5	26.3	31.0	8.4	7.8	0.6	0.93	1.18	0.08	221.0	4.3	51.01	RAMP

(634,	635)	220	220	0	0	0.5	19.5	28.1	7.7	7.1	0.6	0.93	1.44	0.11	220.0	5.3	41.67	RAMP
(637,	56)	552	554	0	0	1.3	67.7	75.9	8.2	8.0	0.2	0.97	1.12	0.03	552.4	10.3	53.53	RAMP
(636,	637)	553	552	0	1	0.9	47.0	52.9	5.7	5.6	0.2	0.97	1.13	0.03	552.9	10.4	53.29	RAMP
(61,	638)	1005	1005	0	0	1.6	85.3	96.1	5.7	5.6	0.2	0.97	1.13	0.04	1005.0	18.9	53.26	RAMP
(638,	639)	1005	1005	83	1	1.2	64.3	72.9	4.4	4.2	0.2	0.96	1.13	0.04	589.3	11.1	52.91	RAMP
(62,	640)	1313	1313	0	1	1.9	100.8	115.4	5.3	5.0	0.2	0.96	1.15	0.05	1313.6	25.1	52.39	RAMP
(640,	641)	1313	1313	102	0	1.0	54.7	62.9	2.9	2.7	0.1	0.95	1.15	0.06	849.6	16.3	52.19	RAMP
(643,	64)	884	885	0	0	1.9	97.9	113.8	7.7	7.3	0.4	0.95	1.16	0.06	884.9	17.1	51.60	RAMP
(642,	643)	884	884	63	0	1.7	79.9	101.7	6.9	5.9	1.0	0.86	1.27	0.18	622.8	13.2	47.09	RAMP
(69,	644)	2089	2089	83	0	2.7	138.9	163.6	4.7	4.4	0.3	0.93	1.18	0.09	1824.0	35.8	50.93	RAMP
(644,	645)	2089	2093	191	0	2.0	98.2	118.4	3.4	3.3	0.1	0.97	1.21	0.03	805.1	16.2	49.76	RAMP
(647,	71)	381	379	0	2	1.0	50.7	60.5	9.5	8.7	0.8	0.92	1.19	0.10	380.4	7.6	50.32	RAMP
(646,	647)	384	381	0	3	0.9	36.3	52.8	8.3	7.6	0.7	0.92	1.46	0.12	382.3	9.3	41.22	RAMP
(74,	648)	2286	2286	86	1	3.8	201.3	231.0	6.1	5.8	0.3	0.96	1.15	0.05	1143.1	21.9	52.30	RAMP
(648,	649)	2286	2280	56	8	3.8	170.5	230.5	6.1	4.9	1.1	0.81	1.35	0.25	1142.4	25.7	44.38	RAMP
(651,	75)	423	423	0	0	0.6	31.3	38.9	5.5	4.9	0.7	0.88	1.24	0.15	423.0	8.8	48.32	RAMP
(650,	651)	423	423	0	0	0.6	24.8	37.5	5.3	4.7	0.6	0.88	1.51	0.18	423.0	10.6	39.75	RAMP
(653,	76)	331	331	0	0	0.3	15.4	17.4	3.2	3.1	0.1	0.97	1.13	0.04	331.0	6.2	53.06	RAMP
(652,	653)	331	331	0	0	0.3	17.4	19.7	3.6	3.4	0.1	0.97	1.13	0.04	331.0	6.2	53.14	RAMP
(569,	654)	832	831	34	1	0.8	41.3	49.3	3.6	3.2	0.3	0.91	1.20	0.11	672.7	13.4	50.19	RAMP
(656,	570)	1320	1321	0	4	2.4	115.2	143.8	6.5	5.7	0.8	0.88	1.25	0.16	1319.8	27.4	48.09	RAMP
(655,	656)	1321	1320	0	3	2.8	112.5	166.5	7.6	6.8	0.7	0.90	1.48	0.15	1320.1	32.6	40.54	RAMP
(658,	571)	263	263	0	0	0.5	26.3	29.4	6.7	6.6	0.1	0.98	1.12	0.02	263.0	4.9	53.80	RAMP

(657,	658)	263	263	0	0	0.4	22.2	24.9	5.7	5.6	0.1	0.98	1.12	0.02	263.0	4.9	53.64	RAMP
(574,	660)	294	294	0	0	0.2	12.4	13.8	2.8	2.8	0.1	0.98	1.11	0.03	294.0	5.5	53.83	RAMP
(660,	661)	294	294	0	0	0.2	11.7	13.8	2.8	2.8	0.1	0.98	1.18	0.03	294.0	5.8	50.90	RAMP
(663,	576)	1863	1866	44	1	4.1	176.3	244.1	7.9	6.2	1.7	0.79	1.38	0.30	1553.6	35.9	43.32	RAMP
(662,	663)	1861	1863	248	1	3.0	117.8	179.3	5.8	4.6	1.2	0.79	1.52	0.32	931.1	23.6	39.42	RAMP
(581,	664)	766	767	0	0	1.6	84.0	94.7	7.4	7.2	0.2	0.97	1.13	0.03	766.2	14.4	53.23	RAMP
(664,	665)	767	767	0	0	0.6	32.7	37.0	2.9	2.8	0.1	0.97	1.13	0.04	767.0	14.5	52.95	RAMP
(667,	583)	1085	1085	0	0	3.8	177.3	228.1	12.6	10.7	1.9	0.85	1.29	0.19	1085.0	23.3	46.66	RAMP
(666,	667)	1085	1085	0	0	1.3	43.8	77.0	4.3	4.1	0.1	0.97	1.76	0.04	1085.0	31.8	34.11	RAMP
(669,	584)	1069	1071	14	4	2.3	118.3	138.9	7.8	7.3	0.5	0.93	1.17	0.08	913.2	17.9	51.09	RAMP
(668,	669)	1070	1069	79	1	1.3	64.4	77.5	4.3	3.9	0.4	0.91	1.20	0.11	534.8	10.7	49.91	RAMP
(589,	670)	797	796	0	1	0.6	34.4	38.6	2.9	2.8	0.1	0.97	1.12	0.04	796.4	14.9	53.43	RAMP
(670,	671)	796	795	0	1	0.6	32.7	36.6	2.8	2.7	0.1	0.97	1.12	0.03	795.9	14.9	53.59	RAMP
(672,	673)	1096	1097	0	2	2.0	91.8	117.3	6.4	6.0	0.4	0.94	1.28	0.08	1096.7	23.4	46.96	FRWY
(674,	675)	1072	1071	0	1	1.2	61.5	70.2	3.9	3.8	0.2	0.96	1.14	0.05	1071.9	20.4	52.60	RAMP
(676,	677)	2648	2640	810	20	14.4	751.5	864.5	19.6	18.7	0.9	0.95	1.15	0.05	1072.4	20.6	52.15	FRWY
(677,	680)	1254	1252	134	8	5.9	317.6	353.6	17.0	16.6	0.3	0.98	1.11	0.02	625.7	11.6	53.89	FRWY
(677,	678)	1386	1385	29	4	2.0	98.9	120.9	5.2	5.1	0.1	0.98	1.22	0.02	692.9	14.1	49.11	RAMP
(678,	679)	1385	1380	33	6	2.2	107.4	131.5	5.7	5.6	0.1	0.98	1.22	0.02	691.3	14.1	49.00	RAMP
(680,	681)	1252	1250	63	8	3.2	171.3	190.3	9.1	9.0	0.2	0.98	1.11	0.02	624.8	11.6	54.01	FRWY
(681,	682)	1250	1247	49	4	3.3	177.3	197.1	9.5	9.3	0.2	0.98	1.11	0.02	480.2	8.9	53.98	FRWY
(684,	685)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	RAMP
(686,	111)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY
(685,	681)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	RAMP

(682, 683)	1247	1243	60	4	3.3	176.8	196.8	9.5	9.3	0.2	0.98	1.11	0.02	622.5	11.5	53.91	FRWY	
(687, 688)	1238	1238	46	0	2.4	108.8	144.9	7.0	6.9	0.1	0.98	1.33	0.03	619.0	13.7	45.05	FRWY	
(688,7027)	1238	1238	0	1	1.6	62.1	94.4	4.6	4.5	0.0	0.99	1.52	0.01	618.9	15.7	39.47	FRWY	
(7056, 626)	1669	1675	121	2	2.5	139.8	147.7	5.1	4.4	0.6	0.88	1.06	0.13	872.7	15.4	56.79	FRWY	
(679,7058)	1380	1379	0	1	1.2	59.3	73.6	3.2	3.1	0.1	0.97	1.24	0.04	689.7	14.3	48.34	RAMP	
(7059, 684)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	RAMP	
(7060, 628)	996	994	0	2	1.3	43.9	77.5	4.3	4.2	0.1	0.97	1.77	0.06	1082.0	31.9	33.95	RAMP	
(7061, 630)	972	975	0	0	1.4	63.9	83.6	4.9	4.5	0.4	0.92	1.31	0.10	1029.3	22.4	45.91	RAMP	
(7062, 674)	1072	1072	0	0	0.8	37.5	46.6	2.3	2.1	0.3	0.88	1.25	0.15	1191.6	24.7	48.19	RAMP	
(7063, 672)	1097	1096	0	2	2.4	97.9	142.8	7.5	6.9	0.6	0.91	1.46	0.12	1141.4	27.7	41.15	FRWY	
(671,7064)	795	793	0	2	0.5	27.4	31.1	2.3	2.3	0.1	0.96	1.14	0.05	794.1	15.0	52.82	RAMP	
(633,7065)	1555	1556	0	1	1.8	97.9	110.7	4.3	4.1	0.1	0.97	1.13	0.04	778.1	14.7	53.06	RAMP	
(7066, 634)	220	220	0	0	0.3	9.5	16.3	4.1	4.0	0.1	0.99	1.72	0.02	239.9	6.9	34.80	RAMP	
(7067, 636)	553	553	0	0	0.8	41.8	50.3	5.2	4.7	0.5	0.91	1.20	0.11	581.2	11.6	49.92	RAMP	
(665,7068)	767	769	0	0	0.6	29.8	34.8	2.7	2.5	0.2	0.94	1.17	0.07	767.3	14.9	51.41	RAMP	
(7069, 666)	1084	1085	0	1	1.1	40.0	67.7	3.4	3.3	0.1	0.98	1.69	0.03	1200.0	33.8	35.46	RAMP	
(7070, 668)	1070	1070	526	0	1.3	67.2	79.1	4.2	3.9	0.3	0.93	1.18	0.09	567.0	11.1	50.98	RAMP	
(639,7071)	1005	1005	0	0	0.6	31.4	37.7	2.2	2.0	0.2	0.91	1.20	0.11	502.5	10.0	50.01	RAMP	
(7072, 642)	885	884	464	1	0.6	29.1	37.7	2.3	1.9	0.3		1.30	0.20	495.0	10.7	46.25	RAMP	
(641,7073)	1313	1312	0	1	0.9	43.2	52.4	2.4	2.4	0.0		1.21		656.1	13.3	49.48	RAMP	
(661,7074)	294	294	0	0	0.2	10.5	13.7	2.8	2.6	0.2		1.30	0.10	294.0	6.4	46.13	RAMP	
(7075, 662)	1862	1861		1	2.3	107.8	140.7	4.3	3.9	0.4		1.31		991.2	21.6	45.95	RAMP	
							117.7	3.4	3.2		0.95		0.06	697.7	14.6	47.69	RAMP	
(645,7076)	2093	2093	0	3	2.0	93.6	11/./	3.4	3.4	0.2	0.53	1.20	0.00	031.1	14.0	47.09	MIL	

(7077, 646)	386	384	0	2	0.4	13.0	22.9	3.2	3.1	0.1	0.97	1.76	0.06	429.9	12.6	34.11	RAMP	
(7078, 657)	263	263	0	0	0.4	18.1	21.0	4.5	4.3	0.3	0.94	1.16	0.06	277.6	5.4	51.76	RAMP	
(7080, 650)	422	423	0	0	0.8	25.9	45.3	6.1	5.9	0.1	0.98	1.75	0.04	448.6	13.1	34.35	RAMP	
(7081, 655)	1321	1321	0	3	1.7	57.4	101.4	4.2	4.1	0.1	0.97	1.77	0.06	1437.2	42.3	33.99	RAMP	
(649,7082)	2280	2261	0	21	7.8	127.3	466.7	12.3	3.7	8.6	0.30	3.67	2.57	1135.4	69.4	16.36	RAMP	
(7083, 652)	331	331	0	0	0.3	16.0	19.4	3.3	2.9	0.3	0.90	1.21	0.12	357.9	7.2	49.43	RAMP	
(7084, 857)	316	316	0	0	0.3	12.4	15.2	2.6	2.3	0.3	0.89	1.23	0.14	347.2	7.1	48.83	RAMP	
(857, 858)	316	316	0	0	0.4	18.7	21.2	4.0	3.9	0.2	0.96	1.14	0.05	316.0	6.0	52.86	RAMP	
(859,7085)	575	568	0	9	1.2	52.6	70.5	7.4	6.0	1.4	0.81	1.34	0.26	573.4	12.8	44.72	RAMP	
(7086, 860)	47	47	0	0	0.1	4.3	4.8	5.9	5.7			1.11		49.0	0.9	53.87	RAMP	
	47			0				5.6		0.0								
(860, 861)	4/	47	0	U	0.1	4.0	4.4	5.0	5.6	0.0	0.99	1.09	0.01	47.0	0.9	54.80	RAMP	
(866,7087)	70	7.0	0	0	0.1	4.0	4.6	4.0	3.8	0.2	0.96	1.14	0.05	70.0	1.3	52.41	RAMP	
(873,7088)	84	84	0	0	0.2	8.8	9.7	6.9	6.8	0.1	0.99	1.09	0.01	84.0	1.5	54.85	RAMP	
(7089, 874)	116	117	0	0	0.1	6.8	7.7	3.7	3.6	0.2	0.95	1.14	0.05	123.8	2.4	52.56	RAMP	
(874, 875)	117	118	0	0	0.1	6.5	7.2	3.7	3.6	0.0	0.99	1.11	0.01	117.1	2.2	54.25	RAMP	
(876,7090)	252	252	0	0	0.4	22.6	25.3	6.0	5.8	0.2	0.97	1.12	0.04	252.0	4.7	53.64	RAMP	
(7091, 877)	69	68	0	1	0.1	4.1	6.1	5.1	3.7	1.4	0.72	1.51	0.42	73.0	1.8	39.79	RAMP	
(877, 878)	68	68	0	0	0.1	4.5	5.1	4.5	4.3	0.3	0.94	1.15	0.07	68.0	1.3	51.99	RAMP	
(879, 880)	1995	1999	129	7	7.8	501.7	469.2	13.9	13.7	0.2	0.99	0.94	0.01	1012.5	15.8	64.15	FRWY	
(880, 881)	1999	1999	178	10	11.1	704.7	663.4	19.9	19.6	0.4	0.98	0.94	0.02	999.2	15.7	63.73	FRWY	
(881, 882)	1999	2002	225	9	9.1	575.8	546.9	16.4	16.0	0.4	0.97	0.95	0.03	999.4	15.8	63.17	FRWY	
(882, 883)	2002	2003	197	8	9.0	568.6	542.9	16.3	15.8	0.5	0.97	0.95	0.03	1000.8	15.9	62.84	FRWY	
(883, 884)	1920	1920	141	6	7.0	437.1	417.1	13.0	12.6	0.4	0.97	0.95	0.03	960.8	15.3	62.87	FRWY	
	83	84	0	0	0.2	9.5	10.3	7.4	7.4		1.00		0.01	83.1	1.5	55.18	RAMP	
(883, 873)	63	04	U	U	0.2	3.5	10.3	/ • 4	/ • 😘	0.0	1.00	1.09	0.01	03.1	1.5	33.10	au Mile	

(884,	885)	1920	1916	126	10	6.4	402.5	384.5	12.0	11.6	0.4	0.97	0.96	0.03	959.0	15.3	62.80	FRWY
(885,	886)	1916	1919	146	6	7.9	497.1	476.1	14.9	14.4	0.5	0.97	0.96	0.03	957.9	15.3	62.65	FRWY
(886,	887)	2037	2037	309	10	9.3	577.8	555.9	16.4	15.8	0.6	0.96	0.96	0.04	884.3	14.2	62.36	FRWY
(887,	888)	2037	2029	174	16	9.5	594.4	571.6	16.9	16.2	0.7	0.96	0.96	0.04	1017.0	16.3	62.39	FRWY
(875,	886)	118	118	0	0	0.2	9.5	10.5	5.3	5.3	0.0	0.99	1.10	0.01	118.0	2.2	54.56	RAMP
(888,	889)	2029	2039	209	5	10.4	645.9	623.7	18.4	17.6	0.8	0.96	0.97	0.04	1018.0	16.4	62.14	FRWY
(889,	890)	2039	2041	135	5	6.9	426.9	412.5	12.1	11.6	0.5	0.96	0.97	0.04	1019.1	16.4	62.10	FRWY
(890,	891)	2041	2034	212	12	10.8	672.4	650.4	19.1	18.3	0.8	0.96	0.97	0.04	1019.5	16.4	62.02	FRWY
(891,	892)	2034	2040	159	6	8.1	505.0	488.4	14.4	13.7	0.6	0.96	0.97	0.04	1018.6	16.4	62.04	FRWY
(892,	893)	2040	2035	394	22	19.1	1182.3	1143.6	33.7	32.2	1.5	0.96	0.97	0.04	1018.4	16.4	62.03	FRWY
(893,	894)	2035	2038	443	22	22.6	1399.4	1355.8	39.8	38.0	1.8	0.95	0.97	0.04	1022.0	16.5	61.93	FRWY
(894,	895)	2038	2028	254	18	13.8	851.6	827.7	24.5	23.3	1.2	0.95	0.97	0.05	1015.5	16.4	61.73	FRWY
(895,	896)	2028	2032	419	22	21.5	1326.4	1292.3	38.2	36.3	1.9	0.95	0.97	0.05	1014.7	16.5	61.58	FRWY
(896,	897)	2032	2036	419	16	23.1	1422.3	1386.5	40.9	38.8	2.1	0.95	0.97	0.05	1015.9	16.5	61.55	FRWY
(897,	898)	2036	2027	263	16	12.8	785.7	766.7	22.6	21.4	1.2	0.95	0.98	0.05	1016.8	16.5	61.49	FRWY
(898,	899)	2027	2026	179	7	9.4	575.7	563.3	16.7	15.8	0.9	0.95	0.98	0.05	1013.2	16.5	61.32	FRWY
(899,	900)	1956	1953	181	8	9.9	609.4	593.5	18.2	17.3	0.9	0.95	0.97	0.05	976.7	15.9	61.60	FRWY
(899,	866)	70	70	0	0	0.2	8.2	9.1	7.8	7.7	0.1	0.99	1.11	0.01	70.0	1.3	54.27	RAMP
(900,	901)	1953	1929	222	37	11.6	713.0	693.0	21.4	20.3	1.0	0.95	0.97	0.05	972.7	15.8	61.73	FRWY
(901,	902)	2245	2239	562	9	10.4	636.1	623.3	16.7	15.8	0.9	0.94	0.98	0.06	973.5	15.9	61.24	FRWY
(902,	903)	2239	2238	165	8	10.4	640.4	622.4	16.7	15.9	0.8	0.95	0.97	0.05	1118.9	18.1	61.73	FRWY
(858,	901)	316	316	0	0	0.9	47.7	53.7	10.2	9.9	0.3	0.97	1.13	0.04	316.0	5.9	53.27	RAMP
(903,	904)	2238	2235	197	7	11.9	733.3	714.5	19.2	18.2	1.0	0.95	0.97	0.05	1118.4	18.2	61.58	FRWY

(904,	905)	2235	2223	182	13	9.2	564.6	550.3	14.8	14.1	0.8	0.95	0.97	0.05	1113.1	18.1	61.56	FRWY
(906,	907)	2501	2505	165	7	10.1	649.1	607.3	14.4	14.1	0.2	0.98	0.94	0.02	1268.4	19.8	64.13	FRWY
(907,	908)	2505	2496	464	19	15.2	966.6	914.0	21.9	21.3	0.6	0.97	0.95	0.03	1251.5	19.7	63.45	FRWY
(908,	909)	2496	2495	270	12	11.5	709.7	687.5	16.5	15.8	0.7	0.96	0.97	0.04	1249.1	20.2	61.94	FRWY
(909,	910)	1920	1918	163	7	7.7	481.1	459.3	14.4	13.9	0.5	0.97	0.95	0.03	959.3	15.3	62.86	FRWY
(909,	859)	575	575	0	0	1.5	83.0	92.5	9.7	9.4	0.3	0.97	1.11	0.03	575.0	10.7	53.81	RAMP
(910,	911)	1918	1919	198	8	9.2	578.7	552.6	17.3	16.7	0.6	0.96	0.95	0.03	959.1	15.3	62.84	FRWY
(911,	912)	1919	1913	149	13	8.4	530.0	506.5	15.9	15.3	0.6	0.96	0.96	0.03	956.4	15.2	62.78	FRWY
(861,	912)	47	47	0	0	0.1	4.5	4.9	6.3	6.2	0.0	0.99	1.09	0.01	47.0	0.9	55.01	RAMP
(912,	913)	1960	1963	229	7	8.9	557.5	534.3	16.3	15.7	0.6	0.96	0.96	0.04	853.2	13.6	62.60	FRWY
(913,	914)	1963	1968	187	5	9.4	586.2	562.2	17.1	16.5	0.7	0.96	0.96	0.04	984.4	15.7	62.56	FRWY
(914,	915)	1968	1966	378	19	18.5	1154.9	1110.7	33.8	32.4	1.4	0.96	0.96	0.04	984.5	15.8	62.39	FRWY
(915,	916)	1966	1970	375	21	18.7	1164.6	1123.6	34.2	32.7	1.5	0.96	0.96	0.04	984.8	15.8	62.19	FRWY
(916,	917)	1970	1969	341	20	17.0	1057.2	1021.9	31.2	29.7	1.4	0.95	0.97	0.04	983.7	15.8	62.07	FRWY
(917,	918)	1969	1976	281	11	13.4	829.4	803.3	24.4	23.3	1.2	0.95	0.97	0.05	986.3	15.9	61.95	FRWY
(918,	919)	1976	1968	327	18	17.2	1068.0	1035.0	31.5	30.0	1.5	0.95	0.97	0.05	986.2	15.9	61.91	FRWY
(919,	920)	1968	1963	351	17	17.9	1104.0	1072.0	32.7	31.1	1.6	0.95	0.97	0.05	982.6	15.9	61.79	FRWY
(920,	921)	1963	1972	203	6	10.9	675.9	654.7	20.0	19.0	1.0	0.95	0.97	0.05	984.2	15.9	61.94	FRWY
(921,	922)	1972	1967	189	17	10.4	644.7	625.5	19.0	18.1	0.9	0.95	0.97	0.05	985.6	15.9	61.85	FRWY
(922,	923)	1967	1977	191	6	10.5	649.7	630.8	19.2	18.2	1.0	0.95	0.97	0.05	986.3	16.0	61.80	FRWY
(923,	924)	1977	1976	274	5	11.8	731.5	710.4	21.6	20.5	1.1	0.95	0.97	0.05	988.3	16.0	61.78	FRWY
(924,	925)	1976	1980	245	7	11.4	690.8	683.0	20.7	19.4	1.3	0.93	0.99	0.06	989.0	16.3	60.69	FRWY
(925,	926)	1729	1722	221	17	11.3	699.6	675.1	23.4	22.4	1.0	0.96	0.97	0.04	865.0	13.9	62.17	FRWY
(925,	876)	251	252	0	0	0.7	38.4	42.4	10.1	9.9	0.2	0.98	1.10	0.02	251.7	4.6	54.37	RAMP

•

(926, 927)	1722	1723	165	7	8.2	512.3	492.6	17.2	16.5	0.7	0.96	0.96	0.04	861.5	13.8	62.40	FRWY
(878, 927)	68	68	0	0	0.1	3.8	4.2	3.7	3.7	0.0	0.99	1.10	0.01	68.0	1.2	54.49	RAMP
(927, 928)	1791	1783	245	14	8.2	508.6	489.9	16.4	15.7	0.7	0.96	0.96	0.04	778.3	12.5	62.29	FRWY
(928, 929)	1783	1777	138	11	7.5	469.7	452.1	15.3	14.6	0.6	0.96	0.96	0.04	888.8	14.3	62.33	FRWY
(929, 930)	1777	1771	169	6	9.3	579.5	558.2	18.9	18.1	0.8	0.96	0.96	0.04	887.5	14.2	62.29	FRWY
(930, 931)	1771	1769	118	3	6.2	385.3	370.9	12.6	12.1	0.5	0.96	0.96	0.04	884.5	14.2	62.33	FRWY
(654,7079)	831	830	0	1	0.8	40.9	50.3	3.6	3.2	0.4	0.88	1.23	0.14	415.1	8.5	48.73	RAMP
(683, 687)	1243	1238	42	6	2.2	111.8	134.0	6.5	6.4	0.1	0.98	1.20	0.02	619.9	12.4	50.06	FRWY
(407, 369)	2425	2422	169	4	3.3	169.0	197.1	4.9	4.6	0.3	0.94	1.17	0.08	808.2	15.7	51.44	RAMP
(411, 416)	366	364	0	2	0.4	18.9	22.9	3.8	3.7	0.0	0.99	1.21	0.01	364.6	7.4	49.47	FRWY
(115, 117)	310	311	0	0	1.2	58.8	72.0	13.9	13.6	0.3	0.98	1.22	0.03	310.4	6.3	49.02	RAMP
(382, 383)	1175	1173	26	2	1.3	44.2	79.8	4.1	3.8	0.3	0.93	1.80	0.12	586.8	17.6	33.26	RAMP
(412, 414)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY
(281, 937)	2720	2721	112	2	2.3	103.6	137.5	3.0	2.7	0.3	0.90	1.33	0.13	906.9	20.1	45.19	FRWY
(383, 414)	1173	1169	86	5	2.9	113.6	175.1	9.0	7.7	1.2	0.86	1.54	0.21	592.7	15.2	38.92	RAMP
(314, 553)	1112	1108	0	4	2.4	126.9	145.1	7.8	7.5	0.3	0.96	1.14	0.05	1111.2	21.2	52.47	RAMP
(553, 933)	1108	1107	0	2	3.2	152.9	191.4	10.4	9.9	0.5	0.95	1.25	0.06	1107.6	23.1	47.94	RAMP
(933, 934)	1107	1108	0	2	3.1	146.8	187.3	10.2	9.6	0.6	0.94	1.28	0.07	1107.1	23.5	47.01	RAMP
(935, 936)	1755	1755	123	2	4.7	225.1	279.9	9.6	9.3	0.3	0.97	1.24	0.04	877.7	18.2	48.24	FRWY
(934, 935)	1756	1755	191	2	2.5	118.7	149.7	5.1	4.9	0.2	0.95	1.26	0.06	878.0	18.4	47.60	FRWY
(936, 309)	1755	1759	82	3	3.8	183.6	228.6	7.8	7.5	0.3	0.97	1.24	0.04	878.3	18.2	48.21	FRWY
(414, 415)	1169	1172	0	0	1.5	60.9	87.5	4.5	4.2	0.3	0.93	1.44	0.10	584.9	14.0	41.76	FRWY
(937, 555)	2694	2697	232	3	3.6	176.2	214.2	4.8	4.3	0.5	0.90	1.22	0.12	1348.3	27.3	49.35	RAMP

(111, 676)	2645	2648	756	3	6.3	331.3	376.3	8.5	8.2	0.3	0.96	1.14	0.05	882.0	16.7	52.81	FRWY
(416, 161)	673	676	57	0	1.4	71.1	86.8	7.7	7.6	0.1	0.98	1.22	0.02	337.0	6.9	49.18	FRWY
(162, 165)	5028	5028	453	14	13.9	876.1	835.1	9.8	9.5	0.3	0.97	0.95	0.03	1283.5	20.4	62.95	FRWY
(165, 166)	5028	5030	153	12	11.3	714.4	678.4	8.1	7.9	0.2	0.97	0.95	0.02	1257.4	19.9	63.18	FRWY
(386, 167)	5202	5197	546	12	12.1	738.6	726.4	8.4	7.9	0.5	0.94	0.98	0.06	1130.4	18.5	61.01	FRWY
(167, 168)	5197	5204	239	8	12.0	738.5	721.0	8.3	7.9	0.4	0.95	0.98	0.05	1299.7	21.1	61.45	FRWY
(168, 169)	5204	5203	242	13	12.8	792.0	770.4	8.9	8.5	0.4	0.95	0.97	0.05	1300.4	21.1	61.68	FRWY
(404, 170)	288	287	0	1	0.3	15.6	17.3	3.6	3.6	0.0	0.99	1.11	0.01	287.1	5.3	54.08	RAMP
(7018, 171)	506	506	0	0	0.5	19.5	27.4	3.0	2.5	0.4	0.86	1.40	0.19	557.2	13.0	42.75	RAMP
(171, 172)	506	505	0	1	0.4	17.7	22.2	2.6	2.5	0.1	0.96	1.26	0.05	505.7	10.6	47.80	RAMP
(172, 387)	505	505	0	0	0.4	18.9	23.0	2.7	2.5	0.3	0.91	1.21	0.11	505.0	10.2	49.44	RAMP
(7020, 174)	281	281	0	0	0.3	12.6	16.5	3.3	3.0	0.3	0.92	1.31	0.11	304.6	6.7	45.80	RAMP
(174, 175)	281	281	0	0	0.3	12.9	15.6	3.3	3.3	0.0	0.99	1.21	0.02	281.0	5.7	49.40	RAMP
(175, 386)	281	280	0	1	0.3	15.2	17.6	3.8	3.5	0.2	0.94	1.16	0.06	280.4	5.4	51.86	RAMP
(385, 173)	825	825	0	0	0.8	40.2	45.4	3.3	3.2	0.1	0.97	1.13	0.04	825.0	15.5	53.07	RAMP
(173,7019)	825	826	0	0	0.7	37.7	44.5	3.2	3.2	0.1	0.98	1.18	0.02	825.8	16.3	50.78	RAMP
(170,7017)	287	288	0	0	0.3	15.2	17.8	3.7	3.7	0.0	0.99	1.17	0.01	287.4	5.6	51.22	RAMP
(151, 344)	701	700	11	2	1.6	80.7	95.8	8.2	7.6	0.6	0.92	1.19	0.09	691.5	13.7	50.51	RAMP
(344,7026)	700	702	0	1	0.8	27.8	46.6	4.0	2.8	1.2	0.71	1.68	0.48	350.7	9.8	35.73	RAMP
(7007, 208)	130	130	0	0	0.1	4.6	7.1	2.9	2.6	0.4	0.87	1.55	0.20	144.3	3.7	38.66	RAMP
(209, 180)	130	130	0	0	0.1	6.9	8.0	3.7	3.5	0.2	0.95	1.16	0.06	130.0	2.5	51.60	RAMP
(315, 555)	4241	4243	339	6	16.5	1032.1	991.4	14.0	13.5	0.5	0.96	0.96	0.03	848.2	13.6	62.46	FRWY
(313, 248)	5325	5336	2228	12	17.4	1070.8	1043.2	11.7	11.2	0.6	0.95	0.97	0.05	1065.7	17.3	61.59	FRWY
(258, 259)	1340	1339	0	1	1.8	80.9	107.3	4.8	4.4	0.4	0.91	1.33	0.12	1019.6	22.5	45.26	FRWY

(259,	260)	2443	2443	566	1	6.3	332.6	380.5	9.3	8.9	0.4	0.96	1.14	0.05	814.2	15.5	52.45	FRWY
(260,	261)	2443	2446	15	0	5.9	315.4	356.7	8.8	8.5	0.3	0.97	1.13	0.04	815.0	15.4	53.04	FRWY
(261,	262)	858	855	0	4	3.9	201.8	233.1	16.3	15.5	0.8	0.95	1.16	0.06	856.0	16.5	51.95	FRWY
(262,	263)	855	855	0	0	1.6	82.4	96.0	6.7	6.3	0.4	0.94	1.16	0.07	855.0	16.6	51.52	FRWY
(263,	264)	855	854	0	1	1.8	90.8	106.3	7.5	7.0	0.5	0.94	1.17	0.07	855.0	16.7	51.30	FRWY
(7008,	625)	999	1000	0	0	1.1	36.0	65.1	3.5	1.8	1.7	0.51	1.81	0.89	1110.2	33.5	33.14	RAMP
(403,	310)	1105	1105	79	2	1.7	70.3	99.5	5.4	4.2	1.2	0.77	1.42	0.32	851.1	20.1	42.36	RAMP
(307,	187)	4114	4117	111	1	5.1	321.9	308.5	4.5	4.3	0.2	0.96	0.96	0.03	823.1	13.1	62.60	FRWY
(264,	187)	854	851	0	3	0.9	47.0	55.1	3.9	3.6	0.3	0.93	1.17	0.08	852.5	16.7	51.17	RAMP
(261,	189)	1588	1595	96	0	3.4	182.0	205.1	7.7	7.5	0.2	0.97	1.13	0.03	795.4	14.9	53.24	RAMP
(189,	265)	1595	1596	73	1	3.6	179.5	218.3	8.2	8.0	0.2	0.97	1.22	0.03	797.7	16.2	49.33	RAMP
(265,	266)	1596	1599	71	1	2.9	129.4	173.5	6.5	6.4	0.2	0.97	1.34	0.03	798.2	17.8	44.75	RAMP
(266,	267)	1599	1600	78	0	3.9	168.5	231.1	8.7	8.4	0.2	0.97	1.37	0.04	799.9	18.3	43.74	RAMP
(267,	268)	1600	1597	73	3	3.6	157.4	216.3	8.1	7.9	0.2	0.97	1.37	0.04	799.0	18.3	43.66	RAMP
(268,	269)	1597	1598	671	3	6.1	272.0	368.0	13.8	12.3	1.6	0.89	1.35	0.15	798.7	18.0	44.35	RAMP
(441,	397)	625	626	0	0	0.6	30.3	35.7	3.4	3.2	0.3	0.92	1.18	0.09	625.1	12.3	50.90	RAMP
(564,	399)	4856	4857	2130	8	10.6	643.6	639.0	7.9	7.5	0.4	0.95	0.99	0.05	970.9	16.1	60.43	FRWY
(399,	400)	3760	3757	102	9	4.9	301.1	295.2	4.7	4.4	0.3	0.94	0.98	0.06	939.7	15.4	61.20	FRWY
(269,	15)	1598	1595	284	5	3.1	106.6	184.2	6.9	4.4	2.5	0.63	1.73	0.63	862.2	24.8	34.73	RAMP
(10,	401)	1173	1174	69	0	3.0	153.6	180.3	9.2	8.6	0.7	0.93	1.17	0.08	1036.9	20.3	51.10	RAMP
(400,	10)	3757	3755	256	16	17.6	1066.3	1058.7	16.9	15.9	1.0	0.94	0.99	0.06	938.3	15.5	60.43	FRWY
(270,	7)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY
(613,	7)	2210	2211	62	0	1.7	89.6	102.1	2.8	2.7	0.1	0.96	1.14	0.05	1105.2	21.0	52.63	RAMP

(7,	8)	2211	2211	325	0	1.7	91.7	104.0	2.8	2.7	0.1	0.96	1.13	0.04	737.0	13.9	52.89	FRWY
(8,	9)	2211	2209	48	2	1.7	89.2	104.4	2.8	2.7	0.1	0.95	1.17	0.06	894.9	17.5	51.21	FRWY
(9,	273)	654	652	0	2	0.6	30.7	36.5	3.4	3.3	0.1	0.98	1.19	0.03	653.2	13.0	50.37	FRWY
(273,	274)	652	650	27	2	0.7	30.3	39.7	3.7	3.6	0.1	0.98	1.31	0.02	468.2	10.2	45.80	FRWY
(9,	271)	1555	1554	44	2	1.7	83.0	102.9	4.0	3.8	0.1	0.97	1.24	0.04	777.2	16.1	48.39	RAMP
(271,	272)	1554	1554	16	2	1.6	73.3	95.8	3.7	3.6	0.1	0.98	1.31	0.02	776.9	16.9	45.90	RAMP
(415,	276)	1172	1172	0	2	1.2	50.8	72.7	3.7	3.5	0.3	0.93	1.43	0.10	815.8	19.4	41.96	FRWY
(272,	276)	1554	1551	83	4	3.6	157.0	215.9	8.3	8.1	0.2	0.97	1.37	0.04	776.3	17.8	43.64	RAMP
(276,	281)	2723	2720	963	4	3.3	150.0	197.7	4.4	4.0	0.4	0.91	1.32	0.12	907.1	19.9	45.52	FRWY
(937,	277)	27	27	0	0	0.0	1.2	1.9	4.1	2.4	1.8	0.57	1.49	0.64	27.0	0.7	40.21	FRWY
(264,	279)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY
(274,	275)	650	649	31	1	1.0	42.3	58.2	5.4	5.2	0.2	0.97	1.38	0.04	324.7	7.4	43.58	FRWY
-		934)	649	648	44	4	2.4	115.6	146.5	13.6	12.9	0.7		1.27	0.07	423.1	8.9	47.32	FRWY
-			1340	1340	0	1	1.3	54.3	77.0	3.5	2.9	0.5		1.42		669.9	15.8	42.29	FRWY
١,	49n	2581	1310	1340	•	_	1.5	34.3	,,	3.3	2.5	0.5	0.05	1.42	0.21	003.3	13.0	46.63	FRWI
,		258)	4400					450.5	454.0								10 -		
(258) 259)	1103	1104	55	2	2.9	152.7	174.0	9.5	9.1	0.4	0.96	1.14	0.05	551.5	10.5	52.65	RAMP
	304,		1103	110 4 0	55 0	2 0	2.9 0.0	152.7	17 4. 0	9.5	9.1	0.4	0.96	0.00	0.05	551.5	0.0	52.65	RAMP FRWY
	304, 278,	259) 490)																	
(304, 278, 27,	259) 490) 28)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY
(304, 278, 27, 28,	259) 490) 28) 29)	0 2571	0 2568	0 70	0	0.0 3.7	0.0	0.0	0.0 5.2	0.0	0.0	0.00 0.95 0.96	0.00 0.98 0.97	0.00	0.0 856.6	0.0	0.00 61.51	FRWY
(304, 278, 27, 28, 29,	259) 490) 28) 29) 30)	0 2571 2568	0 2568 2564	0 70 55	0 6 5	0.0 3.7 3.2 3.6	0.0 228.8 196.8	0.0 223.1 190.1	0.0 5.2 4.4	0.0 4.9 4.3	0.0	0.00 0.95 0.96	0.00 0.98 0.97	0.00 0.05 0.04	0.0 856.6 855.4	0.0 13.9 13.8	0.00 61.51 62.11	FRWY FRWY FRWY
(304, 278, 27, 28, 29,	259) 490) 28) 29) 30) 31)	0 2571 2568 2564	0 2568 2564 2559	0 70 55 54 42	0 6 5 7	0.0 3.7 3.2 3.6 3.5	0.0 228.8 196.8 222.0	0.0 223.1 190.1 214.1	0.0 5.2 4.4 5.0	0.0 4.9 4.3 4.8	0.0 0.3 0.2	0.00 0.95 0.96 0.96	0.00 0.98 0.97 0.96	0.00 0.05 0.04 0.04	0.0 856.6 855.4 853.2	0.0 13.9 13.8	0.00 61.51 62.11 62.23	FRWY FRWY FRWY
(304, 278, 27, 28, 29, 30,	259) 490) 28) 29) 30) 31) 24)	0 2571 2568 2564 2559	0 2568 2564 2559 2558	0 70 55 54 42	0 6 5 7 2	0.0 3.7 3.2 3.6 3.5	0.0 228.8 196.8 222.0 216.7	0.0 223.1 190.1 214.1 209.4	0.0 5.2 4.4 5.0 4.9	0.0 4.9 4.3 4.8 4.7	0.0 0.3 0.2 0.2	0.00 0.95 0.96 0.96 0.96	0.00 0.98 0.97 0.96 0.97	0.00 0.05 0.04 0.04	0.0 856.6 855.4 853.2 853.1	0.0 13.9 13.8 13.7	0.00 61.51 62.11 62.23 62.10	FRWY FRWY FRWY FRWY
(304, 278, 27, 28, 29, 30, 23,	259) 490) 28) 29) 30) 31) 24)	0 2571 2568 2564 2559 4160 2558	0 2568 2564 2559 2558 4160	0 70 55 54 42	0 6 5 7 2 6	0.0 3.7 3.2 3.6 3.5	0.0 228.8 196.8 222.0 216.7 499.7	0.0 223.1 190.1 214.1 209.4 487.5	0.0 5.2 4.4 5.0 4.9 7.0	0.0 4.9 4.3 4.8 4.7	0.0 0.3 0.2 0.2 0.2	0.00 0.95 0.96 0.96 0.95	0.00 0.98 0.97 0.96 0.97 0.98	0.00 0.05 0.04 0.04 0.04	0.0 856.6 855.4 853.2 853.1	0.0 13.9 13.8 13.7 13.7	0.00 61.51 62.11 62.23 62.10 61.50	FRWY FRWY FRWY FRWY FRWY

(285,	284)	1561	1561	53	3	3.0	157.8	177.2	6.8	6.6	0.2	0.97	1.12	0.03	780.4	14.6	53.46	RAMP
	286,	285)	1559	1561	91	2	5.1	270.5	303.2	11.7	11.4	0.3	0.98	1.12	0.03	779.7	14.6	53.54	RAMP
	27,	286)	1566	1559	97	11	4.0	212.2	237.8	9.1	8.9	0.2	0.98	1.12	0.03	781.2	14.6	53.54	RAMP
	(596,	111)	2650	2645	204	5	6.0	314.9	359.2	8.1	7.8	0.4	0.96	1.14	0.05	1323.9	25.2	52.61	RAMP
	(673,	675)	1097	1097	0	1	1.6	83.9	98.7	5.4	5.0	0.4	0.93	1.18	0.08	1097.1	21.5	51.01	FRWY
	(675,	287)	2168	2170	161	4	5.8	308.1	349.1	9.7	9.3	0.3	0.97	1.13	0.04	1084.6	20.5	52.96	FRWY
	(287,	289)	2170	2169	124	8	5.8	308.4	350.1	9.7	9.3	0.3	0.96	1.14	0.04	1085.4	20.5	52.84	FRWY
	(289,	294)	2169	2171	165	9	7.8	413.9	471.0	13.0	12.5	0.5	0.96	1.14	0.04	1085.1	20.6	52.73	FRWY
	(294,	296)	2171	2171	146	9	7.1	373.9	426.7	11.8	11.3	0.5	0.96	1.14	0.05	1086.0	20.7	52.59	FRWY
	(296,	297)	2171	2172	142	1	10.7	560.3	641.8	17.7	16.9	0.8	0.96	1.15	0.05	1086.0	20.7	52.38	FRWY
	(297,	601)	2172	2171	166	4	6.0	311.4	358.5	9.9	9.4	0.5	0.95	1.15	0.06	1085.8	20.8	52.11	RAMP
	(282,	346)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY
	(297,	352)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	FRWY

NETWORK STATISTICS

VEHICLE-MILES = 265580.0, VEHICLE-MINUTES = 285834.9, MOVING/TOTAL TRIP TIME = 0.883,

AVERAGE CONTENT = 4763.9, CURRENT CONTENT = 5312.0, SPEED(MPH) = 55.75,

TOTAL DELAY (VEH-MIN) = 33409.06, TRAVEL TIME (MIN)/VEH-MILE = 1.08, DELAY TIME (MIN)/ VEH-MILE = 0.13

LINK STATISTICS BY LANE

(SOME STATISTICS APPLY TO HOV LANES ONLY)

SEC./VEHICLE SEC./PERSON

	VE	HICLES	CURR	VOLUM	Œ VOI	UME OF	TOTAL MOV	E DELA	Y TOT	AL MOVE	DELA	Y SPEI	₹D	
LINK	LANE	TYPE	IN	OUT	CONT	VEH/HR	VIOLATORS	TIME	TIME	TIME	TIME	TIME	TIME	MILES/HR
(153, 96)) 1	sov			- 19	1053.7	7	15.8	13.8	2.1	12.3	10.7	1.6	56.01

(153,	96)	2	sov			11	1998.2		15.7	14.1	1.6	12.2	10.9	1.2	56.57
(153,	96)	3	sov			7	1523.9		14.4	13.6	0.8	11.1	10.5	0.6	61.47
(153,	96)	4	sov			6	1120.9		13.9	13.4	0.6	10.7	10.3	0.4	63.72
(153,	96)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(153,		9	sov			36	1287.0		17.4	15.0	2.4	13.4	11.6	1.9	50.91
(155,	50,	_	501											_,,	
(563,	98)	1	sov			10	2073.1		18.0	15.9	2.0	13.9	12.3	1.6	56.97
(563,		2	sov			9	1384.0		17.4	16.1	1.4	13.5	12.5	1.1	58.62
(563,		3	sov			4	1195.2		16.3	15.7	0.6	12.6	12.1	0.5	62.60
(563,	-	4	sov			5	1076.7		15.9	15.3	0.5	12.2	11.8		64.33
(563,		5	HOV	0	0	0	0.0	0.0						0.4	
(303,	30)	5	HOV	U	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(154,	101)	1	sov			5	839.0		30.3	29.4	1.0	23.6	22.8	0.8	63.82
(154,		2	sov			14	1329.9		30.9	30.0	0.9	24.0	23.3	0.7	62.68
(154,		3	sov			8	1284.0		30.3	29.5	0.8	23.5	22.9	0.6	63.78
(154,		4	sov			8	1281.3		31.1	30.1	1.0	23.9	23.1	0.8	62.25
(154,		5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(134,	101)	5	HOV	U	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(103,	104)	1	sov			27	1168.6		60.0	17.6	42.4	46.5	13.6	32.9	9.09
(103,		2	sov			13	1832.9		21.9	8.5	13.4	17.0	6.6	10.4	24.92
(103,		3	sov			10	1842.9		11.1	8.3	2.8	8.6	6.4	2.2	49.04
(103,		4	sov			7	1434.5		9.2	8.3	0.9	7.1	6.4	0.7	59.14
(103,		5	HOV	0	0	ó	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(103,		9	sov			8	134.6		76.9	36.0	40.9	59.4	27.8	31.6	7.09
(103,	104)	9	50V			•	134.0		70.3	30.0	40.5	33.4	27.0	31.0	7.03
(158,	105)	1	sov			46	2054.7		63.5	19.9	43.6	49.2	15.4	33.8	16.10
(158,		2	sov			14	1506.3		31.7	17.6	14.1	24.6	13.7	10.9	32.30
(158,		3	sov			15	1800.9		19.7	15.9	3.8	15.2	12.3	3.0	51.83
(158,		4	sov			13	1868.6		17.2	15.6	1.6	13.2	12.0	1.2	59.57
(158,		5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(150,	100,	•	1101	ŭ	·	·	0.0	0.0	•••	•••	•••	•••	•••	•••	0.00
(128,	97)	1	sov			3	958.3		23.4	22.7	0.8	18.1	17.5	0.6	63.82
(128,		2	sov			10	1444.4		24.9	23.9	1.1	19.4	18.6	0.8	59.99
(128,		3	sov			15	1398.6		23.7	23.0	0.7	18.3	17.7	0.6	63.01
(128,		4	sov			14	1194.0		23.3	22.5	0.8	17.9	17.3	0.6	64.31
(128,	-	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(110,	5.,	•		•	•	•									
(156,	102)	1	sov			15	2472.0		17.1	13.8	3.2	13.2	10.7	2.5	51.95
(156,		2	sov			6	1833.6		16.0	13.6	2.4	12.4	10.6	1.9	55.30
(156,		3	sov			4	1395.4		14.2	13.5	0.7	11.0	10.4	0.5	62.52
(156,		4	sov			2	1018.5		14.1	13.7	0.5	10.9	10.5	0.4	62.65
(156,		5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(156,		9	sov			1	286.7		16.3	14.6	1.7	12.6	11.2	1.3	54.49
, 250,	,	-				_			_3.0						
(109,	7001)	1	sov			10	827.1		5.1	3.5	1.5	3.9	2.7	1.2	23.08
(109,		2	sov			7	337.4		6.0	4.0	2.0	4.6	3.1	1.5	19.53
, ==,	•														

(1	102,	103)	1	sov			54	1129.2		71.7	31.9	39.8	55.8	24.8	31.0	21.59
	102,	-	2	sov			27	1753.8		34.7	23.9	10.8	26.9	18.5	8.3	44.68
			_													
•	102,		3	sov			15	1561.4		25.5	23.6	1.9	19.7	18.2	1.5	60.64
		103)	4	sov			7	1130.5		24.9	23.8	1.1	19.1	18.3	0.8	62.31
(:	102,	103)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
•																
, ,	160 -			~~~				646.3								
	-	7002)	1	sov			1	616.3		2.7	2.7	0.0	2.1	2.1	0.0	53.91
(:	160,7	7002)	2	sov			0	662.0		2.7	2.6	0.1	2.1	2.0	0.1	53.75
(7)	003.	106)	1	sov			24	407.1		72.6	26.7	46.0	56.0	20.6	35.5	4.13
	-	106)	2	sov			23	413.9								
() '	003,	100)	4	SUV			43	413.9		74.7	27.0	47.6	57.5	20.8	36.7	4.02
(:	106,	103)	1	sov			26	683.6		61.5	20.3	41.2	47.4	15.6	31.8	6.81
(:	106.	103)	2	sov			7	148.3		82.4	26.9	55.4	63.4	20.7	42.7	5.08
•		,	_							0_0_		33.1	05.1	20.7	-2.,	3.00
	004	4051	1	sov												
•		107)	_				14	419.9		42.4	11.7	30.7	32.6	9.0	23.6	4.07
(7)	004,	107)	2	sov			14	396.0		45.2	13.5	31.7	34.9	10.4	24.5	3.81
	107.	104)	1	sov			19	460.4		59.3	18.4	40.9	45.8	14.2	31.6	5.69
			2	sov			13									
(.	10/,	104)	4	SOV			13	279.9		70.1	23.0	47.1	54.2	17.8	36.4	4.82
(:	110,	109)	1	sov			10	902.7		4.7	3.4	1.3	3.6	2.6	1.0	27.08
(110.	109)	2	sov			20	321.4		8.1	5.0	3.1	6.3	3.9	2.4	15.64
` `	,	,	_	20.				J		0.1	3.0	3.1	0.5	3.5	2.4	13.04
							_									
(110)	1	sov			7	992.6		3.0	2.2	0.7	2.3	1.7	0.6	30.88
(96,	110)	2	sov			7	364.5		3.0	2.2	0.8	2.3	1.7	0.6	30.13
	127,	97)	1	sov			0	644.1		12.0	7.8	4.3	9.3	6.0	3.3	33.57
(:	127,	97)	2	sov			0	77.2		25.5	8.2	17.3	19.7	6.3	13.4	15.88
(96,	128)	1	sov			4	1122.1		16.5	15.8	0.7	12.7	12.2	0.5	62.09
(96	128)	2	sov			8	1615.9		17.1	16.3	0.8	13.3	12.6	0.7	59.80
ì	-	128)	3	sov			9	1460.7		16.1	15.7	0.5	12.4	12.1	0.4	63.40
•	-		_													
(96,	128)	4	sov			5	1129.7		15.8	15.4	0.5	12.2	11.8	0.4	64.57
(96,	128)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	128	129)	1	sov			0	315.0		11.8	11.3	0.4	9.1	8.7	0.3	52.50
•																
(128,	129)	2	sov			0	14.4		13.0	10.5	2.5	10.0	8.1	1.9	47.39
(132,	130)	1	sov			7	2012.0		10.8	8.2	2.6	8.4	6.4	2.0	49.49
	_	130)	2	sov			7	1821.5		9.0	8.3	0.7	7.0	6.4	0.6	59.47
•		130)	3	sov			6	1359.1		8.5	8.2	0.3	6.5	6.3	0.2	63.08
•			-				-									
	-	130)	4	sov			3	1054.1		8.5	8.1	0.3	6.5	6.3	0.3	63.13
(:	132,	130)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(132.	130)	9	sov			2	115.2		14.3	10.7	3.7	11.1	8.2	2.9	37.31
•	,		-				_									
		120:					•	500 0		2.4	2.6					40.01
(131,	130)	1	sov			0	720.0		3.1	2.9	0.2	2.4	2.2	0.2	49.81

(151, 132)	1	sov			7	1397.6		16.9	15.8	1.1	13.1	12.2	0.8	60.22	
(151, 132)	2	sov			6	1651.1		16.5	15.7	0.8	12.8	12.2	0.6	61.46	
(151, 132)	3	sov			5	1309.4		16.0	15.6	0.4	12.4	12.0	0.3	63.47	
	_				_										
(151, 132)	4	sov			6	1007.9		16.1	15.5	0.6	12.4	11.9	0.5	63.14	
(151, 132)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(105, 137)	1	sov			1	601.4		15 0	10.0						
(105, 137)	2	SOV						15.2	12.9	2.3	11.9	10.1	1.8	55.10	
	_				3	1373.5		14.8	13.2	1.7	11.5	10.2	1.3	56.44	
(105, 137)	3	sov			7	1824.6		13.8	13.0	0.8	10.6	10.0	0.6	60.81	
(105, 137)	4	sov			11	1979.1		13.5	12.8	0.7	10.4	9.8	0.5	62.17	
(105, 137)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
										•••	0.0	0.0	0.0	0.00	
(98, 138)	1	sov			2	1165.5		6 7	- 1						
(98, 138)	2							6.7	6.4	0.3	5.2	4.9	0.2	52.35	
(90, 130)	4	sov			0	0.1		6.9	-4.2	11.1	5.4	-3.3	8.7	50.75	
(138, 139)	1	sov			0	1112.1		2.6	2.5	0.1	2.0	1.9	0.0	53.31	
(138, 139)	2	sov			0	53.7		2.6	2.3	0.3	2.0	1.8	0.2	52.10	
										• • • • • • • • • • • • • • • • • • • •			٠	32.10	
(141, 140)	1	sov			0	559.5		12.2	. .						
	2				-				5.9	6.3	9.4	4.6	4.8	23.66	
(141, 140)	4	sov			4	1670.8		12.5	5.2	7.3	9.7	4.0	5.6	23.03	
(140, 101)	1	sov			10	2197.0		12.6	9.3	3.3	9.7	7.2	2.5	40.42	
(140, 101)	2	sov			0	72.0		15.3	15.3	0.0	11.8	11.8	0.0	33.18	
													•••	33.10	
(105, 143)	1	sov			7	1396.9		17.6			12.6	- 4		44 44	
(103, 143)	_	SUV			,	1390.9		17.6	6.6	11.1	13.6	5.1	8.5	11.99	
	_														
(7005, 127)	1	sov			0	543.1		3.2	1.3	1.9	2.5	1.0	1.5	21.96	
(7005, 127)	2	SOV			0	316.1		2.6	1.4	1.3	2.0	1.1	1.0	26.78	
(129,7006)	1	sov			0	3.0		3.3	3.1	0.1	2.5	2.4	0.1	49.03	
(129,7006)	2	sov			0	328.0		4.0	3.4	0.6	3.1				
(123,7000)	-	204			U	320.0		4.0	3.4	0.6	3.1	2.7	0.5	39.77	
	_				_										
(147, 148)	1	sov			2	789.6		6.0	5.7	0.3	4.6	4.4	0.2	47.23	
(148, 137)	1	sov			0	791.3		4.1	3.9	0.2	3.2	3.0	0.2	50.79	
(163, 149)	1	sov			11	1624.6		34.2	32.8	1.4	26.6	25.4	1.1	62.69	
(163, 149)	2	SOV			16										
						1760.0		34.4	33.2	1.3	26.7	25.7	1.0	62.37	
(163, 149)	3	sov			16	1617.0		33.9	32.9	1.0	26.3	25.5	0.8	63.22	
(163, 149)	4	sov			17	1688.7		34.3	33.2	1.1	26.4	25.5	0.8	62.65	
(163, 149)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
					_	_									
(311, 150)	1	sov			10	2310.5		13.9	12.6	1.3	10.7	9.7	1.0	58.60	
(311, 150)	2	sov			5	1567.4									
					_			13.2	12.6	0.7	10.3	9.8	0.5	61.45	
(311, 150)	3	sov			5	1208.3		12.8	12.5	0.4	9.9	9.6	0.3	63.30	
(311, 150)	4	sov			4	978.2		12.9	12.4	0.5	9.9	9.5	0.4	63.05	

311,	150)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
		_				_									
	153)	1	sov			3	1122.4		3.1	2.4	0.8	2.4	1.8	0.6	43.31
	153)	2	sov			1	2324.7		2.8	2.1	0.7	2.2	1.6	0.6	48.80
152,	153)	3	sov			0	1353.2		2.4	2.0	0.4	1.8	1.6	0.3	57.31
152,	153)	4	HOV	0	1010	1	731.2	731.2	2.2	2.1	0.1	1.7	1.6	0.1	62.33
152.	153)	9	sov			2	1528.0		2.6	2.1	0.4	2.0	1.7	0.3	53.03
,		_	20.			-	101010				0.4	2.0	1.,	0.5	33.03
130,	152)	1	sov			14	2049.2		19.5	13.7	5.8	15.0	10.6	4.5	45.53
130,	152)	2	sov			13	2412.1		18.5	13.8	4.7	14.3	10.7	3.7	47.97
130,	152)	3	sov			6	1500.9		14.7	13.5	1.2	11.3	10.4	0.9	60.30
130.	152)	4	sov			7	1044.0		14.1	13.5	0.7				
	152)	5	HOV	0	0	ó	0.0	0.0				10.9	10.4	0.5	62.81
					_				0.0	0.0	0.0	0.0	0.0	0.0	0.00
130,	152)	9	sov			0	67.2		21.6	16.1	5.6	16.7	12.4	4.3	40.96
100,	154)	1	sov			6	833.2		17.4	17.3	0.2	13.6	13.4	0.1	64.85
	154)	2	sov			9	1373.1		17.8	17.5	0.3	13.8	13.5	0.3	63.57
	154)	3	sov			5	1202.1		17.6	17.3	0.3	13.6			
	154)	4	sov			8	1377.2		17.8	17.5	0.3		13.4	0.2	64.38
	154)	5	HOV	0	0							13.7	13.5	0.2	63.56
100,	134)	3	HOV	U	U	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
101,	155)	1	sov			11	2187.8		22.3	13.7	8.6	17.3	10.6	6.7	39.70
101.	155)	2	sov			7	1869.6		15.9	13.6	2.3	12.3	10.6	1.8	55.72
-	155)	3	sov			8	1485.3		14.3	13.5	0.8	11.0	10.5	0.6	62.15
-	155)	4	sov			4	1251.0		14.4	13.8					
											0.7	11.1	10.6	0.5	61.41
	155)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
101,	155)	9	sov			1	199.8		30.3	23.5	6.9	23.5	18.1	5.3	29.21
155,	156)	1	sov			1	2333.5		2.5	2.1	0.4	1.9	1.6	0.3	55.03
-	156)	2	sov			1	2064.6		2.3	2.1	0.2	1.8	1.6	0.1	59.37
	156)	3	sov			2	1555.7		2.2						
-	-									2.1	0.1	1.7	1.6	0.1	62.25
	156)	4	sov			2	1052.8		2.2	2.1	0.1	1.7	1.6	0.1	61.85
155,	156)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
104.	157)	1	sov			61	1529.1		94.6	25.3	69.3	73.2	19.6	53.6	10.81
	157)	2	sov			32	1688.7		54.1	19.9	34.1	42.2	15.6	26.6	18.92
-		3	SOV												
-	157)					19	2001.2		30.6	16.3	14.3	23.6	12.6	11.0	33.46
	157)	4	sov			16	1850.1		19.8	15.6	4.3	15.3	12.0	3.3	51.58
-	157)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
104,	157)	9	sov			2	109.8		97.0	48.6	48.4	75.0	37.6	37.4	10.54
157	158)	1	sov			11	1913.6		10.1	2.8	7.3	7.9	2.2	5.7	13.44
	158)	2	sov			5	1665.5		5.7	2.6	3.1				
-	-											4.4	2.0	2.4	24.02
-	158)	3	sov			1	1889.6		3.2	2.1	1.1	2.5	1.6	0.8	42.37
-	158)	4	sov			1	1725.9		2.6	2.1	0.5	2.0	1.6	0.4	52.47
	158)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00

(137,	159)	1	sov			0	2064.0		12.2	9.8	2.4	9.4	7.6	1.9	52.13
(137,	159)	2	sov			1	1332.2		10.9	9.9	1.0	8.4	7.7	0.8	58.54
(137,		3	sov			2	1526.6		10.3	9.9	0.4	7.9	7.6	0.3	61.93
(137,		4	sov			5	1583.8		10.1	9.7	0.4	7.8	7.5	0.3	62.78
		_		0	0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(137,		5	HOV	_	-	0									
(137,	159)	9	sov			0	68.0		14.5	12.1	2.4	11.2	9.4	1.9	43.73
(150,	-	1	sov			4	2207.5		8.4	7.7	0.7	6.5	6.0	0.6	57.99
(150,	151)	2	sov			5	1611.8		7.9	7.6	0.4	6.2	5.9	0.3	61.67
(150,	151)	3	sov			0	1259.5		7.7	7.5	0.2	5.9	5.8	0.2	63.54
(150,	151)	4	sov			1	988.9		7.8	7.5	0.3	6.0	5.7	0.2	63.05
(150,	151)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
												• • •		•••	
(325,	95)	1	sov			6	1776.6		37.2	34.8	2.4	28.8	27.0	1.8	60.02
(325,	95)	2	sov			14	1804.1		36.9	35.0	1.9	28.6	27.1	1.4	60.56
(325,	95)	3	sov			11	1712.5		35.9	34.3	1.6	27.7	26.5	1.2	62.26
(325,	95)	4	sov			7	1531.9		35.5	33.6		27.7			
(325,	95)	5	HOV	30	30	ó	30.0	30.0			1.9		25.9	1.5	62.86
(325,	95)	5	HOV	30	30	U	30.0	30.0	34.5	34.3	0.2	26.7	26.5	0.2	64.74
, ,,,,,	4.50					_									
(102,		1	sov			1	605.6		5.3	5.3	0.1	4.1	4.1	0.0	53.63
(102,	160)	2	sov			1	672.2		5.5	5.2	0.3	4.2	4.0	0.2	52.41
(98,	99)	1	sov			6	1074.9		24.9	23.7	1.2	19.3	18.3	1.0	61.46
(98,	99)	2	sov			6	1261.8		25.2	24.1	1.1	19.6	18.7	0.9	60.68
(98,	99)	3	sov			8	1162.8		24.2	23.6	0.6	18.7	18.2	0.5	63.13
(98,	99)	4	sov			9	1063.9		23.8	23.0	0.8	18.3	17.7	0.6	64.40
(98,	99)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	-														
(99,	164)	1	sov			6	1077.4		16.3	15.6	0.6	12.6	12.1	0.5	62.08
	164)	2	sov			8	1225.6		16.5	15.9	0.6	12.9	12.4	0.5	61.06
	164)	3	sov			9	1166.7		16.0	15.6	0.4	12.3	12.0	0.3	63.17
	164)	4	sov			7	1081.1		15.7	15.2	0.5	12.1	11.7	0.4	64.16
	164)	5	HOV	0	0	ó	0.0	0.0	0.0	0.0		0.0	0.0		0.00
(99,	164)	5	HOV	U	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
							620.0						- 4		40.00
(295,	-	1	sov			1	630.8		8.3	8.3	0.0	6.4	6.4	0.0	48.00
(295,		2	sov			0	658.9		8.4	8.3	0.1	6.5	6.4	0.0	47.56
(295,	200)	9	sov			1	56.8		8.6	8.6	0.1	6.6	6.6	0.1	46.23
(203,	201)	1	sov			0	727.3		1.8	1.7	0.0	1.4	1.3	0.0	63.66
(203,	201)	2	sov			1	764.4		1.8	1.7	0.0	1.4	1.3	0.0	63.32
(200,	199)	1	sov			2	582.5		6.6	6.6	0.0	5.1	5.1	0.0	44.81
(200,		2	sov			2	664.1		6.7	6.7	0.1	5.2	5.1	0.1	44.26
, _ ,	,	_				_					_		_		
(179,	1781	1	sov			0	269.8		6.3	6.2	0.1	4.9	4.8	0.1	53.78
(179,		2	sov			ő	274.2		6.2	6.1	0.1	4.8	4.7	0.1	55.18
(1/9,	1,01	4	500			J	4/4.4		3.2	J.1	0.1	-1.0	/	0.1	55.10

,	180,	170)	1	sov	 	1	268.8		12.7	12.6	0.1	9.8	9.7	0.1	53.71
•	180,		2	SOV	 	1	269.6		12.4	12.3	0.1	9.6	9.5	0.1	55.10
•			9	SOV	 	1	5.8		12.4	12.4	0.0	9.6	9.6	0.0	54.90
(180,	1/9)	9	SOV	 	_	3.0		12.4	12.4	0.0	9.0	9.0	0.0	34.90
(181,	180)	1	sov	 	0	144.0		6.3	6.3	0.0	4.9	4.9	0.0	53.49
-	181,	-	2	sov	 	Ō	271.0		6.1	6.1	0.0	4.7	4.7	0.0	55.28
•		200,	-	201		•	_,_,		•••	•••	•••			•••	55125
(199,	198)	1	sov	 	1	559.6		8.3	8.2	0.2	6.4	6.3	0.1	44.84
(199,	198)	2	sov	 	1	686.8		8.5	8.3	0.2	6.5	6.4	0.2	44.08
												•••	•••	•••	
(198,	197)	1	sov	 	6	803.0		15.8	15.0	0.8	12.2	11.6	0.6	52.23
(198,	197)	2	sov	 	5	702.2		15.9	15.2	0.7	12.3	11.8	0.5	51.94
(198,	197)	9	sov	 	0	9.5		18.7	18.1	0.5	14.4	14.0	0.4	44.30
(197,	196)	1	sov	 	4	977.7		19.2	18.6	0.6	14.8	14.4	0.5	53.23
(197,	196)	2	sov	 	4	769.3		19.0	18.7	0.3	14.7	14.5	0.3	53.72
(197,	196)	9	sov	 	0	7.6		22.7	21.2	1.5	17.5	16.3	1.2	45.11
(196,	195)	1	sov	 	13	904.2		33.1	32.2	0.9	25.5	24.8	0.7	53.23
(196,	195)	2	sov	 	7	845.5		32.8	32.0	0.7	25.3	24.8	0.6	53.72
(182,	181)	1	sov	 	2	133.5		22.0	21.9	0.1	17.0	16.9	0.1	53.03
(182,	181)	2	sov	 	1	282.9		21.0	20.9	0.1	16.3	16.2	0.1	55.42
(183,	182)	1	sov	 	7	1407.4		19.6	18.8	0.9	15.2	14.5	0.7	52.07
(183,	182)	2	sov	 	1	302.2		18.5	18.2	0.2	14.3	14.1	0.2	55.37
	-														
(184,	183)	1	sov	 	9	1028.8		24.5	24.1	0.3	18.9	18.6	0.3	53.50
(184,	183)	2	sov	 	8	697.0		23.8	23.7	0.2	18.4	18.3	0.1	54.89
(205,	204)	1	sov	 	0	244.0		2.8	2.8	0.0	2.2	2.2	0.0	44.33
	_														
(204,	197)	1	sov	 	1	243.8		4.7	4.7	0.0	3.6	3.6	0.0	44.46
(182,	193)	1	sov	 	3	648.5		7.5	6.3	1.1	5.8	4.9	0.9	53.47
(182,	193)	2	sov	 	2	645.7		6.9	6.2	0.7	5.3	4.8	0.5	58.31
•															
(193,	194)	1	sov	 	0	283.3		4.4	3.8	0.7	3.5	2.9	0.5	58.59
(193,	194)	2	sov	 	0	1009.6		4.3	4.1	0.2	3.3	3.2	0.2	60.36
(193,	194)	3	sov	 	0	0.3		4.4	0.7	3.7	3.3	0.5	2.8	59.66
•															
(208,	209)	1	sov	 	0	130.0		6.4	6.2	0.2	5.0	4.8	0.2	48.02
`		,	_			-	_								
(207,	198)	1	sov	 	0	269.0	<u></u>	5.3	5.1	0.2	4.1	3.9	0.1	42.89
`		,	_			-									
(206,	207)	1	sov	 	0	269.0		2.8	2.6	0.2	2.1	2.0	0.2	36.83
•		,	_			-									

(200, 21	LO)	1	sov			0	101.0		4.1	4.1	0.0	3.2	3.2	0.0	44.89
(210, 21	L1)	1	sov			0	101.0		3.5	3.5	0.0	2.7	2.7	0.0	41.71
		_				•	262.2		1.0						E4 70
(178, 20		1 2	sov			0	269.0 275.0		1.9 1.9	1.7 1.7	0.2 0.2	1.5 1.5	1.3 1.3	0.2 0.1	54.78 55.91
(178, 20	J4)	4	SOV			U	2/5.0		1.9	1.7	0.2	1.5	1.3	0.1	55.91
(139,70	09)	1	sov			1	1083.7		2.1	2.1	0.1	1.6	1.6	0.0	53.08
(139,70	-	2	sov			ō	82.0		2.0	2.0	0.1	1.6	1.5	0.1	55.32
											• • •			•••	55152
(7010, 14	41)	1	sov			1	1209.1		6.6	5.4	1.2	5.1	4.2	1.0	44.72
(7010, 14	41)	2	sov			0	1163.4		6.7	5.2	1.4	5.1	4.0	1.1	44.43
		_													
(211,70	11)	1	sov			0	101.0		4.6	4.6	0.1	3.6	3.5	0.1	34.98
(7012, 20	06)	1	sov			0	313.8		2.3	2.1	0.2	1.8	1 7		22 27
(/012, 2	00)	-	504			U	313.0		4.3	4.1	0.2	1.8	1.7	0.1	33.37
(7014, 20	05)	1	sov			0	263.0		4.0	3.7	0.2	3.1	2.9	0.2	42.48
•													_,,		
(194,70	15)	1	sov			0	316.0		2.1	1.8	0.3	1.6	1.4	0.3	54.90
(194,70:	15)	2	SOV			0	972.1		2.1	1.9	0.2	1.6	1.4	0.2	55.81
(194,70	15)	3	sov			0	6.0		2.1	1.8	0.3	1.6	1.4	0.2	54.72
,,	,						• • • •							••-	01171
(201, 2	95)	1	sov			2	654.2		8.8	8.8	0.0	6.8	6.8	0.0	57.52
(201, 2	95)	2	sov			1	689.2		8.9	8.8	0.0	6.9	6.8	0.0	57.25
(149, 29	-	1	sov			8	2162.4		16.9	15.7	1.2	13.1	12.2	0.9	60.49
(149, 2		2	sov			7	1553.1		16.5	15.8	0.7	12.8	12.2	0.6	61.91
(149, 2	98)	3	sov			6	1525.1		16.2	15.6	0.6	12.6	12.1	0.5	63.07
(149, 29	98)	4	sov			7	1419.9		16.5	15.9	0.7	12.7	12.2	0.5	61.80
(149, 2	98)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
		_				_									
(533, 2		1	sov			5	1908.3		10.8	5.7	5.0	8.3	4.4	3.9	35.15
(533, 2		2	sov			5	1765.5		6.8	5.8	1.0	5.3	4.5	0.7	55.77
(533, 2	99)	3	sov			3	1623.1		6.1	5.8	0.3	4.7	4.5	0.2	62.09
(533, 2	99)	4	sov			3	1409.4		6.2	5.9	0.3	4.7	4.5	0.2	61.40
(533, 2	99)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(533, 2	99)	9	sov			0	335.2		12.3	9.6	2.8	9.5	7.4	2.1	30.68
						_									
(299, 3		1	sov			9	2312.8		20.6	15.8	4.8	15.9	12.2	3.7	49.73
(299, 3	-	2	sov			6	2107.0		18.3	15.9	2.4	14.2	12.3	1.9	55.79
(299, 3		3	sov			7	1807.4		16.7	15.7	1.0	12.9	12.1	0.8	61.28
(299, 3	-	4	sov			7	1490.6		16.7	15.8	0.9	12.9	12.1	0.7	61.21
(299, 3	00)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(299, 3	00)	9	sov			0	59.9		23.1	19.7	3.3	17.8	15.3	2.6	44.32
(300, 3	01)	1	sov			38	2174.5		36.0	27.2	8.8	27.9	21.0	6.8	49.16

(300,	301)	2	sov			23	2053.4		34.8	27.5	7.3	27.0	21.3	5.7	50.85	
(300,		3	sov			20	1937.3		30.7	27.1	3.6	23.8	21.0	2.8	57.55	
(300,		4	sov			11	1612.9		29.5	27.2	2.3	22.7	21.0	1.8	59.95	
(300,	-	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(300,	301,	•		•	•	•		• • • • • • • • • • • • • • • • • • • •		• • • •						
(301,	302)	1	sov			10	1030.5		21.4	14.0	7.5	16.7	10.9	5.8	39.70	
(301,	-	2	sov			44	1694.2		21.8	14.2	7.6	16.9	11.0	5.9	38.99	
(301,		3	sov			27	1899.8		19.0	13.3	5.7	14.7	10.3	4.4	44.79	
(301,		4	HOV	0	1624	6	965.7	965.7	14.7	13.0	1.7	11.3	10.3	1.3	57.95	
(301,		9	sov			20	1954.8		20.2	13.4	6.7	15.6	10.4	5.2	42.22	
(301)	, 502,	_	501			20	1954.0		20.2	13.4	0.7	13.0	10.4	3.2	44.44	
(302,	303)	1	sov			0	1853.0		22.3	17.0	5.3	17.3	13.2	4.1	45.96	
(302,		2	sov			65	1464.9		32.9	17.3	15.6	25.4	13.4	12.1	31.10	
(302,		3	sov			16	1357.7		20.7	16.4	4.3	16.0	12.7	3.3	49.46	
(302,		4	sov			17	1421.5		17.3	15.7	1.6	13.3	12.1	1.2	59.21	
(302,		5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(302,		9	sov			29	653.4		37.2	18.5	18.6	28.8	14.3	14.4	27.51	
(302)		10	sov			3	614.5		18.1	16.4	1.7	14.0	12.7	1.3	56.62	
(302)	, 505,	-0	504			,	014.5		10.1	10.4	1.7	14.0	12.7	1.3	30.02	
(303,	. 304)	1	sov			0	1808.6		13.0	10.8	2.1	10.1	8.4	1.7	53.06	
(303,		2	sov			41	1463.8		21.1	10.8	10.3	16.3	8.3	8.0	32.61	
(303,		3	sov			5	1400.4		11.7	10.6	1.1	9.1	8.2	0.9	58.79	
(303,		4	sov			8	1390.1		11.2	10.6	0.6	8.6	8.1	0.5	61.62	
(303,		5	HOV	0	0	Ö	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
	, 304)	9	sov			49	571.7		41.7	16.1	25.6	32.2	12.4	19.8	16.49	
(303)	, 501,		201				3,2,,				23.0	32.2			10.15	
(304,	. 305)	1	sov			5	1692.1		11.0	9.7	1.3	8.5	7.5	1.0	56.78	
	, 305)	2	sov			2	1322.9		10.3	9.5	0.7	8.0	7.4	0.6	60.51	
	, 305)	3	sov			5	1091.2		10.0	9.5	0.4	7.7	7.3	0.3	62.62	
	, 305)	4	HOV	0	1069	1	186.0	186.0	9.9	9.5	0.4	7.6	7.3	0.3	63.03	
	, 305)	9	sov			0	1303.2		10.5	9.6	0.9	8.1	7.4	0.7	59.35	
(301)	, 505,	_	201			•					***	•••		•••		
(305.	, 306)	1	sov			2	643.1		16.5	15.6	1.0	12.8	12.0	0.7	61.92	
	, 306)	2	sov			3	1482.0		16.9	16.0	0.8	13.1	12.5	0.6	60.69	
	, 306)	3	sov			2	1237.9		16.2	15.7	0.5	12.5	12.1	0.4	63.32	
	, 306)	4	sov			5	1074.1		16.3	15.6	0.6	12.5	12.0	0.5	62.84	
	, 306)	5	HOV	0	0	Ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
	, 306)	9	sov			Ö	1166.8		17.2	16.5	0.7	13.3	12.7	0.6	59.52	
(303)	, 500,	_				•										
(306	, 307)	1	sov			1	520.5		19.4	19.0	0.4	15.0	14.7	0.3	66.08	
	, 307)	2	sov			1	1273.3		21.1	20.2	0.9	16.4	15.7	0.7	60.68	
	, 307)	3	sov			4	1245.0		20.2	19.6	0.6	15.6	15.1	0.5	63.37	
	, 307)	4	sov			12	1072.5		20.5	19.6	0.8	15.7	15.1	0.6	62.64	
	-	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(306.	. 3071															
(306,	, 307)	5	1101	•												
,		1	sov			0	1271.4		7.9	7.0	1.0	6.1	5.4	0.7	58.05	
(187	, 307) , 310) , 310)			_			1271.4 1266.9		7.9 7.6	7.0 7.2	1.0	6.1 5.9	5.4 5.6	0.7	58.05 60.50	

(187, 31	0) 3	sov			2	1269.9		7.3	7.1	0.2	5.6	5.5	0.2	63.14
(187, 31		sov			3	1080.2		7.4	7.0	0.3	5.7	5.4	0.2	62.58
(187, 31		HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(187, 31		sov			2	76.8		10.6	8.2	2.4	8.2	6.3	1.8	43.53
(-0// 0-	,	20.			_									
(310, 31	.1) 1	sov			12	2183.0		18.2	15.8	2.5	14.1	12.2	1.9	56.18
(310, 31	-	sov			9	1495.1		17.0	15.9	1.1	13.2	12.4	0.8	60.24
(310, 31	-	sov			9	1256.0		16.3	15.7	0.6	12.6	12.1	0.4	62.84
(310, 31		sov			11	1049.7		16.3	15.6	0.7	12.6	12.0	0.5	62.67
(310, 31	-	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(310, 31	-	sov			1	79.4		20.3	18.3	2.0	15.7	14.2	1.6	50.44
(520, 52	,	501			_	,,,,,		20.5	10.5	2.0	13.7	14.2	1.0	30.44
(159, 31	2) 1	sov			2	2171.1		7.0	6.0	1.0	5.4	4.6	0.8	55.12
(159, 31	-	sov			0	1340.7		6.5	6.0	0.5	5.0	4.7	0.4	59.75
(159, 31		sov			1	1502.8		6.2	6.0	0.2	4.8	4.6	0.2	62.30
(159, 31		sov			4	1574.5		6.2	5.9	0.3	4.7	4.5	0.2	62.68
(159, 31		HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(=== / ==	-,		•	•	•	• • • • • • • • • • • • • • • • • • • •	0.0	•••	•••	•••	0.0	0.0	0.0	0.00
(312, 31	.3) 1	sov			4	2109.0		11.2	10.1	1.2	8.7	7.8	0.9	56.62
(312, 31		sov			2	1407.3		10.4	9.9	0.5	8.1	7.6	0.4	61.13
(312, 31		sov			5	1511.7		10.2	9.9	0.3	7.9	7.6	0.3	62.39
(312, 31	-	sov			3	1566.1		10.2	9.7	0.5	7.9	7.5	0.4	62.21
(312, 31	•	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
, 522, 52	,		•	•	•			•••	•••	•••	•••	•••	•••	0.00
(248, 31	.4) 1	sov			7	1720.4		17.3	16.1	1.3	13.4	12.4	1.0	59.01
(248, 31	-	sov			5	1173.9		16.4	15.8	0.6	12.7	12.3	0.5	62.19
(248, 31	-	sov			6	1232.8		16.3	15.8	0.5	12.6	12.2	0.3	62.88
(248, 31		sov			8	1217.3		16.4	15.7	0.7	12.6	12.0	0.5	62.52
(248, 31	-	HOV	0	0	Ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(===, ==	,		-								• • • •			
(314, 31	L5) 1	sov			0	630.5		8.1	7.7	0.4	6.3	6.0	0.3	61.13
(314, 31	-	sov			2	1160.0		8.0	7.7	0.3	6.2	6.0	0.2	62.05
(314, 31		sov			2	1232.3		7.9	7.7	0.2	6.1	5.9	0.2	62.76
(314, 31		sov			2	1210.5		8.0	7.6	0.4	6.1	5.8	0.3	62.33
(314, 31		HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(511, 51	,		·	·	•		• • • • • • • • • • • • • • • • • • • •		•••	• • • •			• • • •	
(555, 31	L6) 1	sov			4	452.0		24.3	23.0	1.3	18.8	17.9	1.0	62.22
(555, 31	,	sov			8	1349.9		24.3	23.4	0.9	18.8	18.1	0.7	62.10
(555, 31		sov			10	1256.3		24.2	23.3	0.8	18.6	18.0	0.6	62.51
(555, 31	-	sov			5	1080.3		24.3	23.1	1.2	18.7	17.8	0.9	62.19
(555, 31	•	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(555, 31		sov			8	1387.3		24.7	23.2	1.5	19.1	18.0	1.1	61.15
(555, 31	•	sov			9	1413.0		25.1	23.6	1.5	19.4	18.2	1.2	60.11
(333, 31	, 10	504			,									
(316, 31	L7) 1	sov			1	450.1		10.7	10.3	0.4	8.3	8.0	0.3	63.90
(316, 31	-	sov			3	1957.0		11.1	10.5	0.6	8.6	8.2	0.4	61.44
(316, 31					4	1362.6		10.9	10.5	0.4	8.4	8.1	0.3	62.64
(525) 52	,				-					- · · •				-

(316	, 317)	4	sov			5	1208.8		10.9	10.4	0.5	8.4	8.0	0.4	62.34
(316	, 317)	5	HOV	29	29	0	29.0	29.0	10.7	10.5	0.1	8.3	8.1	0.1	63.79
(316	, 317)	9	sov			4	1931.9		11.2	10.6	0.7	8.7	8.2	0.5	60.71
(317	, 318)	1	sov			4	1433.0		17.4	15.8	1.6	13.5	12.2	1.2	58.88
(317	, 318)	2	sov			7	1728.3		16.7	15.7	1.0	13.0	12.2	0.8	61.07
(317	, 318)	3	sov			6	1324.0		16.4	15.6	0.8	12.7	12.1	0.6	62.26
	, 318)	4	sov			0	390.2		16.4	15.7	0.7	12.6	12.0	0.6	62.35
(317	, 318)	5	HOV	29	0	1	8.6	8.6	15.8	15.7	0.1	12.2	12.2	0.1	64.59
	, 318)	9	sov			8	2057.5		18.5	15.9	2.6	14.3	12.3	2.0	55.36
(318	, 319)	1	sov			17	2373.3		22.9	15.9	6.9	17.7	12.3	5.4	44.74
(318	, 319)	2	sov			16	2235.1		18.1	15.9	2.2	14.0	12.3	1.7	56.40
(318	, 319)	3	sov			8	1758.7		16.6	15.7	1.0	12.9	12.1	0.8	61.44
(318	, 319)	4	sov			8	1364.9		16.4	15.6	0.9	12.7	12.0	0.7	62.17
(318	, 319)	5	HOV	28	29	0	28.0	28.0	15.9	15.7	0.1	12.3	12.2	0.1	64.45
	, 319)	9	sov			0	95.3		31.0	24.0	7.0	24.0	18.6	5.4	33.00
(319	, 320)	1	sov			. 8	2261.2		8.5	7.8	0.7	6.6	6.0	0.5	58.97
(319	, 320)	2	sov			7	2232.2		8.4	7.8	0.5	6.5	6.1	0.4	59.94
(319	, 320)	3	sov			3	1853.1		8.1	7.7	0.4	6.2	5.9	0.3	62.07
(319	, 320)	4	sov			1	1470.0		8.0	7.6	0.4	6.2	5.9	0.3	62.50
(319	, 320)	5	HOV	29	29	0	29.0	29.0	7.8	7.7	0.1	6.0	6.0	0.0	64.58
(320	, 321)	1	sov			20	2676.4		25.9	17.5	8.4	20.0	13.5	6.5	43.85
(320	, 321)	2	sov			10	2119.6		20.4	17.6	2.8	15.8	13.7	2.2	55.68
(320	, 321)	3	sov			10	1670.2		18.5	17.4	1.1	14.3	13.5	0.9	61.35
(320	, 321)	4	sov			7	1344.4		18.1	17.3	0.8	13.9	13.3	0.6	62.87
(320	, 321)	5	HOV	29	29	0	29.0	29.0	17.6	17.5	0.1	13.6	13.5	0.1	64.54
(321	, 322)	1	sov			14	2290.4		19.7	16.2	3.4	15.2	12.6	2.7	51.98
(321	, 322)	2	sov			10	1872.0		17.5	16.0	1.5	13.5	12.4	1.2	58.47
(321	, 322)	3	sov			15	1625.7		16.5	15.7	0.8	12.7	12.1	0.6	62.17
(321	, 322)	4	sov			7	1301.8		16.1	15.4	0.7	12.4	11.9	0.5	63.40
(321	, 322)	5	HOV	29	29	0	29.0	29.0	15.8	15.7	0.1	12.2	12.2	0.1	64.56
(321	, 322)	9	sov			5	705.3		18.2	16.6	1.7	14.1	12.8	1.3	56.05
(322	, 323)	1	sov			7	1138.2		19.9	18.9	1.0	15.4	14.7	0.8	60.57
(322	, 323)	2	sov			8	1762.2		19.8	18.9	0.9	15.3	14.6	0.7	61.02
(322	, 323)	3	sov			4	1638.2		19.2	18.5	0.7	14.9	14.3	0.6	62.70
(322	, 323)	4	sov			3	1364.0		19.1	18.2	0.9	14.7	14.0	0.7	63.24
	, 323)	5	HOV	29	30	0	29.4	29.4	18.7	18.5	0.1	14.4	14.3	0.1	64.65
(323	, 324)	1	sov			5	1573.1		10.7	9.5	1.2	8.3	7.3	0.9	57.15
(323	, 324)	2	sov			4	1746.8		10.1	9.6	0.6	7.8	7.4	0.4	60.31
, 525	2241	3	sov			5	1641.2		9.8	9.4	0.4	7.5	7.2	0.3	62.45
(323	, 344)														

(323, 324) 5 BOV 0 45.9 13.5 10.5 3.0 10.4 8.1 2.3 45.15 (324, 325) 1 SOV 0 45.9 13.5 10.5 3.0 10.4 8.1 2.3 45.15 (324, 325) 1 SOV 9 1830.3 17.8 15.9 1.9 13.8 12.3 1.4 57.52 (324, 325) 3 SOV 6 1679.8 16.4 15.7 0.7 12.7 12.1 0.6 62.39 (324, 325) 4 SOV 8 1462.5 16.4 15.7 0.7 12.7 12.1 0.6 62.39 (324, 325) 5 BOV 30 30 0 30.0 30.0 30.0 15.8 15.7 0.1 12.2 12.1 0.1 64.74 (324, 325) 5 BOV 1 24.9 22.1 17.9 4.2 17.1 13.8 3.2 46.37 (7023, 147) 1 SOV 2 870.3 11.0 4.7 6.3 8.5 3.6 4.9 9.42 (144, 131) 1 SOV 0 720.0 2.1 2.0 0.1 1.6 1.5 0.1 47.98 (7022, 144) 1 SOV 0 799.4 2.7 2.3 0.4 2.1 1.8 0.3 43.26 (347, 348) 1 SOV 0 0 1177.3 2.9 2.8 0.1 2.2 2.1 0.1 52.01 (347, 348) 2 SOV 0 1177.3 2.9 2.9 0.1 2.3 2.2 0.0 51.00 (348, 349) 1 SOV 0 1177.3 2 1094.4 4.8 4.7 0.1 3.3 3.2 2.0 0 51.00 (348, 349) 2 SOV 1 10.9 4.0 4.8 4.7 0.1 3.3 3.0 4.0 2.1 0.1 62.2 (550, 370) 2 SOV 1 10.9 4.0 4.0 4.8 4.7 0.1 3.7 3.6 0.1 48.13 (550, 370) 2 SOV 1 10.9 4.0 4.0 4.8 4.7 0.1 3.7 3.6 0.1 48.13 (550, 370) 2 SOV 1 10.9 4.0 4.0 4.8 4.7 0.1 3.7 3.6 0.1 48.13 (550, 370) 2 SOV 1 10.9 4.0 4.0 4.8 4.7 0.1 3.7 3.6 0.1 48.13 (550, 370) 2 SOV 1 10.9 4.4 5.4 5.3 0.1 4.1 4.1 0.1 63.65 (550, 370) 2 SOV 1 10.9 4.4 5.4 5.3 0.1 4.1 4.1 0.1 63.65 (550, 370) 2 SOV 1 10.9 4.4 5.4 5.3 0.1 4.2 4.1 0.1 62.20 (550, 370) 3 SOV 1 10.9 4.4 5.4 5.3 0.1 4.2 4.1 0.1 62.20 (550, 370) 3 SOV 1 10.9 4.0 1.1 10.9 4.7 5.4 5.3 0.1 4.2 4.1 0.1 62.20 (550, 370) 4 SOV 1 10.9 4.0 1.1 10.9 4.7 5.4 5.3 0.1 4.2 4.1 0.1 62.20 (550, 370) 5 SOV 1 10.9 5.4 5.3 0.1 4.2 4.1 0.1 62.20 (550, 370) 5 SOV 1 10.9 5.4 5.4 5.3 0.1 4.2 4.1 0.1 62.20 (550, 370) 5 SOV 1 10.9 5.4 5.4 5.3 0.1 4.2 4.1 0.1 62.20 (550, 370) 5 SOV 1 10.9 5.4 5.4 5.3 0.1 4.2 4.1 0.1 62.20 (550, 370) 5 SOV 1 10.9 5.4 5.4 5.3 0.1 4.2 4.1 0.1 62.20 (550, 370) 5 SOV 1 10.9 5.4 5.4 5.3 0.1 4.2 4.1 0.1 62.20 (550, 37																	
(324, 325) 1 80V 9 1830.3 17.8 15.9 1.9 13.8 12.3 1.4 57.52 (324, 325) 2 80V 9 1827.1 17.0 16.0 1.0 13.2 12.4 0.7 60.12 (324, 325) 3 80V 6 1679.8 16.4 15.7 0.7 12.7 12.1 0.6 62.39 (324, 325) 4 80V 8 1462.5 16.2 15.4 0.8 12.5 11.8 0.6 63.01 (324, 325) 5 80V 1 24.9 22.1 17.9 4.2 17.1 13.8 3.2 46.37 (7023, 147) 1 80V 2 870.3 3.4 2.8 0.6 2.6 2.1 0.5 37.55 (143,7025) 1 80V 4 1288.3 11.0 4.7 6.3 8.5 3.6 4.9 9.42 (144, 131) 1 80V 0 720.0 2.1 2.0 0.1 1.6 1.5 0.1 47.98 (7022, 144) 1 80V 0 799.4 2.7 2.3 0.4 2.1 1.8 0.3 43.26 (347, 348) 2 80V 0 1177.3 2.9 2.8 0.1 2.2 2.1 0.1 52.01 (347, 348) 1 80V 0 1177.3 2.9 2.9 0.1 2.3 2.2 0.0 51.00 (348, 349) 2 80V 0 180.8 4.5 4.4 0.2 3.5 3.4 0.1 50.92 (348, 349) 2 80V 1 1089.4 4.8 4.7 0.1 3.7 3.6 0.1 48.13 (560, 370) 1 80V 0 276.6 5.2 5.1 0.1 4.0 3.9 0.1 65.90 (560, 370) 2 80V 1 1089.4 5.4 5.3 0.1 4.1 4.1 0.1 63.65 (560, 370) 3 80V 1 1089.4 5.4 5.3 0.1 4.2 4.1 0.1 62.52 (560, 370) 4 80V 3 905.3 5.5 5.4 0.1 4.2 4.1 0.1 62.90 (560, 370) 9 80V 1 1089.4 5.4 5.3 0.1 4.2 4.1 0.1 62.90 (560, 370) 9 80V 3 905.3 5.5 5.4 0.1 4.2 4.1 0.1 62.90 (560, 370) 9 80V 3 905.3 5.5 5.4 5.3 0.1 4.2 4.1 0.1 62.90 (560, 370) 9 80V 3 905.3 5.5 5.4 5.3 0.1 4.2 4.1 0.1 62.90 (560, 370) 9 80V 3 905.3 11.9 11.6 0.4 9.2 8.9 0.3 62.99 (371, 372) 2 80V 3 1334.1 12.3 11.7 0.6 9.5 9.0 0.5 61.26 (370, 371) 4 80V 3 661.7 12.9 11.9 11.6 0.7 9.5 9.0 0.5 61.26 (370, 371) 5 80V 3 661.7 12.1 11.9 11.6 0.7 9.5 9.0 0.5 61.26 (371, 372) 2 80V 3 661.7 15.9 15.3 0.6 0.7 8.0 7.4 0.5 60.7 10.0 10.9 10.9 10.9 15.8 15.8 0.1 12.2 12.1 10.1 63.37 (372, 373) 2 80V 3 1334.9 11.0 10.9 10.9 15.8 15.8 0.1 12.2 12.1 10.1 63.37 (372, 373) 2 80V 3 1344.9 11.4 9.8 1.6 8.8 7.5 1.3 54.96 (372, 373) 2 80V 3 1344.9 11.4 9.8 1.6 8.8 7.5 1.3 54.	(323,	324)	5	HOV	30	30	0	30.0	30.0	9.4	9.4	0.1	7.3	7.2	0.1	64.68
(324, 325) 2 BOV	(323,	324)	9	sov			0	45.9		13.5	10.5	3.0	10.4	8.1	2.3	45.16
(324, 325) 2 BOV																	
(324, 325) 2 BOV	-	324	325)	1	SOV			9	1830.3		17.8	15.9	1.9	13.8	12.3	1.4	57.52
324, 325		-						_									
124, 325			-	_													
(324, 325) 5 BOV			-	_				_									
(324, 325) 9 80V 1 24.9 22.1 17.9 4.2 17.1 13.8 3.2 46.37 (7023, 147) 1 80V 2 870.3 3.4 2.8 0.6 2.6 2.1 0.5 37.55 (143,7025) 1 80V 4 1288.3 11.0 4.7 6.3 8.5 3.6 4.9 9.42 (144, 131) 1 80V 0 720.0 2.1 2.0 0.1 1.6 1.5 0.1 47.98 (7022, 144) 1 80V 0 799.4 2.7 2.3 0.4 2.1 1.8 0.3 43.26 (347, 348) 1 80V 0 96.1 2.9 2.8 0.1 2.2 2.1 0.1 52.01 (347, 348) 2 80V 0 1177.3 2.9 2.8 0.1 2.2 2.1 0.1 52.01 (347, 348) 2 80V 0 1177.3 2.9 2.9 0.1 2.3 2.2 0.0 51.00 (348, 349) 2 80V 0 180.8 4.5 4.4 0.2 3.5 3.4 0.1 50.92 (348, 349) 2 80V 0 276.6 5.2 5.1 0.1 4.0 3.9 0.1 65.90 (560, 370) 2 80V 1 1089.4 5.4 5.3 0.1 4.1 4.1 0.1 63.65 (560, 370) 3 80V 3 905.3 5.5 5.4 0.1 4.2 4.1 0.1 62.22 (560, 370) 4 80V 4 1019.1 5.4 5.2 0.2 4.1 4.0 0.1 63.65 (560, 370) 5 80V 1 1089.4 5.4 5.2 0.2 4.1 4.0 0.1 63.52 (560, 370) 5 80V 1 1089.4 5.4 5.2 0.2 4.1 4.0 0.1 63.65 (560, 370) 5 80V 1 1089.4 5.4 5.2 0.2 4.1 4.0 0.1 63.52 (560, 370) 5 80V 1 1089.4 5.4 5.2 0.2 4.1 4.0 0.1 63.52 (560, 370) 5 80V 1 1089.4 5.4 5.2 0.2 4.1 4.0 0.1 63.52 (560, 370) 5 80V 1 1089.4 5.4 5.2 0.2 4.1 4.0 0.1 63.52 (560, 370) 5 80V 3 905.3 5.5 5.4 0.1 4.2 4.1 0.1 62.22 (560, 370) 5 80V 1 1037.7 5.4 5.2 0.2 4.1 4.0 0.1 63.52 (560, 370) 5 80V 1 1037.7 5.4 5.2 0.2 4.1 4.0 0.1 63.52 (560, 370) 5 80V 1 1037.7 5.4 5.2 0.2 4.1 4.0 0.1 63.52 (560, 370) 5 80V 1 1037.7 5.4 5.2 0.2 4.1 4.0 0.1 63.52 (560, 370) 5 80V 1 1039.7 1 104.0 4.9 9.8 8.9 0.3 62.99 (370, 371) 5 80V 3 875.3 11.9 11.6 0.4 9.2 8.8 0.3 63.36 (370, 371) 5 80V 3 875.3 11.9 11.6 0.4 9.2 8.8 0.3 63.36 (370, 371) 5 80V 3 875.3 11.9 11.4 0.4 9.2 8.8 0.3 63.36 (370, 371) 5 80V 3 875.3 11.9 15.5 0.7 12.5 12.0 0.5 62.09 (371, 372) 5 80V 3 661.7 12.5 15.5 0.7 12.			-					-									
(7023, 147) 1 SOV	(324,	325)	5	HOV	30	30	0	30.0	30.0	15.8	15.7	0.1	12.2	12.1	0.1	64.74
(143,7025) 1 SOV 4 1288.3 11.0 4.7 6.3 8.5 3.6 4.9 9.42 (144, 131) 1 SOV 0 720.0 2.1 2.0 0.1 1.6 1.5 0.1 47.98 (7022, 144) 1 SOV 0 799.4 2.7 2.3 0.4 2.1 1.8 0.3 43.26 (347, 348) 1 SOV 0 1177.3 2.9 2.8 0.1 2.2 2.1 0.1 52.01 (347, 348) 2 SOV 0 1177.3 2.9 2.9 0.1 2.3 2.2 0.0 51.00 (348, 349) 2 SOV 0 1177.3 2.9 2.9 0.1 2.3 3.2 0.0 51.00 (348, 349) 2 SOV 2 1094.4 4.8 4.7 0.1 3.7 3.6 0.1 48.13 (560, 370) 1 SOV 1 1089.4 5.2 5.1 0.1 4.0 3.9 0.1 65.90 (560, 370) 2 SOV 1 1089.4 5.4 5.3 0.1 4.1 4.1 0.1 63.65 (560, 370) 3 SOV 4 1019.1 5.4 5.3 0.1 4.1 4.1 0.1 63.65 (560, 370) 4 SOV 4 1019.1 5.4 5.2 0.2 4.1 4.0 0.1 62.22 (560, 370) 5 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(324,	325)	9	sov			1	24.9		22.1	17.9	4.2	17.1	13.8	3.2	46.37
(143,7025) 1 SOV 4 1288.3 11.0 4.7 6.3 8.5 3.6 4.9 9.42 (144, 131) 1 SOV 0 720.0 2.1 2.0 0.1 1.6 1.5 0.1 47.98 (7022, 144) 1 SOV 0 799.4 2.7 2.3 0.4 2.1 1.8 0.3 43.26 (347, 348) 1 SOV 0 1177.3 2.9 2.8 0.1 2.2 2.1 0.1 52.01 (347, 348) 2 SOV 0 1177.3 2.9 2.9 0.1 2.3 2.2 0.0 51.00 (348, 349) 2 SOV 0 1177.3 2.9 2.9 0.1 2.3 3.2 0.0 51.00 (348, 349) 2 SOV 2 1094.4 4.8 4.7 0.1 3.7 3.6 0.1 48.13 (560, 370) 1 SOV 1 1089.4 5.2 5.1 0.1 4.0 3.9 0.1 65.90 (560, 370) 2 SOV 1 1089.4 5.4 5.3 0.1 4.1 4.1 0.1 63.65 (560, 370) 3 SOV 4 1019.1 5.4 5.3 0.1 4.1 4.1 0.1 63.65 (560, 370) 4 SOV 4 1019.1 5.4 5.2 0.2 4.1 4.0 0.1 62.22 (560, 370) 5 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.																	
(144, 131) 1 SOV 0 720.0 2.1 2.0 0.1 1.6 1.5 0.1 47.98 (7022, 144) 1 SOV 0 799.4 2.7 2.3 0.4 2.1 1.8 0.3 43.26 (347, 348) 1 SOV 0 96.1 2.9 2.8 0.1 2.2 2.1 0.1 52.01 (347, 348) 2 SOV 0 1177.3 2.9 2.8 0.1 2.2 2.1 0.1 52.01 (347, 348) 2 SOV 0 1177.3 2.9 2.9 0.1 2.3 2.2 0.0 51.00 (348, 349) 1 SOV 2 1094.4 4.8 4.7 0.1 3.7 3.6 0.1 48.13 (560, 370) 1 SOV 2 1094.4 4.8 4.7 0.1 3.7 3.6 0.1 48.13 (560, 370) 2 SOV 1 1089.4 5.2 5.1 0.1 4.0 3.9 0.1 65.90 (560, 370) 3 SOV 4 1019.1 5.4 5.3 0.1 4.1 4.1 0.1 63.65 (560, 370) 4 SOV 4 1019.1 5.4 5.2 0.2 4.1 4.0 0.1 63.22 (560, 370) 4 SOV 4 1019.1 5.4 5.2 0.2 4.1 4.0 0.1 63.25 (560, 370) 5 BOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(7023,	147)	1	sov			2	870.3		3.4	2.8	0.6	2.6	2.1	0.5	37.55
(144, 131) 1 SOV 0 720.0 2.1 2.0 0.1 1.6 1.5 0.1 47.98 (7022, 144) 1 SOV 0 799.4 2.7 2.3 0.4 2.1 1.8 0.3 43.26 (347, 348) 1 SOV 0 96.1 2.9 2.8 0.1 2.2 2.1 0.1 52.01 (347, 348) 2 SOV 0 1177.3 2.9 2.8 0.1 2.2 2.1 0.1 52.01 (347, 348) 2 SOV 0 1177.3 2.9 2.9 0.1 2.3 2.2 0.0 51.00 (348, 349) 1 SOV 2 1094.4 4.8 4.7 0.1 3.7 3.6 0.1 48.13 (560, 370) 1 SOV 2 1094.4 4.8 4.7 0.1 3.7 3.6 0.1 48.13 (560, 370) 2 SOV 1 1089.4 5.2 5.1 0.1 4.0 3.9 0.1 65.90 (560, 370) 3 SOV 4 1019.1 5.4 5.3 0.1 4.1 4.1 0.1 63.65 (560, 370) 4 SOV 4 1019.1 5.4 5.2 0.2 4.1 4.0 0.1 63.22 (560, 370) 4 SOV 4 1019.1 5.4 5.2 0.2 4.1 4.0 0.1 63.25 (560, 370) 5 BOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.																	
(7022, 144) 1 SOV 0 799.4 2.7 2.3 0.4 2.1 1.8 0.3 43.26 (347, 348) 1 SOV 0 1177.3 2.9 2.8 0.1 2.2 2.1 0.1 52.01 (348, 349) 1 SOV 0 180.8 4.5 4.4 0.2 3.5 3.4 0.1 50.92 (348, 349) 1 SOV 2 1094.4 4.5 4.4 0.2 3.5 3.4 0.1 50.92 (348, 349) 2 SOV 0 276.6 4.8 4.7 0.1 3.9 0.1 65.90 (560, 370) 1 SOV 0 276.6 5.2 5.1 0.1 4.0 3.9 0.1 65.90 (560, 370) 3 SOV 1 1099.4 5.4	(143,	7025)	1	sov			4	1288.3		11.0	4.7	6.3	8.5	3.6	4.9	9.42
(7022, 144) 1 SOV 0 799.4 2.7 2.3 0.4 2.1 1.8 0.3 43.26 (347, 348) 1 SOV 0 1177.3 2.9 2.8 0.1 2.2 2.1 0.1 52.01 (348, 349) 1 SOV 0 180.8 4.5 4.4 0.2 3.5 3.4 0.1 50.92 (348, 349) 1 SOV 2 1094.4 4.5 4.4 0.2 3.5 3.4 0.1 50.92 (348, 349) 2 SOV 0 276.6 4.8 4.7 0.1 3.9 0.1 65.90 (560, 370) 1 SOV 0 276.6 5.2 5.1 0.1 4.0 3.9 0.1 65.90 (560, 370) 3 SOV 1 1099.4 5.4																	
(347, 348) 1 SOV 0 96.1 2.9 2.8 0.1 2.2 2.1 0.1 52.01 (347, 348) 2 SOV 0 1177.3 2.9 2.9 0.1 2.3 2.2 0.0 51.00 (348, 349) 1 SOV 0 180.8 4.5 4.4 0.2 3.5 3.4 0.1 50.92 (348, 349) 2 SOV 2 1094.4 4.8 4.7 0.1 3.7 3.6 0.1 48.13 (560, 370) 1 SOV 0 276.6 5.2 5.1 0.1 4.0 3.9 0.1 65.90 (560, 370) 2 SOV 1 1089.4 5.4 5.3 0.1 4.1 4.1 0.1 63.65 (560, 370) 3 SOV 3 905.3 5.5 5.4 0.1 4.2 4.1 0.1 62.22 (560, 370) 4 SOV 4 1019.1 5.4 5.2 0.2 4.1 4.0 0.1 63.52 (560, 370) 5 BOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(144,	131)	1	sov			0	720.0		2.1	2.0	0.1	1.6	1.5	0.1	47.98
(347, 348) 1 SOV 0 96.1 2.9 2.8 0.1 2.2 2.1 0.1 52.01 (347, 348) 2 SOV 0 1177.3 2.9 2.9 0.1 2.3 2.2 0.0 51.00 (348, 349) 1 SOV 0 180.8 4.5 4.4 0.2 3.5 3.4 0.1 50.92 (348, 349) 2 SOV 2 1094.4 4.8 4.7 0.1 3.7 3.6 0.1 48.13 (560, 370) 1 SOV 0 276.6 5.2 5.1 0.1 4.0 3.9 0.1 65.90 (560, 370) 2 SOV 1 1089.4 5.4 5.3 0.1 4.1 4.1 0.1 63.65 (560, 370) 3 SOV 3 905.3 5.5 5.4 0.1 4.2 4.1 0.1 62.22 (560, 370) 4 SOV 4 1019.1 5.4 5.2 0.2 4.1 4.0 0.1 63.52 (560, 370) 5 BOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.																	
(347, 348) 1 SOV 0 96.1 2.9 2.8 0.1 2.2 2.1 0.1 52.01 (347, 348) 2 SOV 0 1177.3 2.9 2.9 0.1 2.3 2.2 0.0 51.00 (348, 349) 1 SOV 0 180.8 4.5 4.4 0.2 3.5 3.4 0.1 50.92 (348, 349) 2 SOV 2 1094.4 4.8 4.7 0.1 3.7 3.6 0.1 48.13 (560, 370) 1 SOV 0 276.6 5.2 5.1 0.1 4.0 3.9 0.1 65.90 (560, 370) 2 SOV 1 1089.4 5.4 5.3 0.1 4.1 4.1 0.1 63.65 (560, 370) 3 SOV 3 905.3 5.5 5.4 0.1 4.2 4.1 0.1 62.22 (560, 370) 4 SOV 4 1019.1 5.4 5.2 0.2 4.1 4.0 0.1 63.52 (560, 370) 5 BOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(7022.	144)	1	sov			0	799.4		2.7	2.3	0.4	2.1	1.8	0.3	43.26
(347, 348) 2 SOV 0 1177.3 2.9 2.9 0.1 2.3 2.2 0.0 51.00 (348, 349) 1 SOV 0 180.8 4.5 4.4 0.2 3.5 3.4 0.1 50.92 (348, 349) 2 SOV 2 1094.4 4.8 4.7 0.1 3.7 3.6 0.1 48.13 (560, 370) 1 SOV 0 276.6 5.2 5.1 0.1 4.0 3.9 0.1 65.90 (560, 370) 2 SOV 1 1089.4 5.4 5.3 0.1 4.1 4.1 0.1 63.65 (560, 370) 3 SOV 3 905.3 5.5 5.4 0.1 4.2 4.1 0.1 62.22 (560, 370) 4 SOV 4 1019.1 5.4 5.2 0.2 4.1 4.0 0.1 63.52 (560, 370) 5 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.													• • •				-5125
(347, 348) 2 SOV 0 1177.3 2.9 2.9 0.1 2.3 2.2 0.0 51.00 (348, 349) 1 SOV 0 180.8 4.5 4.4 0.2 3.5 3.4 0.1 50.92 (348, 349) 2 SOV 2 1094.4 4.8 4.7 0.1 3.7 3.6 0.1 48.13 (560, 370) 1 SOV 0 276.6 5.2 5.1 0.1 4.0 3.9 0.1 65.90 (560, 370) 2 SOV 1 1089.4 5.4 5.3 0.1 4.1 4.1 0.1 63.65 (560, 370) 3 SOV 3 905.3 5.5 5.4 0.1 4.2 4.1 0.1 62.22 (560, 370) 4 SOV 4 1019.1 5.4 5.2 0.2 4.1 4.0 0.1 63.52 (560, 370) 5 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		347	348)	1	SOV			0	96 1		2 9	2 8	0 1	2 2	2 1	0 1	52 01
(348, 349)				_				-									
(348, 349) 2 SOV 2 1094.4 4.8 4.7 0.1 3.7 3.6 0.1 48.13 (560, 370) 1 SOV 0 276.6 5.2 5.1 0.1 4.0 3.9 0.1 65.90 (560, 370) 2 SOV 1 1089.4 5.4 5.3 0.1 4.1 4.1 0.1 63.65 (560, 370) 3 SOV 3 905.3 5.5 5.4 0.1 4.2 4.1 0.1 62.22 (560, 370) 4 SOV 4 1019.1 5.4 5.2 0.2 4.1 4.0 0.1 63.52 (560, 370) 5 BOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	'	347,	340)	_	SUV			U	11//.3		2.9	2.9	0.1	2.3	4.4	0.0	51.00
(348, 349) 2 SOV 2 1094.4 4.8 4.7 0.1 3.7 3.6 0.1 48.13 (560, 370) 1 SOV 0 276.6 5.2 5.1 0.1 4.0 3.9 0.1 65.90 (560, 370) 2 SOV 1 1089.4 5.4 5.3 0.1 4.1 4.1 0.1 63.65 (560, 370) 3 SOV 3 905.3 5.5 5.4 0.1 4.2 4.1 0.1 62.22 (560, 370) 4 SOV 4 1019.1 5.4 5.2 0.2 4.1 4.0 0.1 63.52 (560, 370) 5 BOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		240	240)		G017			•	100.0		4 =			2 -	2.4	0 1	E0 00
(560, 370)			-					_									
(560, 370) 2 SOV 1 1089.4 5.4 5.3 0.1 4.1 4.1 0.1 63.65 (560, 370) 3 SOV 3 905.3 5.5 5.4 0.1 4.2 4.1 0.1 62.22 (560, 370) 4 SOV 4 1019.1 5.4 5.2 0.2 4.1 4.0 0.1 63.52 (560, 370) 5 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		348,	349)	2	sov			2	1094.4		4.8	4.7	0.1	3.7	3.6	0.1	48.13
(560, 370) 2 SOV 1 1089.4 5.4 5.3 0.1 4.1 4.1 0.1 63.65 (560, 370) 3 SOV 3 905.3 5.5 5.4 0.1 4.2 4.1 0.1 62.22 (560, 370) 4 SOV 4 1019.1 5.4 5.2 0.2 4.1 4.0 0.1 63.52 (560, 370) 5 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.			2501					•	25.6			- 1		4.0			CE 00
(560, 370) 3 SOV 3 905.3 5.5 5.4 0.1 4.2 4.1 0.1 62.22 (560, 370) 4 SOV 4 1019.1 5.4 5.2 0.2 4.1 4.0 0.1 63.52 (560, 370) 5 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0								_									
(560, 370)											-						
(560, 370) 5 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		560,	370)	3	sov			3	905.3		5.5	5.4	0.1	4.2	4.1	0.1	62.22
(560, 370) 9 SOV 0 1037.7 5.4 5.3 0.1 4.2 4.1 0.1 62.90 (370, 371) 1 SOV 12 113.9 130.9 70.7 60.2 102.7 55.5 47.2 5.75 (370, 371) 2 SOV 5 1163.5 11.9 11.6 0.4 9.2 8.9 0.3 62.99 (370, 371) 3 SOV 3 942.7 12.1 11.8 0.3 9.3 9.1 0.2 62.37 (370, 371) 4 SOV 3 875.3 11.9 11.4 0.4 9.2 8.8 0.3 63.36 (370, 371) 5 HOV 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		560,	370)	4	sov			4	1019.1		5.4	5.2	0.2	4.1	4.0	0.1	63.52
(370, 371)		560,	370)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(370, 371)		560.	370)	9	sov			0	1037.7		5.4	5.3	0.1	4.2	4.1	0.1	62.90
(370, 371) 2 SOV 5 1163.5 11.9 11.6 0.4 9.2 8.9 0.3 62.99 (370, 371) 3 SOV 3 942.7 12.1 11.8 0.3 9.3 9.1 0.2 62.37 (370, 371) 4 SOV 3 875.3 11.9 11.4 0.4 9.2 8.8 0.3 63.36 (370, 371) 5 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0																	
(370, 371) 2 SOV 5 1163.5 11.9 11.6 0.4 9.2 8.9 0.3 62.99 (370, 371) 3 SOV 3 942.7 12.1 11.8 0.3 9.3 9.1 0.2 62.37 (370, 371) 4 SOV 3 875.3 11.9 11.4 0.4 9.2 8.8 0.3 63.36 (370, 371) 5 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		370.	371)	1	sov			12	113.9		130.9	70.7	60.2	102.7	55.5	47.2	5.75
(370, 371) 3 SOV 3 942.7 12.1 11.8 0.3 9.3 9.1 0.2 62.37 (370, 371) 4 SOV 3 875.3 11.9 11.4 0.4 9.2 8.8 0.3 63.36 (370, 371) 5 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			-		SOV			5	1163.5		11.9	11.6	0.4	9.2	8.9	0.3	62.99
(370, 371)																	
(370, 371) 5 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			-														
(370, 371) 9 SOV 3 1134.1 12.3 11.7 0.6 9.5 9.0 0.5 61.26 (371, 372) 1 SOV 12 756.8 18.0 15.4 2.5 13.9 11.9 2.0 55.89 (371, 372) 2 SOV 22 1773.8 17.3 15.6 1.7 13.4 12.0 1.3 58.03 (371, 372) 3 SOV 10 1096.3 16.2 15.5 0.7 12.5 12.0 0.5 62.09 (371, 372) 4 SOV 3 661.7 15.9 15.3 0.6 12.3 11.8 0.4 63.22 (371, 372) 5 HOV 17 0 0 10.9 10.9 15.8 15.8 0.1 12.2 12.1 0.1 63.37 (372, 373) 1 SOV 3 2741.9 11.4 9.8 1.6 8.8 7.5 1.3 54.96 (372, 373) 2 SOV 3 1372.6 10.3 9.6 0.7 8.0 7.4 0.5 60.71			-	_													
(371, 372) 1 SOV 12 756.8 18.0 15.4 2.5 13.9 11.9 2.0 55.89 (371, 372) 2 SOV 22 1773.8 17.3 15.6 1.7 13.4 12.0 1.3 58.03 (371, 372) 3 SOV 10 1096.3 16.2 15.5 0.7 12.5 12.0 0.5 62.09 (371, 372) 4 SOV 3 661.7 15.9 15.3 0.6 12.3 11.8 0.4 63.22 (371, 372) 5 HOV 17 0 0 10.9 10.9 15.8 15.8 0.1 12.2 12.1 0.1 63.37 (372, 373) 1 SOV 3 2741.9 11.4 9.8 1.6 8.8 7.5 1.3 54.96 (372, 373) 2 SOV 3 1372.6 10.3 9.6 0.7 8.0 7.4 0.5 60.71			-			_	-	-									
(371, 372) 2 SOV 22 1773.8 17.3 15.6 1.7 13.4 12.0 1.3 58.03 (371, 372) 3 SOV 10 1096.3 16.2 15.5 0.7 12.5 12.0 0.5 62.09 (371, 372) 4 SOV 3 661.7 15.9 15.3 0.6 12.3 11.8 0.4 63.22 (371, 372) 5 HOV 17 0 0 10.9 10.9 15.8 15.8 0.1 12.2 12.1 0.1 63.37 (372, 373) 1 SOV 3 2741.9 11.4 9.8 1.6 8.8 7.5 1.3 54.96 (372, 373) 2 SOV 3 1372.6 10.3 9.6 0.7 8.0 7.4 0.5 60.71		(370,	371)	9	sov			3	1134.1		12.3	11.7	0.6	9.5	9.0	0.5	61.26
(371, 372) 2 SOV 22 1773.8 17.3 15.6 1.7 13.4 12.0 1.3 58.03 (371, 372) 3 SOV 10 1096.3 16.2 15.5 0.7 12.5 12.0 0.5 62.09 (371, 372) 4 SOV 3 661.7 15.9 15.3 0.6 12.3 11.8 0.4 63.22 (371, 372) 5 HOV 17 0 0 10.9 10.9 15.8 15.8 0.1 12.2 12.1 0.1 63.37 (372, 373) 1 SOV 3 2741.9 11.4 9.8 1.6 8.8 7.5 1.3 54.96 (372, 373) 2 SOV 3 1372.6 10.3 9.6 0.7 8.0 7.4 0.5 60.71																	
(371, 372) 3 SOV 10 1096.3 16.2 15.5 0.7 12.5 12.0 0.5 62.09 (371, 372) 4 SOV 3 661.7 15.9 15.3 0.6 12.3 11.8 0.4 63.22 (371, 372) 5 HOV 17 0 0 10.9 10.9 15.8 15.8 0.1 12.2 12.1 0.1 63.37 (372, 373) 1 SOV 3 2741.9 11.4 9.8 1.6 8.8 7.5 1.3 54.96 (372, 373) 2 SOV 3 1372.6 10.3 9.6 0.7 8.0 7.4 0.5 60.71		(371,	372)	1	sov												
(371, 372) 4 SOV 3 661.7 15.9 15.3 0.6 12.3 11.8 0.4 63.22 (371, 372) 5 HOV 17 0 0 10.9 10.9 15.8 15.8 0.1 12.2 12.1 0.1 63.37 (372, 373) 1 SOV 3 2741.9 11.4 9.8 1.6 8.8 7.5 1.3 54.96 (372, 373) 2 SOV 3 1372.6 10.3 9.6 0.7 8.0 7.4 0.5 60.71		(371,	372)	2	sov			22	1773.8		17.3	15.6	1.7	13.4	12.0	1.3	58.03
(371, 372) 4 SOV 3 661.7 15.9 15.3 0.6 12.3 11.8 0.4 63.22 (371, 372) 5 HOV 17 0 0 10.9 10.9 15.8 15.8 0.1 12.2 12.1 0.1 63.37 (372, 373) 1 SOV 3 2741.9 11.4 9.8 1.6 8.8 7.5 1.3 54.96 (372, 373) 2 SOV 3 1372.6 10.3 9.6 0.7 8.0 7.4 0.5 60.71		(371,	372)	3	sov			10	1096.3		16.2	15.5	0.7	12.5	12.0	0.5	62.09
(371, 372) 5 HOV 17 0 0 10.9 10.9 15.8 15.8 0.1 12.2 12.1 0.1 63.37 (372, 373) 1 SOV 3 2741.9 11.4 9.8 1.6 8.8 7.5 1.3 54.96 (372, 373) 2 SOV 3 1372.6 10.3 9.6 0.7 8.0 7.4 0.5 60.71			-	4	sov			3	661.7		15.9	15.3	0.6	12.3	11.8	0.4	63.22
(372, 373) 1 SOV 3 2741.9 11.4 9.8 1.6 8.8 7.5 1.3 54.96 (372, 373) 2 SOV 3 1372.6 10.3 9.6 0.7 8.0 7.4 0.5 60.71																	
(372, 373) 2 SOV 3 1372.6 10.3 9.6 0.7 8.0 7.4 0.5 60.71		, J, I,	3,2)	,	1104	-/	3	Ū	20.3	20.5		-5.5	•••				,
(372, 373) 2 SOV 3 1372.6 10.3 9.6 0.7 8.0 7.4 0.5 60.71		(372	3731	1	SOV			3	2741.9		11.4	9.8	1.6	8.8	7.5	1.3	54.96
,,,								_									
(5/4, 5/5) 3 SOV 5 9/0.4 9.9 9.5 0.4 /./ /.3 0.3 63.25			-					_									
		3/2,	3/3)	3	SOV			3	9/0.2		9.9	9.5	0.4	7.7	1.3	0.3	03.45

(372,	373)	4	HOV	17	17	0	17.0	17.0	9.8	9.8	0.0	7.6	7.6	0.0	63.68	
(372,	373)	9	sov			0	338.5		11.1	9.7	1.4	8.6	7.5	1.1	56.39	
(373,	374)	1	sov			5	2334.3		6.8	6.2	0.5	5.2	4.8	0.4	58.59	
(373,	374)	2	sov			5	1545.0		6.4	6.1	0.3	4.9	4.7	0.2	62.02	
-	373,	-	3	sov			1	1095.6		6.2	6.0	0.2	4.8	4.6	0.2	63.80	
	373,		4	HOV	17	17	0	17.0	17.0	6.2	6.2	0.0	4.8	4.8	0.0	63.72	
	373,		9	sov			2	444.0		6.3	6.0	0.3	4.8	4.6	0.2	63.22	
•	,	,	-				_			0.5	0.0	0.5	4.0	4.0	0.2	03.22	
(374,	375)	1	sov			6	2200.0		10.6	10.0	0.6	8.2	7.7	0.5	59.19	
	374,		2	sov			3	1585.3		10.0	9.6	0.3	7.7	7.4	0.3	62.78	
	374,		3	sov			5	1157.6		9.8	9.4	0.3	7.5	7.3	0.3	64.17	
-	374,	-	4	HOV	17	17	0	17.0	17.0	9.8	9.8	0.0	7.6	7.6	0.0	63.63	
-	-	375)	9	sov			2	468.8		10.3	10.1	0.2	8.0	7.8	0.2	60.82	
`	3,-,	3,3,	-	50.			_	400.0		10.5	-0	0.2	0.0	7.0	0.2	00.02	
(375,	376)	1	sov			6	1640.4		17.5	16.5	1.0	13.5	12.7	0.8	59.81	
	375,		2	sov			5	1618.8		16.7	16.1	0.6	12.9	12.4	0.5	62.46	
	375,		3	sov			7	1285.5		16.3	15.7	0.6	12.6	12.1	0.5	64.09	
-	375,		4	HOV	17	17	ó	17.0	17.0	16.4	16.4	0.0	12.6	12.6	0.0	63.66	
•	3.3,	3.0,	-		_,		•	27.00				•••	-2.0	12.0	0.0	05.00	
(376,	377)	1	sov			4	1993.9		9.2	7.9	1.3	7.1	6.1	1.0	54.58	
	376,		2	sov			4	1704.1		8.2	7.8	0.4	6.3	6.0	0.3	61.42	
	376,	-	3	sov			4	1409.0		7.9	7.6	0.3	6.1	5.8	0.3	63.81	
	376,		4	HOV	17	17	0	17.0	17.0	7.9	7.9	0.0	6.1	6.1	0.0	63.65	
-		377)	9	sov			0	72.1		11.3	8.9	2.4	8.7	6.9	1.9	44.53	
`	3,0,	3,,,	,	501			•	,			0.5	2.4	0.,	0.5	,	44.55	
,	377,	378)	1	sov			15	2544.7		16.5	13.9	2.7	12.7	10.7	2.0	53.65	
-	377,		2	sov			6	1745.0		14.6	13.7	0.9	11.3	10.6	0.7	60.54	
-	377,		3	sov			8	1406.4		13.9	13.3	0.6	10.7	10.3	0.4	63.86	
-	-	378)	4	HOV	17	17	0	17.0	17.0	13.9	13.9	0.0	10.7	10.7	0.0	63.64	
		378)	9	sov			Ö	40.6		19.4	15.9	3.5	15.0	12.3	2.7	45.78	
,	3//,	370)	,	504			U	-0.0		19.4	13.3	3.3	13.0	12.5	4.,	45.70	
,	3.9.1	382)	1	sov			0	86.7		3.3	3.3	0.1	2.6	2.5	0.0	44.84	
		382)	2	sov			2	1087.8		3.6	3.6	0.0	2.8	2.8	0.0	41.25	
,	301,	302)	-	501			_	1007.0		3.0	3.0	0.0	2.0	2.0			
,	378,	384)	1	sov			2	2536.1		2.4	2.1	0.2	1.8	1.7	0.2	57.33	
-	_	384)	2	sov			1			2.2	2.1	0.1	1.7	1.6	0.1	61.53	
-	_	384)	3	sov			1	1447.0		2.1	2.0	0.1	1.6	1.6	0.1	64.04	
	_	384)	4	HOV	17	17	ō	17.0	17.0	2.1	2.1	0.0	1.6	1.6	0.0	63.71	
,	3/0,	304)	•	HOV	17	17	U	17.0	17.0	2.1	4.1	0.0	1.0	1.0	0.0	03.71	
,	384,	385)	1	sov			10	2460.0		15.2	14.0	1.2	11.7	10.8	0.9	58.38	
-		385)	2	SOV			5	1771.1		14.2	13.7	0.5	11.0	10.6	0.4	62.27	
		385)	3	SOV			1	1499.9		13.8	13.3	0.6	10.7	10.3	0.4	64.01	
	-	385)	4	HOV	17	17	0	17.0	17.0	13.9	13.9	0.0	10.7	10.7	0.0	63.64	
(30 4 ,	303)	-	AUV	1,	17	U	17.0	17.0	13.9	13.3	0.0	10.7	10.7	0.0	33.01	
,	385,	3861	1	sov			10	1556.3		28.9	27.5	1.4	22.3	21.3	1.1	60.17	
	-	386)	2	SOV				1746.5		28.1	27.0	1.1	21.6	20.8	0.8	62.03	
,	365,	300)	_	504	-			1,40.3		20.1	27.0		22.0	20.0	0.0	J	

(385,	386)	3	sov			9	1600.0		27.4	26.1	1.3	21.1	20.1	1.0	63.59
(385,		4	HOV	17	17	0	17.0	17.0	27.3	27.3	0.0	21.0	21.0	0.0	63.66
(402,	4031	1	sov			1	451.5		11.2	9.5	1.7	8.7	7.3	1.3	44.39
(402,	-	2	SOV			1	654.1		10.9	9.9	1.1	8.4	7.6	0.8	45.46
(402,	403)	4	SOV			_	034.1		10.9	3.3	1.1	0.4	7.0	0.0	43.40
(401,	-	1	sov			0	73.8		2.8	2.8	0.0	2.2	2.1	0.0	50.70
(401,	381)	2	sov			0	1100.2		2.8	2.8	0.0	2.2	2.2	0.0	50.13
(395,	396)	1	sov			7	1374.6		13.0	12.3	0.7	10.1	9.5	0.6	60.43
(395,		2	sov			6	1596.4		12.5	12.0	0.5	9.7	9.3	0.4	62.83
(395,		3	sov			3	1281.6		12.6	12.1	0.6	9.8	9.3	0.4	62.34
(395,		4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(5557	,	-		•	·	·	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(394,		1	sov			4	2021.0		6.6	6.1	0.4	5.1	4.7	0.3	58.29
(394,	-	2	sov			3	1579.7		6.1	5.8	0.2	4.7	4.5	0.2	62.92
(394,	-	3	sov			5	1254.1		6.1	5.9	0.3	4.7	4.5	0.2	62.25
(394,		4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(394,	395)	9	sov			2	493.0		6.4	6.2	0.1	4.9	4.8	0.1	59.92
(393,	394)	1	sov			5	2152.5		10.8	10.0	0.7	8.3	7.8	0.6	59.47
(393,	394)	2	sov			6	1528.4		10.2	9.8	0.4	7.9	7.6	0.3	62.65
(393,	394)	3	sov			4	1224.6		10.3	9.9	0.5	8.0	7.6	0.3	62.21
(393,	394)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(393,	394)	9	sov			2	455.9		10.2	9.6	0.5	7.9	7.5	0.4	63.04
(392,	3031	1	sov			3	2448.4		6.7	5.9	0.8	5.2	4.6	0.6	56.76
(392,		2	sov			1	1402.8		6.2	5.8	0.3	4.8	4.5	0.0	62.08
(392,		3	sov			2	1182.4		6.1	5.9	0.3	4.7	4.5	0.2	62.22
(392,		4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.00
(392,	-	9	SOV			1	331.2		6.8	5.9	0.0	5.3	4.6	0.7	55.83
(392,	393)	9	500			-	331.2		0.0	5.9	0.9	5.3	4.0	0.7	55.65
(391,	392)	1	sov			3	1603.4		12.5	11.4	1.1	9.7	8.8	0.9	58.98
(391,	392)	2	sov			4	1541.1		11.9	11.3	0.5	9.2	8.8	0.4	62.13
(391,	392)	3	sov			1	1382.7		12.0	11.4	0.6	9.3	8.8	0.5	61.52
(391,	392)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(391,	392)	9	sov			. 0	21.4		16.3	13.0	3.3	12.6	10.1	2.5	45.18
(390,	3911	1	sov			4	1125.4		17.4	16.5	0.9	13.4	12.8	0.7	61.15
(390,		2	sov			6	1621.1		17.0	16.3	0.7	13.2	12.6	0.5	62.40
(390,	-	3	SOV			9	1471.4		17.3	16.4	0.7	13.2	12.6	0.5	61.50
(390,		4	HOV			0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.00
(390,	331)	4	HUV	U	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(389,	-	1	sov			11	2170.9		17.4	16.0	1.4	13.5	12.4	1.1	58.65
(389,	390)	2	sov			10	1621.3		16.4	15.7	0.7	12.7	12.1	0.5	62.48
(389,	390)	3	sov			9	1451.2		16.6	15.8	0.8	12.8	12.2	0.6	61.67
(389,	390)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00

(3	88.	389)	1	sov			6	2261.9		5.7	5.2	0.5	4.4	4.0	0.4	58.48
		389)	2	sov			2	1544.0		5.4	5.1	0.3	4.2	4.0	0.2	61.96
-	_	-														
		389)	3	sov			2	1440.9		5.4	5.2	0.3	4.2	4.0	0.2	61.87
(3	88,	389)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
•	•															
/ 2	07	388)	1	sov			7	1874.3		17.4	15.7	1.7	13.4	12.1	1.3	58.75
		388)	2	sov			6	1688.5		16.6	15.8	0.8	12.9	12.2	0.7	61.49
(3	87,	388)	3	sov			10	1659.4		16.7	15.8	0.9	12.9	12.2	0.7	61.24
(3	87,	388)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(3	87	388)	9	sov			0	25.7		23.8	18.2	5.6	18.4	14.1	4.4	43.01
, ,	• ,	500,	-	50.			•	23.7		25.0	10.2	3.0	10.4	14.1	* - *	43.UI
			_				_									
	_	404)	1	sov			6	1594.8		8.3	8.0	0.4	6.4	6.1	0.3	61.53
(1	66,	404)	2	sov			5	1708.8		8.2	7.9	0.3	6.3	6.1	0.2	62.52
(1	66,	404)	3	sov			5	1725.3		8.2	7.9	0.3	6.3	6.1	0.2	62.28
(1	66.	404)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
` -	,	-0-/	•	1101	J	·	•	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
, ,	•	2051					_									
-		387)	1	sov			5	1313.6		17.7	16.9	0.7	13.7	13.1	0.6	62.62
		387)	2	sov			6	1697.4		17.8	17.1	0.7	13.8	13.2	0.5	62.11
(4	04,	387)	3	sov			5	1730.2		18.0	17.1	0.9	13.9	13.2	0.7	61.52
(4	04.	387)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
` -	,	,	-		•		•	• • • • • • • • • • • • • • • • • • • •			•••		0.0	0.0	0.0	0.00
/ 3	06	40E\	1	sov			0	1035.4			6.3		. .	4.0	0 1	F0 33
	_	405)					-			6.4	6.2	0.2	5.0	4.8	0.1	52.33
(3	06,	405)	2	sov			0	469.9		6.0	5.9	0.1	4.6	4.6	0.1	55.97
(5	58,	406)	1	sov			2	804.5		5.2	5.0	0.2	4.0	3.9	0.2	43.00
		406)	2	sov			2	600.5		4.8	4.7	0.1	3.7	3.7	0.1	46.69
	-	406)	3	sov			1	101.0		4.4	4.4	0.0	3.4	3.4	0.0	50.63
()	50,	400)	3	SUV			_	101.0		4.4	4.4	0.0	3.4	3.4	0.0	50.63
(3	51,	408)	1	sov			1	351.7		5.3	4.5	0.8	4.1	3.5	0.6	40.66
(3	51,	408)	2	sov			1	921.1		5.1	4.9	0.2	4.0	3.8	0.2	42.22
(A	0.0	409)	1	sov			1	755.6		10.6	9.5	1.1	8.2	7.3	0.9	40.06
•			_				2	516.9		10.6				7.4		
(4	08,	409)	2	sov			2	210.9		10.6	9.6	1.0	8.2	7.4	0.8	40.08
(4	10,	405)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(4	13.	409)	1	sov			1	975.5		12.2	11.9	0.3	9.4	9.2	0.2	42.73
•		-	2	sov			0	534.0		11.3	11.1	0.2	8.7	8.6	0.1	46.09
(4	IJ,	409)	4	SUV			U	534.0		11.3	11.1	0.2	0.7	0.0	0.1	40.03
(3	49,	350)	1	sov			1	320.1		15.2	15.0	0.2	11.8	11.6	0.1	52.04
(3	49.	350)	2	sov			3	955.0		16.5	16.2	0.3	12.8	12.5	0.3	47.97
, •		,	_				-									
/ 3	E0	351)	1	sov			3	442.2		12.6	12.4	0.2	9.8	9.6	0.1	47.31
							_									
(3	50,	351)	2	sov			4	832.3		13.8	13.5	0.3	10.7	10.4	0.2	43.24
(5	59,	407)	1	sov			5	1055.2		22.2	21.3	0.9	17.1	16.5	0.7	47.07
	-	-														

(559, 407)	6	sov	 	3	727.3	 20.7	20.1	0.5	16.0	15.6	0.4	50.61	
(559, 407)	7	sov	 	4	1004.9	 22.0	21.2	0.8	17.0	16.4	0.6	47.59	
(407, 411)	1	sov	 	0	366.0	 5.7	5.6	0.1	4.4	4.3	0.1	49.25	
(406, 413)	1	sov	 	2	992.3	 6.8	6.6	0.2	5.3	5.1	0.1	42.69	
(406, 413)	2	sov	 	2	514.7	 6.3	6.2	0.1	4.9	4.8			
(100) 115)	-	501	 	_	314.7	 0.3	0.2	0.1	4.9	4.8	0.1	46.06	
(161,7031)	1	sov	 	1	308.3	 4.4	4.3	0.1	3.4	3.3	0.1	48.66	
(161,7031)	2	sov	 	0	367.0	 4.3	4.3	0.1	3.4	3.3	0.1	48.92	
(7032, 435)	1	sov	 	0	1246.4	 3.7	3.2	0.5	2.8	2.5	0.4	43.80	
(435, 436)	1	sov	 	1	1154.8	 3.1	3.0	0.2	2.4	2.3	0.1	47.92	
(436, 372)	1	sov	 	0	1155.6	 4.0	3.7	0.3	3.0	2.8	0.2	50.02	
(395, 437)	1	sov	 	1	505.4	 6.8	6.5	0.4	5.3	5.0	0.3	53.73	
(395, 437)	2	sov	 	ō	589.3	 7.4	6.9	0.6	5.7	5.3	0.3	49.50	
				•	55515	,	0.5	0.0	3.7	3.3	0.4	49.50	
(437,7033)	1	sov	 	1	476.3	 13.9	6.1	7.7	10.7	4.7	6.0	19.15	
(437,7033)	2	sov	 	2	544.6	 20.5	6.8	13.7	15.8	5.2	10.6	12.99	
(7034, 440)	1	sov	 	2	680.4	 3.2	2.9	0.4	2.5	2.2	0.3	44.61	
(440, 441)	1	sov	 	0	625.0	 2.6	2.5	0.1	2.0	1.9	0.1	48.81	
(7035, 443)	1	sov	 	0	698.9	 3.9	2.9	1.0	3.0	2.2	0.8	33.89	
(443, 444)	1	sov	 	0	638.5	 3.2	2.9	0.3	2.4	2.2	0.2	44.68	
(444, 376)	1	sov	 	1	638.1	 9.2	8.9	0.3	7.1	6.8	0.3	52.35	
(375, 442)	1	sov	 	0	466.9	 4.5	4.4	0.1	3.4	3.4	0.1	55.43	
(375, 442)	2	sov	 	1	393.3	 4.8	4.7	0.1	3.7	3.6	0.1	51.68	
(442,7036)	1	sov	 	1	465.0	 3.3	3.2	0.1	2.5	2.5	0.1	51.95	
(442,7036)	2	sov	 	ō	394.0	 3.7	3.4	0.1	2.8	2.7	0.1	46.49	
(112),,050,	-	501		·	334.0	 3.,	3.4	0.2	2.0	2.,	0.2	40.49	
(7037, 454)	1	sov	 	0	613.0	 3.5	3.1	0.4	2.7	2.4	0.3	44.87	
(454, 455)	1	sov	 	0	567.7	 3.5	3.4	0.1	2.7	2.6	0.1	49.00	
(455, 377)	1	sov	 	0	569.0	 5.0	4.8	0.2	3.9	3.7	0.2	51.76	
(390, 458)	1	sov	 	4	1024.4	 9.7	8.5	1.1	7.5	6.6	0.9	48.61	

(456, 4	57)	1	sov	 	0	322.0	 2.4	2.2	0.2	1.8	1.7	0.2	45.67
(457, 3	391)	1	sov	 	0	322.0	 2.0	1.9	0.2	1.6	1.4	0.1	49.05
(7038, 4	156)	1	sov	 	0	372.0	 2.0	1.6	0.5	1.6	1.2	0.4	39.64
(458,70	39)	1	sov	 	1	935.5	 6.1	3.4	2.7	4.7	2.7	2.1	23.51
(7040, 4	166)	1	sov	 	1	882.1	 3.4	3.0	0.4	2.6	2.3	0.3	43.99
(466, 4	167)	1	sov	 	0	811.0	 3.1	2.9	0.1	2.4	2.3	0.1	48.42
(467, 3	3921	1	sov	 	0	811.0	 4.0	3.7	0.2	3.1	2.9	0.2	50.83
(40/, 5	,,,,	-	501		Ū	011.0	 4.0	3.,	0.2	3.1	2.5	0.2	30.03
(309,70	143)	1	sov	 	1	828.9	 5.6	5.4	0.2	4.3	4.1	0.1	48.63
(309,70	143)	2	sov	 	2	929.1	 5.7	5.5	0.2	4.4	4.2	0.2	47.10
(7044, 4	183)	1	sov	 	3	962.8	 5.9	5.3	0.6	4.6	4.1	0.5	45.24
(484, 3	318)	1	sov	 	2	916.6	 4.9	4.5	0.4	3.8	3.5	0.3	50.20
(483, 4	184)	1	sov	 	0	916.7	 3.7	3.5	0.2	2.8	2.7	0.1	48.21
(303, 4	187)	1	sov	 	0	804.0	 3.9	3.7	0.1	3.0	2.9	0.1	52.66
(487, 4	188)	1	sov	 	2	802.2	 6.9	6.7	0.2	5.3	5.2	0.2	49.06
(488,70	046)	1	sov	 	0	802.2	 4.2	4.0	0.2	3.3	3.1	0.2	46.91
(489, 4	490)	1	sov	 	3	1000.1	 5.9	4.3	1.6	4.6	3.3	1.3	34.13
(489, 4	190)	2	sov	 	0	305.0	 6.9	4.5	2.4	5.3	3.5	1.9	29.18
(7047, 4	1891	1	sov	 	1	416.3	 4.3	2.8	1.4	3.3	2.2	1.1	33.99
					2	1035.5	 4.1	2.8	1.3	3.2	2.2	1.0	35.02
(7047, 4	189)	2	sov	 	2	1035.5	 4.1	2.0	1.3	3.2	2.2	1.0	33.02
(7045, 5	531)	1	sov	 	2	719.3	 4.5	2.3	2.2	3.5	1.8	1.7	35.85
										4.2		2.4	29.79
(7045, 5	531)	2	sov	 	0	56.7	 5.4	2.3	3.1	4.2	1.7	2.4	29.19
(531, 5	532)	1	sov	 	0	717.3	 3.1	2.2	0.9	2.4	1.7	0.7	45.87
(531, !	532)	2	sov	 	0	0.7	 12.1	3.6	8.6	9.3	2.7	6.6	11.72
(331, 3	JJ2 /	•	504	 	,	0.,	 	5.0	0.0	2.3	,		
(532, 2	299)	1	sov	 	2	716.7	 2.7	2.3	0.4	2.1	1.8	0.3	52.03
(322, !	522)	1	sov	 	0	894.0	 6.4	2.9	3.5	4.9	2.2	2.7	25.25
(322, !		2	sov	 	0	969.6	 4.9	3.0	1.9	3.8	2.3	1.5	33.17
(7049, !		1	sov	 	1	587.9	 3.3	3.0	0.3	2.5	2.3	0.2	37.35
(/043,	J23	-	50 V	 	-	307.3	 5.5	3.0	0.5	5		• • •	

(523, 524)	1	sov			3	533.4		6.3	5.7	0.6	4.9	4.4	0.5	44.78	
(524, 323)	1	sov			1	535.0		5.3	5.0	0.3	4.1	3.9	0.2	51.39	
(298, 533)	1	sov			4	1052.5		19.5	18.3	1.1	15.1	14.2	0.9	61.93	
(298, 533)	2	sov			9	1557.3		19.5	18.7	0.9	15.1	14.5	0.7	61.76	
(298, 533)	3	sov			8	1568.5		19.2	18.4	0.8	14.9	14.3	0.6	62.71	
(298, 533)	4	sov			5	1409.0		19.6	18.7	0.9	15.0	14.4	0.7	61.65	
(298, 533)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(==== , ==== ,	•		•	•	•	•••	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(7050, 529)	1	sov			0	407.1		4.0	2.9	1.1	3.1	2.3	0.8	30.29	
(7050, 529)	2	sov			2	1216.4		3.7	2.9	0.9	2.9	2.2	0.7	32.35	
													•••	52155	
(529,530)	1	sov			2	584.0		3.3	1.9	1.4	2.6	1.5	1.1	33.37	
(529, 530)	2	sov			3	879.6		3.6	2.5	1.1	2.7	1.9	0.8	31.28	
(530,533)	1	sov			5	1467.8		7.9	6.4	1.6	6.1	4.9	1.2	42.99	
(7051, 525)	1	sov			0	423.5		3.3	3.0	0.3	2.5	2.3	0.2	45.54	
(525, 526)	1	sov			1	389.1		5.5	5.4	0.1	4.3	4.2	0.1	49.16	
(526, 324)	1	sov			0	389.4		6.8	6.5	0.2	5.2	5.0	0.2	52.61	
(298, 534)	1	sov			0	1076.0		5.5	5.1	0.4	4.3	4.0	0.3	60.08	
(534,7052)	1	sov			0	1074.6		3.5	2.9	0.7	2.7	2.2	0.5	51.38	
					_										
(313, 347)	1	sov			2	822.3		5.3	5.1	0.2	4.1	3.9	0.2	52.16	
(313, 347)	2	sov			0	450.3		5.3	5.1	0.2	4.1	3.9	0.2	52.69	
(500 5040)						060.0		16 1	2.0	10.0	10.4	2.0		10 52	
(522,7048)	1	sov			1	860.2		16.1	3.8	12.3	12.4	2.9	9.5	10.53	
(522,7048)	2	sov			1	980.8		10.4	3.6	6.7	8.0	2.8	5.2	16.30	
(405, 558)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00	
					0	997.6		2.8	2.8	0.0	2.2	2.2	0.0	50.34	
(405, 558)	6 7	sov			0	510.1		2.6	2.6	0.0	2.0	2.0	0.0	54.60	
(405, 558)	,	SUV			U	510.1		2.0	2.0	0.0	2.0	2.0	0.0	54.00	
(409, 559)	1	sov			1	966.5		5.2	5.1	0.2	4.0	3.9	0.1	42.83	
(409, 559)	2	SOV			0	621.4		4.9	4.8	0.1	3.8	3.7	0.1	45.84	
(409, 559)	6	SOV			1	1198.4		5.2	5.0	0.1	4.0	3.9	0.2	42.78	
(409, 339)	0	507			_	1170.4		3.4	5.0	0.2		3.9	0.2	12.70	
(369, 560)	1	sov			1	909.5		11.1	10.7	0.3	8.5	8.3	0.3	61.61	
(369, 560)	2	sov			2	1038.8		10.7	10.4	0.4	8.3	8.0	0.3	63.53	
(369, 560)	3	HOV	0	0	ő	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(369, 560)	9	sov			ő	803.6		11.4	10.7	0.7	8.8	8.3	0.5	59.68	
(303, 300)	,	504			v	555.5				3.,	3.0	3.3	0.5	55.00	

(369,	560)	10	sov			1	796.2		11.0	10.2	0.8	8.5	7.9	0.6	61.89	
	369,	-	11	sov			1	780.5		11.5	10.8	0.7	8.9	8.4	0.5	59.16	
•	,	,															
(97,	563)	1	sov			1	1505.4		18.0	15.7	2.4	13.9	12.1	1.8	56.79	
	97,		2	sov			3	1519.2		17.2	16.2	1.0	13.4	12.6	0.8	59.43	
	97,		3	sov			8	1399.4		16.3	15.8	0.6	12.6	12.1	0.4	62.71	
-	97,	-	4	sov			6	1265.6		16.0	15.4	0.6	12.3	11.8	0.5	64.11	
		563)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0				
	_	563)	9	sov			0	36.9		29.6	21.4	8.1		0.0	0.0	0.00	
,	, ,,	505,	,	504			U	30.9		29.0	21.4	0.1	22.9	16.6	6.3	34.59	
(10,	11)	1	sov			1	1390.6		6.7	6.3	0.4	5.2	4.9	0.3	59.81	
		11)	2	sov			2	1190.9		6.4	6.1	0.3	4.9	4.7	0.3	63.06	
. (-		3	HOV	0	0	ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
,		,	-	1101	•	•	·	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(11,	12)	1	sov			3	1347.3		6.5	6.1	0.3	5.0	4.7	0.2	60.67	
	11,		2	sov			6	1234.1		6.2	5.9	0.2	4.8	4.6	0.2	63.48	
(11,	12)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
											• • •	• • • •	•••	•••	•••		
(12,	13)	1	sov			4	1311.5		3.7	3.5	0.2	2.9	2.7	0.1	60.83	
(12,	13)	2	sov			3	1261.5		3.6	3.4	0.1	2.8	2.6	0.1	63.50	
(12,	13)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(13,	14)	1	sov			3	1297.2		3.7	3.6	0.2	2.9	2.8	0.1	60.90	
(13,	14)	2	sov			0	1277.2		3.6	3.4	0.1	2.8	2.7	0.1	63.55	
(13,	14)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(14,	15)	1	sov			3	1278.8		3.8	3.7	0.2	3.0	2.8	0.1	60.75	
(14,	15)	2	sov			1	1296.2		3.7	3.5	0.1	2.8	2.7	0.1	63.53	
(14,	15)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(15,	16)	1	sov			6	1440.0		11.4	10.6	0.8	8.8	8.2	0.6	59.78	
(15,	16)	2	sov			3	1340.4		10.8	10.3	0.5	8.3	8.0	0.4	63.25	
(15,	16)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(15,	16)	9	sov			2	1391.0		12.8	10.7	2.1	9.9	8.3	1.6	53.39	
(16,	17)	1	sov			3	1433.4		5.6	5.3	0.2	4.3	4.1	0.2	61.23	
(16,	17)	2	sov			2	1378.2		5.4	5.2	0.2	4.2	4.0	0.2	63.35	
(16,	17)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(16,	17)	9	sov			3	1358.8		5.6	5.3	0.4	4.4	4.1	0.3	60.35	
(17,	18)	1	sov			5	1420.2		11.1	10.6	0.4	8.6	8.2	0.3	61.43	
(17,	18)	2	sov			7	1392.9		10.8	10.3	0.5	8.3	8.0	0.4	63.26	
(17,	18)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
(17,	18)	9	sov			3	1355.9		11.2	10.5	0.6	8.6	8.1	0.5	60.91	
	18,	-	1	sov			2			9.9	9.5	0.4	7.6	7.3	0.3	61.50	
(18,	19)	2	sov			2	1422.9		9.7	9.2	0.4	7.5	7.1	0.3	63.15	

(18,	19)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(18,	19)	9	sov			1	1342.4		10.0	9.4	0.5	7.7	7.3	0.4	61.11
(19,	20)	1	sov			1	1396.4		8.6	8.3	0.3	6.7	6.4	0.2	61.69
(19,	20)	2	sov			2	1433.5		8.4	8.1	0.4	6.5	6.2	0.3	62.98
(19,	20)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(19,	20)	9	sov			1	1344.6		8.7	8.2	0.5	6.7	6.4	0.4	61.13
(20,	21)	1	sov			7	1391.3		8.7	8.4	0.3	6.7	6.5	0.2	61.75
(20,	21)	2	sov			5	1446.1		8.5	8.1	0.4	6.6	6.3	0.3	62.90
(20,	21)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(20,	21)	9	sov			4	1337.4		8.8	8.3	0.5	6.8	6.4	0.4	61.07
(21,	22)	1	sov			2	1387.2		6.1	5.9	0.2	4.7	4.5	0.2	61.75
(21,	22)	2	sov			6	1456.4		6.0	5.7	0.3	4.6	4.4	0.2	62.87
(21,	22)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(21,	22)	9	sov			5	1325.3		6.2	5.8	0.3	4.8	4.5	0.3	61.13
(22,	23)	1	sov			6	1387.9		13.0	12.5	0.5	10.1	9.7	0.4	61.76
ì	22,	23)	2	sov			4	1463.5		12.9	12.2	0.6	9.9	9.4	0.5	62.65
(22,	23)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(22,	23)	9	sov			7	1310.9		13.2	12.5	0.7	10.2	9.6	0.5	61.22
(24,	25)	1	sov			4	2281.6		9.4	8.4	1.1	7.3	6.4	0.8	56.82
(24,	25)	2	sov			3	1151.2		8.6	8.1	0.5	6.7	6.3	0.4	62.10
(24,	25)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(24,	25)	9	sov			2	730.5		8.8	8.2	0.6	6.8	6.3	0.4	60.94
(25,	26)	1	sov			5	2013.9		5.7	5.4	0.4	4.4	4.1	0.3	59.65
(25,	26)	2	sov			4	1294.7		5.4	5.2	0.3	4.2	4.0	0.2	62.91
(25,	26)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(25,	26)	9	sov			3	850.3		5.4	5.2	0.2	4.2	4.0	0.2	62.62
(26,	27)	1	sov			10	1923.3		11.6	10.9	0.7	8.9	8.4	0.5	59.03
(26,	27)	2	sov			5	1352.8		10.8	10.3	0.5	8.3	8.0	0.4	63.27
(26,	27)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(26,	27)	9	sov			10	870.3		11.4	11.0	0.4	8.8	8.5	0.3	59.67
(190,	255)	1	sov			2	833.7		11.2	10.9	0.3	8.6	8.4	0.2	60.84
(190,	255)	2	sov			3	837.1		10.3	10.1	0.2	8.0	7.8	0.1	66.05
(255,	257)	1	sov			6	1544.7		9.8	8.6	1.2	7.6	6.6	0.9	55.69
(255,	257)	2	sov			1	1040.5		8.5	8.1	0.4	6.6	6.3	0.3	64.07
(255,	257)	9	sov			1	76.7		12.7	9.9	2.8	9.8	7.6	2.2	43.05
(257,	280)	1	sov			0	1449.0		5.8	5.4	0.4	4.4	4.2	0.3	59.17
•		280)	2	sov			1	1212.0		5.3	5.1	0.2	4.1	4.0	0.1	64.34
,	-															

(280,	282)	1	sov			6	2102.4		18.4	16.1	2.3	14.2	12.4	1.8	55.60
(280,	282)	6	sov			4	1461.7		16.0	15.3	0.6	12.3	11.8	0.5	64.06
(280,	282)	9	sov			0	78.3		19.3	18.1	1.2	14.9	14.0	0.9	53.04
(282,	32)	1	sov			0	2018.7		8.7	8.2	0.6	6.7	6.3	0.4	58.83
(282,	32)	2	sov			0	1628.7		8.0	7.7	0.3	6.2	5.9	0.2	64.34
													**-	• • • • • • • • • • • • • • • • • • • •	• • • •	
(32,	33)	1	sov			6	1206.9		8.3	8.0	0.4	6.4	6.2	0.3	61.37
(32,	33)	2	sov			4	1367.5		8.1	7.8	0.4	6.3	6.0	0.3	62.76
(32,	33)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(32,	33)	9	sov			2	1731.9		7.9	7.7	0.3	6.1	5.9	0.2	64.36
(32,	33)	10	sov			5	1903.5		8.6	8.1	0.4	6.6	6.3	0.3	59.72
												•••	•••		•••	331,12
(33,	34)	1	sov			5	1828.4		8.6	8.1	0.5	6.6	6.3	0.4	59.58
(33,	34)	2	sov			3	1773.3		7.9	7.7	0.3	6.1	5.9	0.2	64.42
(33,	34)	3	sov			2	1242.2		8.2	8.0	0.3	6.4	6.2	0.2	62.02
(33,	34)	4	sov			2	1372.8		8.2	7.8	0.4	6.3	6.0	0.3	62.65
(33,	34)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
												•••	• • • •	***	•••	*****
(34,	35)	1	sov			7	1765.8		8.7	8.2	0.5	6.7	6.3	0.4	59.45
(34,	35)	2	sov			8	1799.5		8.0	7.8	0.3	6.2	6.0	0.2	64.34
(34,	35)	3	sov			4	1284.5		8.3	8.0	0.3	6.4	6.2	0.2	62.26
(34,	35)	4	sov			4	1361.5		8.2	7.8	0.4	6.4	6.1	0.3	62.64
(34,	35)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
													• • • •	•••	•••	****
(35,	36)	1	sov			6	1712.7		9.0	8.6	0.5	7.0	6.6	0.4	59.46
(35,	36)	2	sov			4	1824.1		8.4	8.1	0.3	6.5	6.3	0.2	64.18
Ċ	35,	36)	3	sov			3	1300.0		8.6	8.3	0.3	6.6	6.4	0.2	62.42
ì	35,	36)	4	sov			5	1369.3		8.6	8.2	0.4	6.6	6.3	0.3	62.58
ì	35,	36)	5	HOV	. 0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
•														• • • •	•••	••••
(36,	37)	1	sov			4	1650.9		10.0	9.4	0.5	7.7	7.3	0.4	59.36
ì	36,	37)	2	sov			6	1857.1		9.3	8.9	0.3	7.1	6.9	0.3	64.02
ì	36,	37)	3	sov			6	1344.4		9.5	9.2	0.3	7.3	7.1	0.2	62.56
ì	36,	37)	4	sov			7	1344.0		9.5	9.0	0.5	7.3	7.0	0.4	62.59
ì	36,	37)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
•	,	.,			-		•		• • • •	• • • •	•••		•••	•••	•••	****
(37,	54)	1	sov			6	1583.6		11.5	10.8	0.6	8.8	8.4	0.5	59.30
ì	37,	54)	2	sov			7	1870.9		10.6	10.3	0.4	8.2	7.9	0.3	63.83
ì	37,	54)	3	sov			6	1380.8		10.8	10.5	0.4	8.4	8.1	0.3	62.62
ì	37,	54)	4	sov			7	1346.6		10.9	10.3	0.5	8.4	8.0	0.4	62.54
ì	37,	54)	5	HOV	0	0	ó	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
٠	5.,	3-7			3	v	•	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(54,	55)	1	sov			6	1699.2		7.6	7.1	0.5	5.8	5.4	0.4	58.43
ì	54,	55)	2	sov			6	1923.4		7.0	6.7	0.3	5.4	5.2	0.2	63.59
ì	54,	55)	3	sov			3	1395.9		7.1	6.8	0.3	5.5	5.3	0.2	62.57
٠	J=,	337	-	504			3	20000	_	,	0.0	0.3	3.3	5.5	0.2	32.37

,	- 4	>					•	1357.0		7.1	6.7	0.4	5.5	F 2	0.3	62.40
(54,	55)	4	sov			2							5.2		
(54,	55)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(54,	55)	9	sov			0	22.2		8.6	7.7	0.8	6.6	6.0	0.6	51.62
(55,	56)	1	sov			4	1644.4		5.8	5.4	0.4	4.5	4.2	0.3	58.72
(55,	56)	2	sov			7	1972.8		5.4	5.2	0.2	4.2	4.0	0.2	63.34
(55,	56)	3	sov			5	1410.4		5.5	5.2	0.2	4.2	4.0	0.2	62.53
ì	55,	56)	4	sov			6	1369.4		5.5	5.2	0.3				
ì	55,	56)	5	HOV	0	0	-						4.2	4.0	0.2	62.36
'	33,	30)	3	HOV	U	U	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(56,	57)	1	sov			8	2046.3		10.9	10.4	0.5	8.4	8.0		
ì	56,	57)	2	sov			5								0.4	62.63
` `								1452.1		10.9	10.5	0.5	8.4	8.1	0.4	62.41
(56,	57)	3	sov			6	1378.1		10.9	10.4	0.6	8.5	8.0	0.4	62.34
(56,	57)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(56,	57)	9	sov			6	2012.3		12.3	10.8	1.5	9.5	8.3	1.1	55.61
(56,	57)	10	sov			0	47.0		15.1	11.9	3.2	11.7	9.2	2.5	45.15
(57,	58)	1	sov			1	2076.6		5.4	5.2	0.2	4.2	4.0	0.2	62.72
ĺ	57,	58)	2	sov			1	1513.0		5.5	5.2	0.2	4.2	4.0	0.2	62.55
ì	57,	58)	3	sov			1	1388.9		5.5	5.2	0.3	4.2	4.0	0.2	
ì	57,	58)	4	HOV	0	0	0	0.0	0.0							62.31
-		,	_		-	-	_			0.0	0.0	0.0	0.0	0.0	0.0	0.00
(57,	58)	9	sov			2	1952.6		5.8	5.4	0.4	4.5	4.2	0.3	58.49
			_				_									
(58,	59)	1	sov			3	2043.2		6.3	6.0	0.3	4.8	4.6	0.2	62.95
(58,	59)	2	sov			4	1527.9		6.3	6.1	0.3	4.9	4.7	0.2	62.65
(58,	59)	3	sov			5	1373.7		6.3	6.0	0.3	4.9	4.6	0.2	62.51
(58,	59)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(58,	59)	9	sov			4	1985.5		6.7	6.3	0.4	5.1	4.8	0.3	59.42
•	,	,	-				_			•••	***	•••	3.1		0.5	33.42
(59,	60)	1	sov			3	1861.2		9.2	8.7	0.5	7.1	6.7	0.4	62.44
Ċ	59,	60)	2	sov			4	1355.6		9.1	8.8	0.4	7.1	6.8	0.3	62.96
ì	59,	60)	3	sov			1	1199.7		9.1	8.7	0.4	7.0	6.7	0.3	63.22
`			_				_									
,	59,	60)	4	HOV	•	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(59,	60)	9	sov			4	2512.0		10.2	9.1	1.1	7.9	7.0	0.9	56.30
(60,	61)	1	sov			9	2227.4		18.0	16.0	2.0	13.9	12.3	1.6	E6 03
•	-	-					_									56.83
(60,	61)	2	sov			13	2374.3		17.5	16.0	1.5	13.5	12.4	1.2	58.32
(60,	61)	3	sov			6	1338.3		16.3	15.6	0.7	12.6	12.0	0.6	62.78
(60,	61)	4	sov			4	992.1		16.0	15.5	0.5	12.4	12.0	0.4	63.88
(60,	61)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
-		-														
(61,	62)	1	sov			6	2047.2		11.3	10.7	0.6	8.7	8.3	0.4	60.40
ì	61,	62)	2	sov			6	1492.1		10.7	10.4	0.4	8.3	8.0	0.3	63.47
ì	61,	62)	3	sov			4	1064.6		10.7	10.3	0.4	8.2	7.9	0.3	63.89
`	61,	62)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
`			_		_	-	-									
(61,	62)	9	sov			6	1314.3		11.8	11.0	0.8	9.1	8.5	0.6	57.68

(62,	63)	1	sov			6	1907.3		12.6	12.0	0.7	9.8	9.2	0.5	59.78
(62,	63)	2	sov			4	1556.5		11.9	11.5	0.4	9.2	8.9	0.3	63.43
(62,	63)	3	sov			3	1132.2		11.8	11.4	0.5	9.1	8.8	0.4	63.88
(62,	63)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(63,	64)	1	sov			7	1711.8		13.2	12.4	0.8	10.2	9.6	0.6	59.53
ì	63,	64)	2	sov			6	1675.1		12.4	12.0	0.5	9.6	9.3	0.3	62.95
į	63,	64)	3	sov			3	1202.8		12.2	11.7	0.5	9.5	9.1	0.4	63.98
(63,	64)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(64,	65)	1	sov			7	2191.9		13.6	10.7	2.9	10.5	8.3	2.2	
(64,	65)	2	SOV			6	1843.7		11.3	10.7	0.8	8.7	8.3	0.6	50.09
ì	64,	65)	3	sov			2	1332.8		10.7	10.3	0.5	8.3	7.9	0.4	60.30 63.45
ì	64,	65)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
(64,	65)	9	sov			0	98.1		16.2	13.8	2.4	12.5		0.0	0.00
,	0 4 ,	05)	,	504			U	30.1		10.2	13.0	2.4	12.5	10.6	1.8	42.18
(65,	66)	1	sov			2	2078.7		5.9	5.4	0.5	4.5	4.2	0.4	57.78
(65,	66)	2	sov			6	1923.0		5.6	5.3	0.3	4.3	4.1	0.2	61.28
(65,	66)	3	sov			2	1460.7		5.4	5.1	0.3	4.2	3.9	0.2	63.35
(65,	66)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(66,	67)	1	sov			5	2161.5		10.8	10.0	0.8	8.3	7.7	0.6	59.26
ì	66,	67)	2	sov			7	1888.0		10.3	9.9	0.5	8.0	7.6	0.4	62.03
ì	66,	67)	3	sov			5	1409.6		10.0	9.6	0.4	7.7	7.4	0.3	63.81
ì	66,	67)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	6 7	60)		sov			12	3005.8		18.5	12.0		14.0	10.7	2.6	40.00
(67,	68)	1								13.8	4.6	14.2	10.7	3.6	48.03
(67,	68)	2	sov			10	1430.5		15.1	13.7	1.5	11.7	10.5	1.1	58.64
(67,	68)	3	sov			3	1012.3		13.8	13.3	0.6	10.7	10.2	0.5	64.02
(67,	68)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(68,	69)	1	sov			12	2805.6		18.0	16.2	1.8	13.9	12.5	1.4	56.78
(68,	69)	2	sov			7	1484.4		16.4	15.9	0.6	12.7	12.3	0.4	62.21
(68,	69)	3	sov			8	1153.1		15.8	15.3	0.5	12.2	11.8	0.4	64.67
(68,	69)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(69,	70)	1	sov			3	755.3		19.0	18.5	0.5	14.7	14.3	0.4	60.68
(69,	70)	2	sov			2	1376.2		18.5	18.0	0.5	14.3	13.9	0.4	62.43
(69,	70)	3	sov			3	1222.6		17.9	17.3	0.6	13.8	13.3	0.5	64.56
(69,	70)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(70,	71)	1	sov			0	794.6		8.6	8.4	0.2	6.7	6.5	0.2	61.45
ì	70,	71)	2	sov			3	1297.3		8.5	8.3	0.2	6.6	6.4	0.2	62.08
(70,	71)	3	sov			1	1264.8		8.3	7.9	0.3	6.4	6.1	0.2	64.23
(70,	71)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	,,,	, 1,	•	HOV	U	J	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(71,	72)	1	sov			7	1119.2		17.1	16.1	1.0	13.2	12.4	0.8	59.77

(71,	72)	2	SOV			5	1310.8		16.5	16.0	0.5	12.7	12.3	0.4	61.91
(71,	72)	3	sov			5	1278.5		16.0	15.3	0.6	12.3	11.8	0.5	64.06
ì	-	72)	4	HOV	0	0	0	0.0	0.0	0.0	0.0					
•			_		-	•						0.0	0.0	0.0	0.0	0.00
(71,	72)	9	sov			0	16.3		21.2	17.8	3.4	16.4	13.8	2.6	48.27
(72,	73)	1	sov			9	994.4		24.8	23.7	1.2	19.1	18.3	0.9	60.85
ì	-	73)	2	sov			18	1721.9		25.2	23.5					
-												1.7	19.5	18.2	1.3	59.81
(73)	3	sov			4	994.7		23.7	22.6	1.1	18.3	17.5	0.8	63.63
(72,	73)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(73,	74)	1	sov			12	1915.4		17.3	16.3	1.0	13.3	12.6	0.8	59.13
ì	_	74)	2	sov			3	750.1								
-	_									15.7	15.3	0.4	12.1	11.8	0.3	65.11
(74)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(73,	74)	9	sov			7	1024.4		17.0	16.4	0.7	13.1	12.6	0.5	60.05
(74,	75)	1	sov			7	590.3		23.4	22.8	0.5	18.0	17 6		61 00
ì		75)	2	sov			-							17.6	0.4	61.27
•	•	-					2	804.0		21.9	21.5	0.4	16.9	16.6	0.3	65.41
(74,	75)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(75,	76)	1	sov			0	921.2		6.1	5.6	0.5	4.7	4.3	0.4	58.94
ì	-	76)	2	sov			2	854.6		5.6						
•	-	-									5.4	0.2	4.3	4.2	0.1	64.55
(76)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(75,	76)	9	sov			0	44.7		7.2	6.4	0.7	5.5	5.0	0.6	50.13
(76,	77)	1	sov			1	1121.6		4.0	3.4	0.6	3.1	2.6	0.4	55.10
ì		77)	2	sov			0	956.2								
-							_			3.4	3.3	0.2	2.7	2.5	0.1	63.58
(77)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(76,	77)	9	sov			0	70.0		6.2	4.1	2.0	4.8	3.2	1.6	35.44
,	568,	5691	1	sov			0	1461.3		2.7	2.2	0.5	2.1	1.7	0.4	49.97
-							•									
-	568,		2	sov			0	690.7		3.2	2.1	1.0	2.4	1.6	0.8	43.29
(568,	569)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(569,	570)	1	sov			1	656.8		13.9	13.1	0.8	10.7	10.1	0.6	60.95
	569,		2	sov			0	663.7		13.9	13.0	0.9	10.7	10.0	0.7	60.97
-		-														
(569,	5/0)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(570,	571)	1	SOV			2	882.7		9.0	8.6	0.4	6.9	6.6	0.3	62.41
(570,	571)	2	sov			2	677.8		8.8	8.6	0.3	6.8	6.6	0.2	63.61
	570,		3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0			
			-		_	-	-							0.0	0.0	0.00
(570,	571)	9	sov			3	1078.7		9.7	8.9	0.8	7.5	6.8	0.6	58.07
(571,	572)	1	sov			10	1195.9		16.9	16.0	0.9	13.0	12.4	0.7	60.66
	571,		2	sov			7	971.7		16.0	15.6	0.4	12.3	12.0	0.3	63.93
-	-															
	571,	-	3	sov			3	721.2		16.0	15.5	0.5	12.4	12.0	0.4	63.82
•	571,		4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(571,	572)	9	sov			0	11.1		20.1	17.6	2.5	15.6	13.7	1.9	50.80
-	-	-														

SOV SOV SOV SOV SOV SOV SOV SOV SOV SOV	 0 0 0 0	 0 0 0 0 0	11 6 7 0 3 4 1 0 4 5 1 0 4 7 7 0 0	1177.6 1015.5 700.7 0.0 1202.5 1005.4 680.3 0.0 874.4 1011.5 703.5 0.0 775.5 1065.3 736.1 0.0	0.0	24.6 23.4 23.3 0.0 17.0 15.9 15.8 0.0 14.2 13.5 13.4 0.0 19.5 18.7 18.3 0.0	23.5 22.8 22.7 0.0 16.2 15.6 15.4 0.0 13.7 13.2 13.0 0.0 18.7 18.2 17.8 0.0 15.9 15.7	1.2 0.5 0.7 0.0 0.8 0.3 0.4 0.0 0.5 0.3 0.4 0.0	19.0 18.0 18.0 0.0 13.1 12.3 12.2 0.0 11.0 10.4 10.3 0.0 15.1 14.4 14.2 0.0	18.1 17.6 17.5 0.0 12.5 12.0 11.9 0.0 10.6 10.2 10.0 0.0 14.5 14.0 13.8 0.0	0.9 0.4 0.5 0.0 0.6 0.2 0.3 0.0 0.4 0.2 0.3 0.0 0.6 0.3 0.0	60.74 64.09 64.09 0.00 60.13 64.27 64.57 0.00 60.81 64.08 64.58 0.00 60.76 63.58 64.65 0.00
SOV SOV HOV SOV SOV HOV SOV SOV SOV HOV SOV SOV SOV HOV	 0 0 0 0	 0 0 0 0	6 7 0 3 4 1 0 4 5 1 0 4 7 7 0	1015.5 700.7 0.0 1202.5 1005.4 680.3 0.0 874.4 1011.5 703.5 0.0 775.5 1065.3 736.1 0.0 2014.2 1425.5 907.5	0.0	23.4 23.3 0.0 17.0 15.9 15.8 0.0 14.2 13.5 13.4 0.0 19.5 18.7 18.3 0.0	22.8 22.7 0.0 16.2 15.6 15.4 0.0 13.7 13.2 13.0 0.0 18.7 18.2 17.8 0.0	0.5 0.7 0.0 0.8 0.3 0.4 0.0 0.5 0.3 0.4 0.0	18.0 18.0 0.0 13.1 12.3 12.2 0.0 11.0 10.4 10.3 0.0 15.1 14.4 14.2 0.0	17.6 17.5 0.0 12.5 12.0 11.9 0.0 10.6 10.2 10.0 0.0 14.5 14.0 13.8 0.0	0.5 0.0 0.6 0.2 0.3 0.0 0.4 0.2 0.3 0.0 0.6 0.3 0.4 0.0	64.09 0.00 60.13 64.27 64.57 0.00 60.81 64.08 64.58 0.00 60.76 63.58 64.65 0.00 51.52
SOV HOV SOV SOV HOV SOV SOV SOV HOV SOV SOV SOV HOV	0	0	7 0 3 4 1 0 4 5 1 0 4 7 7 0	700.7 0.0 1202.5 1005.4 680.3 0.0 874.4 1011.5 703.5 0.0 775.5 1065.3 736.1 0.0	0.0	23.3 0.0 17.0 15.9 15.8 0.0 14.2 13.5 13.4 0.0 19.5 18.7 18.3 0.0	22.7 0.0 16.2 15.6 15.4 0.0 13.7 13.2 13.0 0.0 18.7 18.2 17.8 0.0	0.7 0.0 0.8 0.3 0.4 0.0 0.5 0.3 0.4 0.0 0.5 0.5 0.5 0.5	18.0 0.0 13.1 12.3 12.2 0.0 11.0 10.4 10.3 0.0 15.1 14.4 14.2 0.0	17.5 0.0 12.5 12.0 11.9 0.0 10.6 10.2 10.0 0.0 14.5 14.0 13.8 0.0	0.5 0.0 0.6 0.2 0.3 0.0 0.4 0.2 0.3 0.0 0.6 0.3 0.4 0.0	64.09 0.00 60.13 64.27 64.57 0.00 60.81 64.08 64.58 0.00 60.76 63.58 64.65 0.00 51.52
SOV SOV SOV HOV	0	0	0 3 4 1 0 4 5 1 0 4 7 7 0	0.0 1202.5 1005.4 680.3 0.0 874.4 1011.5 703.5 0.0 775.5 1065.3 736.1 0.0 2014.2 1425.5 907.5	0.0	0.0 17.0 15.9 15.8 0.0 14.2 13.5 13.4 0.0 19.5 18.7 18.3 0.0	0.0 16.2 15.6 15.4 0.0 13.7 13.2 13.0 0.0 18.7 18.2 17.8 0.0 15.9 15.7	0.0 0.8 0.3 0.4 0.0 0.5 0.3 0.4 0.0 0.8 0.5 0.5 0.0	0.0 13.1 12.3 12.2 0.0 11.0 10.4 10.3 0.0 15.1 14.4 14.2 0.0	0.0 12.5 12.0 11.9 0.0 10.6 10.2 10.0 0.0 14.5 14.0 13.8 0.0	0.0 0.6 0.2 0.3 0.0 0.4 0.2 0.3 0.0 0.6 0.3 0.4 0.0	0.00 60.13 64.27 64.57 0.00 60.81 64.08 64.58 0.00 60.76 63.58 64.65 0.00 51.52
SOV SOV SOV SOV SOV SOV SOV HOV	 0 0 0	 0 0 0	3 4 1 0 4 5 1 0 4 7 7 7 0	1202.5 1005.4 680.3 0.0 874.4 1011.5 703.5 0.0 775.5 1065.3 736.1 0.0	0.0	17.0 15.9 15.8 0.0 14.2 13.5 13.4 0.0 19.5 18.7 18.3 0.0	16.2 15.6 15.4 0.0 13.7 13.2 13.0 0.0 18.7 18.2 17.8 0.0	0.8 0.3 0.4 0.0 0.5 0.3 0.4 0.0 0.8 0.5 0.5 0.0	13.1 12.3 12.2 0.0 11.0 10.4 10.3 0.0 15.1 14.4 14.2 0.0	12.5 12.0 11.9 0.0 10.6 10.2 10.0 0.0 14.5 14.0 13.8 0.0	0.6 0.2 0.3 0.0 0.4 0.2 0.3 0.0 0.6 0.3 0.0	60.13 64.27 64.57 0.00 60.81 64.08 64.58 0.00 60.76 63.58 64.65 0.00
SOV SOV HOV SOV SOV SOV SOV HOV SOV SOV SOV HOV	 0 0 0 0	 0 0 0 0	4 1 0 4 5 1 0 4 7 7 0	1005.4 680.3 0.0 874.4 1011.5 703.5 0.0 775.5 1065.3 736.1 0.0 2014.2 1425.5 907.5	0.0	15.9 15.8 0.0 14.2 13.5 13.4 0.0 19.5 18.7 18.3 0.0	15.6 15.4 0.0 13.7 13.2 13.0 0.0 18.7 18.2 17.8 0.0	0.3 0.4 0.0 0.5 0.3 0.4 0.0 0.8 0.5 0.5 0.0	12.3 12.2 0.0 11.0 10.4 10.3 0.0 15.1 14.4 14.2 0.0	12.0 11.9 0.0 10.6 10.2 10.0 0.0 14.5 14.0 13.8 0.0	0.2 0.3 0.0 0.4 0.2 0.3 0.0 0.6 0.3 0.4 0.0	64.27 64.57 0.00 60.81 64.08 64.58 0.00 60.76 63.58 64.65 0.00 51.52
SOV SOV HOV SOV SOV SOV SOV HOV SOV SOV SOV HOV	 0 0 0 0	 0 0 0 0	4 1 0 4 5 1 0 4 7 7 0	1005.4 680.3 0.0 874.4 1011.5 703.5 0.0 775.5 1065.3 736.1 0.0 2014.2 1425.5 907.5	0.0	15.9 15.8 0.0 14.2 13.5 13.4 0.0 19.5 18.7 18.3 0.0	15.6 15.4 0.0 13.7 13.2 13.0 0.0 18.7 18.2 17.8 0.0	0.3 0.4 0.0 0.5 0.3 0.4 0.0 0.8 0.5 0.5 0.0	12.3 12.2 0.0 11.0 10.4 10.3 0.0 15.1 14.4 14.2 0.0	12.0 11.9 0.0 10.6 10.2 10.0 0.0 14.5 14.0 13.8 0.0	0.2 0.3 0.0 0.4 0.2 0.3 0.0 0.6 0.3 0.4 0.0	64.27 64.57 0.00 60.81 64.08 64.58 0.00 60.76 63.58 64.65 0.00 51.52
SOV HOV SOV SOV HOV SOV SOV HOV	 0 0 0	 0 0 0	1 0 4 5 1 0 4 7 7 0	680.3 0.0 874.4 1011.5 703.5 0.0 775.5 1065.3 736.1 0.0 2014.2 1425.5 907.5	0.0	15.8 0.0 14.2 13.5 13.4 0.0 19.5 18.7 18.3 0.0	15.4 0.0 13.7 13.2 13.0 0.0 18.7 18.2 17.8 0.0	0.4 0.0 0.5 0.3 0.4 0.0 0.8 0.5 0.5 0.0	12.2 0.0 11.0 10.4 10.3 0.0 15.1 14.4 14.2 0.0	11.9 0.0 10.6 10.2 10.0 0.0 14.5 14.0 13.8 0.0	0.3 0.0 0.4 0.2 0.3 0.0 0.6 0.3 0.4 0.0	64.57 0.00 60.81 64.08 64.58 0.00 60.76 63.58 64.65 0.00 51.52
SOV SOV SOV SOV SOV SOV HOV	0	0	0 4 5 1 0 4 7 7 0	0.0 874.4 1011.5 703.5 0.0 775.5 1065.3 736.1 0.0 2014.2 1425.5 907.5	0.0	0.0 14.2 13.5 13.4 0.0 19.5 18.7 18.3 0.0 19.9 16.9	0.0 13.7 13.2 13.0 0.0 18.7 18.2 17.8 0.0 15.9 15.7	0.0 0.5 0.3 0.4 0.0 0.8 0.5 0.5 0.0	0.0 11.0 10.4 10.3 0.0 15.1 14.4 14.2 0.0	0.0 10.6 10.2 10.0 0.0 14.5 14.0 13.8 0.0	0.0 0.4 0.2 0.3 0.0 0.6 0.3 0.4 0.0	0.00 60.81 64.08 64.58 0.00 60.76 63.58 64.65 0.00 51.52
SOV SOV SOV SOV SOV HOV	 0 0 0	 0 0	4 5 1 0 4 7 7 0	874.4 1011.5 703.5 0.0 775.5 1065.3 736.1 0.0 2014.2 1425.5 907.5	0.0	14.2 13.5 13.4 0.0 19.5 18.7 18.3 0.0	13.7 13.2 13.0 0.0 18.7 18.2 17.8 0.0	0.5 0.3 0.4 0.0 0.8 0.5 0.5 0.0	11.0 10.4 10.3 0.0 15.1 14.4 14.2 0.0	10.6 10.2 10.0 0.0 14.5 14.0 13.8 0.0	0.4 0.2 0.3 0.0 0.6 0.3 0.4 0.0	60.81 64.08 64.58 0.00 60.76 63.58 64.65 0.00
SOV SOV HOV SOV SOV HOV SOV SOV HOV	 0 0	0 0 	5 1 0 4 7 7 0	1011.5 703.5 0.0 775.5 1065.3 736.1 0.0 2014.2 1425.5 907.5	0.0	13.5 13.4 0.0 19.5 18.7 18.3 0.0	13.2 13.0 0.0 18.7 18.2 17.8 0.0	0.3 0.4 0.0 0.8 0.5 0.5 0.0	10.4 10.3 0.0 15.1 14.4 14.2 0.0	10.2 10.0 0.0 14.5 14.0 13.8 0.0	0.2 0.3 0.0 0.6 0.3 0.4 0.0	64.08 64.58 0.00 60.76 63.58 64.65 0.00
SOV SOV HOV SOV SOV HOV SOV SOV HOV	 0 0 	0 0	5 1 0 4 7 7 0	1011.5 703.5 0.0 775.5 1065.3 736.1 0.0 2014.2 1425.5 907.5	0.0	13.5 13.4 0.0 19.5 18.7 18.3 0.0	13.2 13.0 0.0 18.7 18.2 17.8 0.0	0.3 0.4 0.0 0.8 0.5 0.5 0.0	10.4 10.3 0.0 15.1 14.4 14.2 0.0	10.2 10.0 0.0 14.5 14.0 13.8 0.0	0.2 0.3 0.0 0.6 0.3 0.4 0.0	64.08 64.58 0.00 60.76 63.58 64.65 0.00
SOV HOV SOV SOV HOV SOV SOV HOV	 0 0 	0 0	1 0 4 7 7 0	703.5 0.0 775.5 1065.3 736.1 0.0 2014.2 1425.5 907.5	0.0	13.4 0.0 19.5 18.7 18.3 0.0	13.0 0.0 18.7 18.2 17.8 0.0 15.9	0.4 0.0 0.8 0.5 0.5 0.0	10.3 0.0 15.1 14.4 14.2 0.0	10.0 0.0 14.5 14.0 13.8 0.0	0.3 0.0 0.6 0.3 0.4 0.0	64.58 0.00 60.76 63.58 64.65 0.00
SOV SOV HOV SOV SOV SOV HOV	0	0	0 4 7 7 0 10 4 4	0.0 775.5 1065.3 736.1 0.0 2014.2 1425.5 907.5	0.0	0.0 19.5 18.7 18.3 0.0	0.0 18.7 18.2 17.8 0.0	0.0 0.8 0.5 0.5 0.0 3.9	0.0 15.1 14.4 14.2 0.0	0.0 14.5 14.0 13.8 0.0	0.0 0.6 0.3 0.4 0.0	0.00 60.76 63.58 64.65 0.00 51.52
SOV SOV HOV SOV SOV SOV	 0 	0	4 7 7 0 10 4 4	775.5 1065.3 736.1 0.0 2014.2 1425.5 907.5	0.0	19.5 18.7 18.3 0.0	18.7 18.2 17.8 0.0	0.8 0.5 0.5 0.0	15.1 14.4 14.2 0.0	14.5 14.0 13.8 0.0	0.6 0.3 0.4 0.0	60.76 63.58 64.65 0.00
SOV SOV SOV SOV SOV	 0 0	0	7 7 0 10 4 4	1065.3 736.1 0.0 2014.2 1425.5 907.5	0.0	18.7 18.3 0.0 19.9 16.9	18.2 17.8 0.0 15.9 15.7	0.5 0.5 0.0 3.9 1.2	14.4 14.2 0.0	14.0 13.8 0.0	0.3 0.4 0.0	63.58 64.65 0.00 51.52
SOV HOV SOV SOV HOV	 0 0	 0 	7 0 10 4 4	736.1 0.0 2014.2 1425.5 907.5	0.0	18.3 0.0 19.9 16.9	17.8 0.0 15.9 15.7	0.5 0.0 3.9 1.2	14.2 0.0 15.3	13.8 0.0 12.3	0.4 0.0 3.0	64.65 0.00 51.52
SOV SOV SOV HOV	0 0	0 	10 4 4	0.0 2014.2 1425.5 907.5	0.0	0.0 19.9 16.9	0.0 15.9 15.7	0.0 3.9 1.2	0.0 15.3	0.0	0.0	0.00 51.52
SOV SOV SOV	 0		10 4 4	2014.2 1425.5 907.5		19.9 16.9	15.9 15.7	3.9 1.2	15.3	12.3	3.0	51.52
SOV SOV HOV	 0		4	1425.5 907.5		16.9	15.7	1.2				
SOV SOV HOV	 0		4	1425.5 907.5		16.9	15.7	1.2				
SOV			4	907.5					13.1	12.1	0.9	60 46
HOV	0					16 0	4 = 0					60.46
		0	0			16.0	15.3	0.7	12.4	11.8	0.5	63.76
sov			U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
			0	94.7		26.5	21.8	4.7	20.4	16.8	3.6	38.63
sov			6	1827.4		14.3	13.6	0.7	11.1	10.5	0.6	60.66
sov			9	1549.0		13.8	13.4	0.4	10.7	10.3	0.3	62.95
SOV			8	1069.5		13.5	13.0	0.4	10.4	10.1	0.3	64.66
		0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
HOV	U	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
sov			10	2148.4		12.4	11.3	1.1	9.5	8.7	0.8	58.59
sov			4	1368.3		11.5	11.1	0.4	8.9	8.6	0.3	62.97
sov			5	927.7		11.1	10.8	0.3	8.6	8.3	0.2	65.20
	0	0			0.0	0.0			0.0			0.00
	•	•										
sov			4	2087.6		5.8	5.3	0.4	4.5	4.1	0.3	59.03
sov			5	1387.4		5.4	5.2	0.2	4.2	4.0	0.1	63.12
sov			2	968.1		5.2	5.1	0.1	4.0	3.9	0.1	65.42
HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
sov			7	2025.1		11.6	10.8	0.8	8.9	8.4	0.6	58.76
sov			4	1390.3		10.8	10.5	0.3	8.3	8.1	0.2	63.29
sov			2	1027.9		10.4	10.1	0.3	8.0	7.8	0.2	65.43
HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	SOV SOV HOV	SOV SOV SOV HOV 0 SOV SOV	SOV SOV BOV BOV SOV SOV SOV	SOV 4 SOV 5 SOV 2 HOV 0 0 0 SOV 7 SOV 7 SOV 4 SOV 2	SOV 4 2087.6 SOV 5 1387.4 SOV 2 968.1 HOV 0 0 0 0.0 SOV 7 2025.1 SOV 7 2025.1 SOV 4 1390.3 SOV 2 1027.9	SOV 4 2087.6 SOV 5 1387.4 SOV 2 968.1 HOV 0 0 0 0.0 0.0 SOV 7 2025.1 SOV 4 1390.3 SOV 2 1027.9	SOV 4 2087.6 5.8 SOV 5 1387.4 5.4 SOV 2 968.1 5.2 HOV 0 0 0.0 0.0 0.0 SOV 7 2025.1 11.6 SOV 4 1390.3 10.8 SOV 2 1027.9 10.4	SOV 4 2087.6 5.8 5.3 SOV 5 1387.4 5.4 5.2 SOV 2 968.1 5.2 5.1 HOV 0 0 0.0 0.0 0.0 0.0 SOV 7 2025.1 11.6 10.8 SOV 4 1390.3 10.8 10.5 SOV 2 1027.9 10.4 10.1	SOV 4 2087.6 5.8 5.3 0.4 SOV 5 1387.4 5.4 5.2 0.2 SOV 2 968.1 5.2 5.1 0.1 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 SOV 7 2025.1 11.6 10.8 0.8 SOV 4 1390.3 10.8 10.5 0.3 SOV 2 1027.9 10.4 10.1 0.3	SOV 4 2087.6 5.8 5.3 0.4 4.5 SOV 5 1387.4 5.4 5.2 0.2 4.2 SOV 2 968.1 5.2 5.1 0.1 4.0 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 SOV 4 1390.3 10.8 10.5 0.3 8.3 SOV 2 1027.9 10.4 10.1 0.3 8.0	SOV 4 2087.6 5.8 5.3 0.4 4.5 4.1 SOV 5 1387.4 5.4 5.2 0.2 4.2 4.0 SOV 2 968.1 5.2 5.1 0.1 4.0 3.9 HOV 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 SOV 4 1390.3 11.6 10.8 0.8 8.9 8.4 SOV 4 1390.3 10.8 10.5 0.3 8.3 8.1 SOV 2 1027.9 10.4 10.1 0.3 8.0 7.8	SOV 4 2087.6 5.8 5.3 0.4 4.5 4.1 0.3 SOV 5 1387.4 5.4 5.2 0.2 4.2 4.0 0.1 SOV 2 968.1 5.2 5.1 0.1 4.0 3.9 0.1 HOV 0 0 0 0.

(581,	582)	1	sov			4	1207.9		11.8	11.3	0.5	9.1	8.7	0.4	60.27
(581,	582)	2	sov			4	1393.5		11.3	11.0	0.3	8.7	8.5	0.2	63.23
(581,	582)	3	sov			3	1075.8		10.9	10.6	0.3	8.4	8.2	0.2	65.41
(581,	582)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
-	-	583)	1	sov			3	1143.9		14.0	13.4	0.6	10.8	10.3	0.5	60.58
-	-	583)	2	sov			2	1390.1		13.5	13.1	0.4	10.4	10.1	0.3	62.92
		583)	3	sov			2	1146.3		13.0	12.6	0.4	10.0	9.7	0.3	65.22
(582,	583)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	583	584)	1	sov			4	1869.0		12.8	10.7	2.1		8.2	1.6	E2 20
		584)	2	SOV			3	1575.5		11.1	10.7	0.6	9.9	8.2	1.6	53.29
		584)	3	SOV			3	1233.2		10.5	10.5	0.4	8.6		0.5 0.3	61.30
-		584)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.4	8.1	7.8		64.86
		584)	9	sov			0	86.2		15.5	12.5	3.0	0.0 12.0	0.0 9.7	0.0 2.3	0.00
`	505,	304)	,	501			·	00.2		13.3	14.5	3.0	12.0	9.7	4.3	44.00
(584,	585)	1	sov			23	2555.3		20.2	16.0	4.2	15.5	12.3	3.2	50.75
(584,	585)	2	sov			9	1815.8		17.0	15.8	1.2	13.1	12.2	0.9	60.13
(584,	585)	3	sov			9	1337.2		15.9	15.2	0.7	12.3	11.7	0.5	64.35
(584,	585)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(584,	585)	9	sov			2	111.4		20.7	19.8	1.0	16.0	15.3	0.8	49.31
,	EOE	EQC)	1	sov				2600.1			7.7					
-	_	586) 586)	2	SOV			11 6			8.8		1.1	6.8	5.9	0.8	55.88
-	-	586) 586)	3	SOV			_	1838.2		8.0	7.6	0.4	6.2	5.8	0.3	61.23
•			_				3	1373.3		7.6	7.3	0.3	5.8	5.6	0.2	64.60
(585,	586)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(586,	587)	1	sov			5	2494.4		7.5	7.0	0.5	5.8	5.4	0.4	59.19
(586,	587)	2	sov			6	1850.3		7.2	6.9	0.3	5.5	5.3	0.2	62.42
(586,	587)	3	sov			1	1461.2		6.9	6.6	0.2	5.3	5.1	0.2	64.73
(586,	587)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	-	588)	1	sov			4	2449.4		5.7	5.3	0.4	4.4	4.1	0.3	59.66
-		588)	2	sov			6	1856.5		5.5	5.3	0.2	4.2	4.1	0.2	62.47
	-	588)	3	sov			3	1499.7		5.3	5.1	0.2	4.1	3.9	0.2	64.63
(587,	588)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(588.	589)	1	sov			10	2383.0		11.7	10.8	0.9	9.0	8.3	0.7	58.37
-	-	589)	2	sov			8	1852.4		11.0	10.5	0.5	8.5	8.1	0.3	62.12
•		589)	3	sov			6	1561.2		10.6	10.1	0.4	8.2	7.8	0.3	64.50
•		589)	4	HOV	0	0	Ö	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
`	2001	,	_	/	•	,	•		2.7							
(589,	590)	1	sov			4	1256.7		9.4	8.9	0.5	7.2	6.8	0.4	59.31
(589,	590)	2	sov			2	1763.6		9.0	8.6	0.4	6.9	6.7	0.3	61.69
(589,	590)	3	sov			1	1654.1		8.7	8.3	0.4	6.7	6.4	0.3	63.73
(589,	590)	4	HOV	0	1648	0	327.1	327.1	8.6	8.3	0.4	6.7	6.4	0.3	64.22

(590,	591)	1	sov			0	205.9		6.7	6.1	0.6	5.2	4.7	0.4	62.74
(590,	591)	2	sov			3	1379.5		6.9	6.7	0.2	5.3	5.2	0.1	60.77
(590,	591)	3	sov			5	1767.4		6.8	6.5	0.3	5.2	5.0	0.2	61.95
	_	591)	4	sov			6	1655.0		6.5	6.2	0.3	5.0	4.8	0.2	64.12
-		591)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
•	,		-		•	•					• • • •	•••	•••			
(591.	592)	1	sov			0	341.8		7.1	6.9	0.2	5.5	5.3	0.2	65.88
	-	592)	2	sov			2	1280.6		7.7	7.5	0.2	5.9	5.8	0.1	60.79
		592)	3	sov			4	1713.6		7.5	7.2	0.3	5.8	5.6	0.2	61.87
-	-	592)	4	sov			2	1666.1		7.3	6.9	0.3	5.6	5.3	0.3	63.97
	-	592)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
•		002,	•		·	•	·	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(592.	593)	1	sov			2	405.4		10.3	10.1	0.3	8.0	7.8	0.2	66.08
	_	593)	2	sov			5	1463.6		11.3	10.8	0.5	8.7	8.3	0.4	60.50
	_	593)	3	sov			5	1671.8		11.1	10.6	0.5	8.5	8.2	0.4	61.52
	-	593)	4	sov			4	1456.6		10.7	10.2	0.5	8.2	7.9	0.4	63.91
-		593)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
`	JJ-,	555,	•		·	•	·	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(593.	594)	1	sov			0	577.7		5.5	5.0	0.4	4.2	3.9	0.3	62.48
-	-	594)	2	sov			Ö	2072.6		5.8	5.3	0.4	4.4	4.1	0.3	59.14
-	-	594)	3	sov			1	1426.4		5.6	5.4	0.3	4.3	4.1	0.2	60.51
•		594)	4	sov			1	921.8		5.3	5.1	0.2	4.1	3.9	0.1	64.92
	-	594)	5	HOV	0	0	ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
•	,	05-7	•		•	•	•	0.0	***	•••	0.0	0.0	0.0	0.0	0.0	0.00
(594,	595)	1	sov			5	857.3		10.5	10.1	0.4	8.1	7.8	0.3	64.97
(594,	595)	2	sov			4	1797.8		11.2	10.7	0.5	8.6	8.2	0.4	60.80
(594,	595)	3	sov			7	1312.2		11.1	10.8	0.3	8.6	8.3	0.3	61.34
-	-	595)	4	sov			4	1026.5		10.5	10.2	0.2	8.1	7.9	0.2	65.23
•	•	595)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
•		,														
(595,	596)	1	sov			2	1246.0		7.4	7.1	0.2	5.7	5.5	0.2	61.35
(595,	596)	2	sov			1	1086.3		6.9	6.7	0.2	5.4	5.2	0.2	65.19
(595,	596)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(595.	596)	9	sov			4	1709.9		8.1	7.6	0.5	6.2	5.8	0.4	55.95
(595,	596)	10	sov			1	942.4		7.5	7.3	0.2	5.8	5.7	0.1	60.23
•																
(596,	597)	1	sov			4	1199.5		8.0	7.7	0.3	6.1	5.9	0.2	60.93
į	596,	597)	2	sov			1	1130.7		7.5	7.2	0.2	5.8	5.6	0.2	65.05
-	-	597)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
•		,					_									
(597,	598)	1	sov			5	1157.3		9.2	8.9	0.3	7.1	6.9	0.3	60.83
•		598)	2	sov			4	1169.2		8.6	8.4	0.2	6.7	6.5	0.2	64.90
-	-	598)	3	HOV	0	0	ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
•	,		-		•	-	-									
(598.	599)	1	sov			3	1114.5		4.8	4.7	0.2	3.7	3.6	0.1	60.74
•		599)	2	sov			2	1210.4		4.6	4.4	0.1	3.5	3.4	0.1	64.73
		599)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
•	/	,	-		•	-	-									

(600	, 601)	1	sov			2	1059.3		6.6	6.4	0.2	5.1	4.9	0.2	60.73
(600	, 601)	2	sov			2	1262.9		6.3	6.1	0.2	4.8	4.7	0.2	64.39
(600	, 601)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(601	, 602)	1	sov			4	1265.6		8.7	8.0	0.7	6.7	6.2	0.5	59.03
(601	, 602)	2	sov			2	1308.8		8.0	7.7	0.3	6.2	5.9	0.2	63.96
(601	, 602)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(601	, 602)	9	sov			11	1802.4		9.8	8.0	1.8	7.5	6.1	1.4	52.42
(601	, 602)	10	sov			0	113.7		11.1	9.6	1.5	8.6	7.4	1.1	46.20
-	, 603)	1	sov			3	1415.0		8.4	8.0	0.4	6.5	6.2	0.3	60.84
-	, 603)	2	sov			4	1382.5		8.0	7.7	0.3	6.2	5.9	0.3	63.73
-	, 603)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(602	, 603)	9	sov			6	1684.0		8.6	8.0	0.6	6.6	6.2	0.5	59.29
	, 604)	1	sov			1	1424.4		7.1	6.8	0.2	5.4	5.3	0.2	62.07
	, 604)	2	sov			2	1398.4		6.8	6.6	0.3	5.3	5.1	0.2	63.92
•	, 604)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(603	, 604)	9	sov			1	1662.0		7.1	6.8	0.3	5.5	5.3	0.3	61.29
-	, 605)	1	sov			7	1457.4		8.0	7.7	0.3	6.2	6.0	0.2	62.08
-	, 605)	2	sov			6	1394.1		7.8	7.5	0.3	6.0	5.8	0.2	63.95
-	, 605)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(604	, 605)	9	sov			4	1629.1		8.2	7.7	0.4	6.3	6.0	0.3	60.77
	, 606)	1	sov			5	1485.0		10.5	10.1	0.4	8.1	7.8	0.3	61.84
•	, 606)	2	sov			4	1405.2		10.2	9.8	0.4	7.9	7.5	0.3	63.69
-	, 606)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(605	, 606)	9	sov			2	1585.2		10.7	10.1	0.6	8.3	7.8	0.5	60.50
(606	, 607)	1	sov			3	1473.1		8.4	8.0	0.3	6.4	6.2	0.2	61.72
-	, 607)	2	sov			5	1433.6		8.1	7.8	0.3	6.3	6.0	0.3	63.57
•	, 607)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(606	, 607)	9	sov			7	1559.4		8.6	8.0	0.5	6.6	6.2	0.4	60.22
(607	, 608)	1	sov			1	1470.8		7.3	7.0	0.3	5.6	5.4	0.2	61.66
(607	, 608)	2	sov			1	1454.2		7.1	6.8	0.3	5.5	5.2	0.2	63.54
	, 608)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(607	, 608)	9	sov			0	1538.6		7.4	7.0	0.4	5.7	5.4	0.3	60.25
(608	, 609)	1	sov			5	1465.9		9.0	8.7	0.4	7.0	6.7	0.3	61.60
(608	, 609)	2	sov			3	1476.6		8.7	8.4	0.4	6.8	6.5	0.3	63.60
(608	, 609)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(608	, 609)	9	sov			3	1522.8		9.2	8.7	0.5	7.1	6.7	0.4	60.26
(609	, 610)	1	sov			6	1475.4		10.3	9.9	0.4	7.9	7.6	0.3	61.56

(609, 610)	2	SOV			3	1488.2		10.0	9.5	0.4	7.7	7.3	0.3	63.44
(609, 610)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(609, 610)	9	sov			6	1500.4		10.5	9.9	0.6	8.1	7.6	0.5	60.17
(610, 611)	1	sov			5	1812.6		8.1	7.5	0.6	6.2	5.8	0.5	60.11
(610, 611)	2	sov			4	1344.5		7.7	7.3	0.4	5.9	5.7	0.3	63.35
(610, 611)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(610, 611)	9	sov			4	1301.7		8.1	7.6	0.5	6.2	5.9	0.4	60.29
(611, 612)	1	sov			0	2448.5		9.2	8.0	1.2	7.1	6.1	1.0	55.33
(611, 612)	2	sov			1	1032.2		8.2	7.6	0.6	6.3	5.9	0.4	61.94
(611, 612)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(611, 612)	9	sov			2	981.3		8.5	7.8	0.7	6.6	6.0	0.5	59.83
(612, 613)	1	sov			11	2086.8		17.4	16.3	1.1	13.4	12.5	0.9	58.84
(612, 613)	2	sov			7	1193.2		16.0	15.4	0.6	12.3	11.9	0.5	64.05
(612, 613)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(612, 613)	9	sov			5	1179.2		17.1	16.2	0.8	13.2	12.5	0.6	59.97
(613,614)	1	sov			0	1127.5		3.6	3.4	0.2	2.8	2.6	0.2	58.98
(613, 614)	2	sov			0	1113.5		3.3	3.2	0.1	2.5	2.5	0.1	64.47
(613, 614)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(614, 615)	1	sov			1	1122.2		3.2	3.1	0.1	2.5	2.4	0.1	60.61
(614, 615)	2	sov			1	1119.0		3.0	2.9	0.1	2.3	2.3	0.1	64.72
(614, 615)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(615, 616)	1	sov			4	1119.9		5.6	5.4	0.2	4.3	4.1	0.1	61.38
(615, 616)	2	sov			2	1118.6		5.3	5.1	0.1	4.1	4.0	0.1	64.68
(615, 616)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(616, 617)	1	sov			5	1121.9		11.3	10.9	0.4	8.7	8.4	0.3	60.44
(616,617)	2	sov			4	1109.8		10.6	10.3	0.3	8.2	7.9	0.2	64.34
(616, 617)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(617, 618)	1	sov			3	820.2		11.1	10.8	0.3	8.5	8.3	0.2	61.32
(617, 618)	2	sov			4	1094.5		10.6	10.2	0.3	8.2	7.9	0.3	64.12
(617, 618)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(618, 619)	1	sov			4	843.8		10.0	9.7	0.3	7.7	7.5	0.2	61.50
(618, 619)	2	sov			5	1066.4		9.6	9.3	0.3	7.4	7.2	0.2	63.90
(618, 619)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(619, 620)	1	sov			1	847.7		4.6	4.5	0.1	3.6	3.5	0.1	61.45
(619, 620)	2	sov			2	1060.1		4.5	4.3	0.2	3.5	3.3	0.1	63.69
(619, 620)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
,,			•	-	•									

(599, 6	(00	1	sov			1	1081.4		4.3	4.2	0.2	3.4	3.2	0.1	60.71
(599, 6	(00	2	sov			0	1242.5		4.1	4.0	0.1	3.2	3.1	0.1	64.55
	599, 6		3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
`	333,	,00,	-	1101	·	Ū	·	•••		•••	•••	•••				
(77,70)53)	1	sov			0	1147.0		2.3	2.0	0.2	1.8	1.6	0.2	55.62
(77,70	153)	2	sov			1	1003.5		2.0	1.9	0.1	1.6	1.5	0.1	63.07
ì	-		3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
`	,,,,	,55,	3	1101	·	·	·	0.0	0.0	0.0	0.0	0.0	0.0	0.0	•••	0.00
(7	054, 5	568)	1	sov			1	1493.8		3.2	2.3	0.9	2.5	1.8	0.7	48.57
(7	054, 5	568)	2	sov			0	836.0		3.3	2.3	1.0	2.6	1.8	0.8	47.31
(7	054, 5	568)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
		, ,	•		•	•	•	• • • •		•••				•••		
(396, 3	397)	1	sov			17	1396.9		25.6	24.2	1.3	19.8	18.7	1.0	60.88
(396, 3	397)	2	sov			16	1542.2		24.9	23.9	1.0	19.2	18.4	0.8	62.57
-	396, 3		3	sov			11	1305.8		25.0	23.8	1.1	19.3	18.4	0.9	62.32
-	396, 3		4	HOV	0	0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
'	390, 3	,,,	•	HOV	U	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(397, 3	398)	1	sov			5	2115.7		8.2	7.4	0.8	6.3	5.7	0.6	58.24
	397, 3		2	sov			2	1295.8		7.6	7.3	0.3	5.9	5.6	0.3	62.43
	397, 3		3	sov			4	1097.0		7.6	7.3	0.3	5.8	5.6	0.2	63.14
					0	0	0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.00
	397, 3		4	HOV	-	-	_						0.0			
(397, 3	398)	9	sov			3	359.0		8.2	7.3	0.9	6.3	5.6	0.7	58.50
,	398, 5	564)	1	sov			6	1852.1		9.1	8.6	0.5	7.0	6.6	0.4	60.15
-	-		2	sov			4	1387.7		8.7	8.3	0.3	6.7	6.5	0.2	62.93
	398, 5						_									
-	398, 5		3	sov			3	1132.1		8.6	8.3	0.3	6.7	6.4	0.2	63.16
	398, 5		4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(398, 5	564)	9	sov			2	489.4		8.5	8.2	0.3	6.6	6.3	0.2	64.45
(620, 3	369)	1	sov			2	851.1		5.5	5.3	0.2	4.2	4.1	0.1	61.43
(620, 3	369)	2	sov			2	1055.7		5.3	5.1	0.2	4.1	3.9	0.1	63.63
(620, 3	369)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(617,	114)	1	sov			1	310.2		8.2	8.0	0.1	6.3	6.2	0.1	54.31
(114,	115)	1	sov			1	310.5		11.5	11.3	0.2	8.9	8.7	0.2	49.93
`		,	_	50.			_	5-010								
,	117, 4	416	1	sov			2	310.0		9.0	8.7	0.2	6.9	6.7	0.2	48.74
,	11/,	10)		SUV				310.0		3.0	0.7	0.2	0.9	0.7	0.2	10.71
,	399, 4	1021	1	sov			2	540.6		20.1	19.9	0.2	15.6	15.4	0.2	55.88
				SOV			0	562.4		21.4	21.1	0.3	16.5	16.3	0.2	52.56
(399,	102)	2	SOV			U	302.4		21.4	21.1	0.3	10.5	10.3	0.2	32.30
								000 6		2 2	2 7		2 5	2 1	0.4	43.55
(625,	132)	1	sov			1	999.6		3.2	2.7	0.5	2.5	2.1	0.4	43.33
_			_				_			4 5			2.6	2.5	0 1	60.66
•	626,		1	sov			2	891.5		4.7	4.6	0.1	3.6	3.5	0.1	
(626,	527)	2	sov			3	781.3		4.4	4.2	0.1	3.4	3.3	0.1	65.60

(627,	190)	1	sov	 	1	866.7		3.6	3.5	0.1	2.7	2.7	0.1	61.30
(627,		2	sov		2	805.1		3.3	3.2	0.1	2.5	2.5	0.0	66.30
(02/,	190)	4	SUV	 	4	805.1		3.3	3.4	0.1	2.5	2.5	0.0	00.50
(629,	255)	1	sov	 	1	991.5		4.9	4.3	0.6	3.8	3.3	0.5	47.07
(628,	629)	1	sov	 	3	993.2		5.9	5.3	0.7	4.6	4.1	0.5	39.76
(631,	2001	1	sov	 	1	979.1		6.7	6.2	0.4	5.1	4.8	0.3	E0 77
(031,	200)	-	50V	 	_	9/9.1		0.7	0.2	0.4	5.1	4.8	0.3	50.77
		_			_									
(630,	631)	1	sov	 	0	977.1		6.1	5.8	0.3	4.7	4.5	0.2	48.13
(632,	633)	1	sov	 	3	800.1		8.3	8.1	0.2	6.4	6.2	0.2	53.47
(632,	633)	2	sov	 	1	754.9		8.4	8.1	0.2	6.5	6.3	0.2	53.09
(635,	54)	1	sov	 	0	221.0		8.4	7.9	0.5	6.5	6.1	0.4	51.01
(035,	34/	_	501	 	U	221.0		0.4	7.9	0.5	0.5	0.1	0.4	31.01
		_			_									
(634,	635)	1	sov	 	0	220.0		7.7	7.1	0.6	5.9	5.5	0.4	41.67
(637,	56)	1	sov	 	0	552.4		8.2	8.0	0.2	6.4	6.2	0.2	53.53
(636,	637)	1	sov	 	1	552.9		5.7	5.6	0.2	4.4	4.3	0.1	53.29
(000,	,				_									
(61,	6201	1	sov	 	0	1005.0		5.7	5.6	0.2	4.4	4.3	0.1	53.26
(61,	030)	-	SUV	 	U	1005.0		3.7	5.6	0.2	*.*	4.3	0.1	55.20
		_			_									
(638,		1	sov	 	1	211.2		4.4	4.2	0.2	3.4	3.2	0.1	52.65
(638,	639)	2	sov	 	0	793.0		4.3	4.2	0.2	3.4	3.2	0.1	52.98
(62,	640)	1	sov	 	1	1313.6		5.3	5.0	0.2	4.1	3.9	0.2	52.39
,														
(640,	641)	1	sov	 	0	391.6		2.9	2.8	0.1	2.2	2.2	0.1	52.00
						921.4			2.7	0.1	2.2	2.1	0.1	52.28
(640,	041)	2	sov	 	0	921.4		2.9	2.7	0.1	2.2	2.1	0.1	52.26
(643,	64)	1	sov	 	0	884.9		7.7	7.3	0.4	5.9	5.6	0.3	51.60
(642,	643)	1	sov	 	0	589.6		6.9	5.9	0.9	5.3	4.6	0.7	47.21
(642,		2	sov	 	0	292.2		7.0	6.1	0.9	5.4	4.7	0.7	46.53
(,	0-0,	_			-									
, 60	644)	1	sov	 	0	1565.3		4.7	4.4	0.3	3.6	3.4	0.2	50.84
	644)													
(69,	644)	2	sov	 	0	523.7		4.7	4.3	0.4	3.6	3.3	0.3	51.21
(644,	645)	1	sov	 	0	28.6		3.5	3.3	0.2	2.7	2.6	0.1	48.73
(644,	645)	2	sov	 	0	638.4		3.3	3.2	0.1	2.6	2.5	0.1	50.92
(644,		3	sov	 	0	1423.7		3.4	3.3	0.1	2.6	2.6	0.1	49.27
	,	-			-					-				
(647,	71)	1	sov	 	2	380.4		9.5	8.8	0.7	7.4	6.8	0.5	50.32
(04/,	, _ ,	_	SUV	 	4	300.4	-	3.3	0.0	0.7	/ • 	0.0	0.5	30.32
		_			_									41 00
(646,	647)	1	sov	 	3	382.3		8.3	7.6	0.7	6.4	5.9	0.5	41.22

(٠.	74.	648)	1	sov	 	1	1049.9	 6.0	5.8	0.3	4.6	4.4	0.2	52.62	
Ċ			648)	2	sov	 	0	1236.3	 6.1	5.8	0.3	4.7	4.5	0.2	52.03	
`	•	/-/	040,	-	501		•	1150.5	•••	3.0	0.5			***	52.05	
							_									
(6	48,	649)	1	sov	 	5	1041.1	 6.6	4.8	1.9	5.1	3.7	1.4	40.46	
(6	48,	649)	2	sov	 	3	1243.6	 5.6	4.9	0.7	4.3	3.7	0.5	48.30	
	, ,	51,	75)	1	sov	 	0	423.0	 5.5	4.0	0.6	4.5	2.0	• •	40.00	
,	. 0	JI,	13)	_	SOV	 	U	423.0	 5.5	4.9	0.6	4.3	3.8	0.4	48.32	
((6	50,	651)	1	sov	 	0	423.0	 5.3	4.7	0.6	4.1	3.6	0.5	39.75	
((6	53,	76)	1	sov	 	0	331.0	 3.2	3.1	0.1	2.4	2.4	0.1	53.06	
,	` `		,	_			•	552.0	J.2	3.1	0.1	4.4	4.1	0.1	33.00	
			c=2.				•									
((6	52,	653)	1	sov	 	0	331.0	 3.6	3.4	0.1	2.8	2.7	0.1	53.14	
((5	69,	654)	1	sov	 	0	516.8	 3.6	3.3	0.3	2.8	2.5	0.2	49.80	
((5	69.	654)	2	sov	 	1	315.0	 3.5	3.1	0.4	2.7	2.4	0.3	50.85	
,			,	_			_	525.0	3.5		0.4		2	0.5	50.05	
	, ,		E70\					1210 0								
,	(0	50,	570)	1	sov	 	4	1319.8	 6.5	5.8	0.7	5.0	4.5	0.5	48.09	
((6	55,	656)	1	sov	 	3	1320.1	 7.6	6.8	0.7	5.8	5.3	0.6	40.54	
	, ,	50	571)	1	sov	 	0	263.0	 6.7	6.6	0.1	5.2	5.1	0.1	53.80	
,	, ,	50,	3,1,	-	504	 	U	203.0	 0.7	0.0	0.1	3.2	3.1	0.1	55.60	
((6	57,	658)	1	sov	 	0	263.0	 5.7	5.6	0.1	4.4	4.3	0.1	53.64	
	(5	74.	660)	1	sov	 	0	294.0	 2.8	2.8	0.1	2.2	2.1	0.0	53.83	
	` -	-,	,	_			•								55105	
							•	204.0	2 0							
((6	60,	661)	1	sov	 	0	294.0	 2.8	2.7	0.1	2.2	2.1	0.1	50.90	
((6	63,	576)	1	sov	 	1	1609.8	 7.6	6.2	1.4	5.9	4.8	1.1	44.67	
	6	63	576)	2	sov	 	0	255.2	 9.3	7.1	2.3	7.2	5.5	1.7	36.41	
,	, ,	,	5,0,	_	501		•		2.0			,	3.5	,	50112	
				_			•	464 -							20.00	
	-	-	663)	1	sov	 	0	164.7	 7.1	4.5	2.6	5.5	3.5	2.0	32.09	
((6	62,	663)	2	sov	 	1	1697.5	 5.6	4.5	1.2	4.4	3.4	0.9	40.32	
	(5	81.	664)	1	sov	 	0	766.2	 7.4	7.2	0.2	5.7	5.6	0.2	53.23	
,	, ,	,,,	00-,	_	501		•	,,,,				•••		• • •	55125	
				_			•								E0 0E	
•	(6	64,	665)	1	sov	 	0	767.0	 2.9	2.8	0.1	2.2	2.2	0.1	52.95	
	(6	67.	583)	1	sov	 	0	1085.0	 12.6	10.9	1.7	9.7	8.4	1.3	46.66	
	, ,		6671	1	sov	 	0	1085.0	 4.3	4.0	0.3	3.3	3.1	0.2	34.11	
,	, 0	00,	667)	_	SUV	 	U	1003.0	 •3	4.0	0.3	3.3	3.1	0.2	34.11	
	(6	69,	584)	1	sov	 	3	958.2	 7.8	7.3	0.5	6.0	5.6	0.4	51.37	
	(6	69,	584)	2	sov	 	1	111.4	 8.2	7.6	0.6	6.3	5.9	0.4	48.83	
				_												

(668, 669)	1	sov		 0	46.6	 6.8	4.1	2.7	5.3	3.2	2.1	31.82
	2	SOV		 1	1023.0	 4.2	3.9	0.3	3.3	3.0	0.2	51.23
(668, 669)	4	SOV		 _	1023.0	 4.4	3.9	0.3	3.3	3.0	0.2	31.23
(589, 670)	1	sov		 1	796.4	 2.9	2.8	0.1	2.2	2.2	0.1	53.43
(309, 670)	_	800		 _	790.4	 4.9	2.0	0.1	4.4	2.2	0.1	33.43
(670, 671)	1	sov		 1	795.9	 2.8	2.7	0.1	2.1	2.1	0.1	53.59
(0/0, 0/1)	-	50 V		 -	793.9	 2.0	4.7	0.1	2.1	2.1	0.1	33.33
(672, 673)	1	sov		 2	1096.7	 6.4	6.0	0.4	4.9	4.7	0.3	46.06
(0/2, 0/3)	-	50 V		 _	1090.7	 0.4	0.0	0.4	4.9	4.7	0.3	46.96
(674, 675)	1	sov		 1	1071.9	 3.9	3.8	0.1	3.0	2.9	0.1	52.60
(0/4) 0/5)	-	501		-	10/1.9	3.3	3.0	0.1	3.0	4.9	0.1	52.00
(676, 677)	1	sov		 11	1535.7	 19.7	18.6	1.1	15.2	14.3	0.9	51.85
(676, 677)	2	sov		 7	853.5	 19.5	18.9	0.6	15.0	14.5	0.5	52.44
(676, 677)	3	sov		 ó	35.1	 19.5	19.2	0.3	15.0	14.8	0.2	52.46
(676, 677)	9	sov		 2	220.8	 19.2	18.7	0.6	14.8	14.4	0.4	53.20
(0,0, 0,1,	-	501		_	220.0	19.2	10.7	0.0	14.0	14.4	0.4	33.20
(677, 680)	1	sov		 2	499.7	 16.4	16.2	0.2	12.7	12.5	0.2	55.66
(677, 680)	2	sov		 6	751.8	 17.3	16.9	0.4	13.3	13.0	0.3	52.78
(077, 000)	-	504		· ·	731.0	 17.3	10.9	0.4	13.3	13.0	0.3	54.76
(677, 678)	1	sov		 2	531.6	 5.1	5.1	0.0	3.9	3.9	0.0	50.63
(677, 678)	2	sov		 2	854.1	 5.3	5.2	0.1	4.1	4.0	0.1	48.21
(077, 070)	4	50 V		_	054.1	3.3	3.2	0.1	4.1	4.0	0.1	40.21
(678, 679)	1	sov		 2	560.7	 5.5	5.5	0.0	4.3	4.2	0.0	50.73
(678, 679)	2	sov		 4	821.8	 5.8	5.7	0.2	4.5	4.4	0.1	47.89
(0/0, 0/3)	-	501		•	021.0	3.0	3.7	0.2	1.5	4.4	0.1	47.03
(680, 681)	1	sov		 3	556.6	 8.8	8.7	0.1	6.8	6.7	0.1	55.82
(680, 681)	2	sov		 5	693.0	 9.4	9.2	0.2	7.2	7.1	0.2	52.64
(000, 001)	_	50 V		,	033.0	J.4	3.4	0.2	/ • 2	,	0.2	32.04
(681, 682)	1	sov		 3	586.4	 9.2	9.1	0.1	7.1	7.0	0.1	55.74
(681, 682)	2	sov		 1	662.1	 9.7	9.5	0.2	7.5	7.3	0.2	52.51
(001, 002)	_	501		-	002.1	3.,	3.3	•••	,,,		•••	52.52
(684, 685)	1	sov		 0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00
(00-, 003)	-	501	_	•	0.0	 0.0	0.0	0.0	0.0		•••	
(686, 111)	1	sov		 0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00
, 000, 111,	-	50.		•								
(685, 681)	1	sov		 0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00
(000) 001)	_	501		•				• • • •		• • • •		
(682, 683)	1	sov		 1	603.6	 9.2	9.1	0.1	7.1	7.0	0.1	55.60
(682, 683)	2	sov		 3	641.4	 9.8	9.5	0.2	7.5	7.4	0.2	52.41
, 552, 555,	_			-								
(687, 688)	1	sov		 0	614.4	 6.8	6.7	0.1	5.3	5.2	0.1	46.37
(687, 688)	2	sov		 ō	623.6	 7.2	7.1	0.2	5.6	5.4	0.1	43.82
(007, 000)	-	501		J	025.5			٠.2	3.0	3.1	***	
(688,7027)	1	sov		 1	616.1	 4.4	4.4	0.0	3.4	3.4	0.0	40.86
(688,7027)	2	sov		 ō	621.7	 4.7	4.7	0.1	3.6	3.6	0.0	38.19
(000,7027)	-	231		•			-•-		3.0	2.0		
(7056, 626)	1	sov		 2	963.1	 5.4	4.6	0.8	4.1	3.5	0.6	53.79
(.000, 020)	-			_								

(7056, 626)	2	sov	 	0	782.3	 4.7	4.2	0.5	3.7	3.3	0.4	60.98
	_				4	- 1	2.0		2.4	2 2		E0 37
(679,7058)	1	sov	 	1	577. 4	 3.1	3.0	0.0	2.4	2.3	0.0	50.37
(679,7058)	2	sov	 	0	802.0	 3.3	3.2	0.1	2.5	2.4	0.1	46.97
(7059, 684)	1	sov	 	0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00
(7060, 628)	1	sov	 	2	1082.0	 4.3	4.0	0.3	3.3	3.1	0.2	33.95
(7061, 630)	1	sov	 	0	1029.3	 4.9	4.5	0.4	3.8	3.5	0.3	45.91
(7062, 674)	1	sov	 	0	1191.6	 2.3	2.0	0.3	1.8	1.6	0.2	48.19
(7062 672)	1	2011	 	•	1141 4	 						44 45
(7063, 672)	-	sov	 	2	1141.4	 7.5	6.8	0.7	5.8	5.3	0.5	41.15
(671,7064)	1	sov	 	2	794.1	 2.3	2.3	0.1	1.8	1.7	0.1	52.82
((33 70(5)					000 4	4.3						
(633,7065)	1	sov	 	1	802.4	 4.3	4.1	0.1	3.3	3.2	0.1	53.11
(633,7065)	2	sov	 	0	753.8	 4.3	4.2	0.1	3.3	3.2	0.1	53.01
(7066, 634)	1	sov	 	0	239.9	 4.1	3.9	0.2	3.1	3.0	0.1	34.80
(7067, 636)	1	sov	 	0	581.2	 5.2	4.7	0.5	4.0	3.6	0.4	49.92
(665,7068)	1	sov	 	0	767.3	 2.7	2.6	0.1	2.1	2.0	0.1	51.41
(7069, 666)	1	sov	 	1	1200.0	 3.4	3.3	0.1	2.6	2.6	0.1	35.46
(7070, 668)	1	sov	 	0	242.2	 4.5	3.8	0.7	3.5	3.0	0.5	47.42
,				-								
(7070, 668)	2	sov	 	0	891.8	 4.1	3.9	0.2	3.2	3.0	0.2	52.05
(639,7071)	1	sov	 	0	83.0	 2.4	2.0	0.4	1.9	1.6	0.3	46.09
(639,7071)	2	sov	 	0	922.0	 2.2	2.1	0.2	1.7	1.6	0.1	50.40
(033,7071)	-	501		·	322.0			•••	_ , ,		• • •	
(7072, 642)	1	sov	 	1	244.8	 2.4	1.9	0.5	1.8	1.4	0.4	44.73
(7072, 642)	2	sov	 	0	745.1	 2.3	1.9	0.4	1.7	1.5	0.3	46.77
(7072, 042)	4	501		·	, 4511		,	•••	_,,			
(641,7073)	1	sov	 	0	102.0	 2.3	2.3	0.0	1.8	1.8	0.0	51.47
(641,7073)	2	sov	 	1	1210.3	 2.4	2.4	0.0	1.9	1.8	0.0	49.32
(041,7073)	_	501		-								
(661,7074)	1	sov	 	0	294.0	 2.8	2.6	0.2	2.2	2.0	0.2	46.13
(7075, 662)	1	sov	 	0	506.2	 4.4	3.8	0.7	3.4	2.9	0.5	43.97
(7075, 662)	2	sov	 	1	1476.2	 4.2	3.9	0.3	3.2	3.0	0.2	46.67
(7075, 002)	-	507		-								
(645,7076)	1	sov	 	0	2.0	 3.0	2.9	0.1	2.3	2.3	0.0	53.61
(645,7076)	2	sov	 	0	271.0	 3.1	3.0	0.1	2.4	2.3	0.1	51.84
,				-		- '						

(645,7076)	3	sov	 	3	1820.1	 3.4	3.3	0.1	2.6	2.5	0.1	47.13	
(7077, 646)	1	sov	 	2	429.9	 3.2	3.0	0.2	2.5	2.3	0.2	34.11	
(7078, 657)	1	sov	 	0	277.6	 4.5	4.3	0.3	3.5	3.3	0.2	51.76	
(7080, 650)	1	sov	 	0	448.6	 6.1	5.8	0.2	4.7	4.5	0.2	34.35	
(7081, 655)	1	sov	 	3	1437.2	 4.2	4.0	0.2	3.3	3.1	0.2	33.99	
(649,7082)	1	sov											
			 	13	993.9	 17.6	3.9	13.7	13.6	3.0	10.6	11.46	
(649,7082)	2	sov	 	8	1267.8	 8.3	3.8	4.5	6.4	2.9	3.4	24.36	
(7083, 652)	1	sov	 	0	357.9	 3.3	2.9	0.4	2.5	2.2	0.3	49.43	
(7084, 857)	1	sov	 	0	347.2	 2.6	2.3	0.3	2.0	1.8	0.2	48.83	
(857, 858)	1	sov	 	0	316.0	 4.0	3.9	0.1	3.1	3.0	0.1	52.86	
(859,7085)	1	sov	 	9	573.4	 7.4	6.0	1.4	5.7	4.6	1.1	44.72	
(7086, 860)	1	sov	 	0	49.0	 5.9	5.7	0.2	4.6	4.4	0.1	53.87	
(860, 861)	1	sov	 	0	47.0	 5.6	5.6	0.0	4.4	4.3	0.0	54.80	
(866,7087)	1	sov	 	0	70.0	 4.0	3.8	0.2	3.1	2.9	0.1	52.41	
(873,7088)	1	sov	 	0	84.0	 6.9	6.8	0.1	5.3	5.3	0.0	54.85	
(7089, 874)	1	sov	 	0	123.8	 3.7	3.6	0.2	2.9	2.8	0.1	52.56	
(874, 875)	1	sov	 	0	117.1	 3.7	3.6	0.0	2.8	2.8	0.0	54.25	
(876,7090)	1	sov	 	0	252.0	 6.0	5.8	0.2	4.7	4.5	0.2	53.64	
(7091, 877)	1	sov	 	1	73.0	 5.1	3.6	1.5	3.9	2.8	1.1	39.79	
(877, 878)	1	sov	 	0	68.0	 4.5	4.3	0.2	3.5	3.3	0.2	51.99	
(879, 880)	1	sov	 	3	1050.6	 13.9	13.7	0.2	10.8	10.6	0.1	64.16	
(879, 880)	2	sov	 	4	974.5	 13.9	13.7	0.2	10.8	10.6	0.1	64.14	
(880,881)	1	sov	 	5	1024.8	 19.9	19.5	0.4	15.4	15.1	0.3	63.72	
(880, 881)	2	sov	 	5	973.5	 19.9	19.6	0.4	15.4	15.1	0.3	63.74	
(881, 882)	1	sov	 	6	1024.0	 16.4	16.0	0.5	12.7	12.4	0.4	63.14	
(881, 882)	2	sov	 	3	974.9	 16.4	16.0	0.4	12.7	12.4	0.3	63.20	

,	000	0021	1	sov	 	6	1031.2	 16.3	15.8	0.5	12.6	12.2	0.4	62.71	
-	882, 882,		2	SOV	 	2	970.3	 16.2	15.7	0.5	12.6	12.2	0.4	62.98	
,	002,	003/	-	50 V	 	4	370.3	 10.2	13.7	0.5	12.0		•••	02.50	
(883,	884)	1	sov	 	4	958.7	 13.0	12.6	0.4	10.1	9.8	0.3	62.86	
	883,		2	sov	 	2	962.9	 13.0	12.6	0.4	10.1	9.8	0.3	62.89	
•	,	,	_										•		
(883,	873)	1	sov	 	0	83.1	 7.4	7.4	0.0	5.8	5.7	0.0	55.18	
-	884,	-	1	sov	 	5	969.1	 12.0	11.6	0.4	9.3	9.0	0.3	62.88	
(884,	885)	2	sov	 	5	948.8	 12.0	11.7	0.4	9.3	9.0	0.3	62.71	
	885,		1	sov	 	2	965.0	 14.9	14.4	0.5	11.5	11.1	0.4	62.69	
(885,	886)	2	sov	 	4	950.9	 14.9	14.4	0.5	11.5	11.1	0.4	62.62	
,	886,	9971	1	sov	 	7	1047.8	 16.5	15.8	0.7	12.7	12.2	0.5	62.17	
-	886,		2	SOV	 	3	981.7	 16.3	15.7	0.6	12.7	12.2	0.5	62.63	
	886,		9	sov	 	0	4.4	 19.3	17.6	1.6	14.8	13.6	1.3	53.11	
•	000,	0077	,	501		Ū		19.5	17.0	1.0	14.0	13.0	1.3	33.11	
(887,	888)	1	sov	 	8	1035.4	 16.9	16.2	0.6	13.1	12.6	0.5	62.25	
	887,		2	sov	 	8	998.5	 16.8	16.2	0.7	13.0	12.5	0.5	62.52	
	-														
(875,	886)	1	sov	 	0	118.0	 5.3	5.3	0.0	4.1	4.1	0.0	54.56	
(888,	889)	1	sov	 	4		 18.4	17.6	0.8	14.3	13.7	0.6	62.01	
(888,	889)	2	sov	 	1	1002.9	 18.3	17.5	0.8	14.2	13.6	0.6	62.27	
-	889,		1	sov	 	1		 12.2	11.7	0.5	9.4	9.0	0.4	61.94	
(889,	890)	2	sov	 	4	1015.1	 12.1	11.6	0.5	9.4	9.0	0.4	62.26	
,	890,	001\	1	sov	 	4	1010.7	 19.2	18.3	0.8	14.8	14.2	0.6	61.96	
	890,		2	SOV	 	8	1028.4	 19.1	18.3	0.9	14.8	14.1	0.7	62.08	
,	030,	031)	4	50 V	 	٥	1020.4	13.1	10.5	0.5	14.0		0.,	02.00	
(891,	892)	1	sov	 	3	1008.8	 14.4	13.8	0.6	11.1	10.7	0.5	61.99	
•	891,		2	sov	 	3	1028.3	 14.4	13.7	0.6	11.1	10.6	0.5	62.09	
•															
(892,	893)	1	sov	 	11	1006.1	 33.7	32.2	1.5	26.1	25.0	1.2	61.97	
(892,	893)	2	sov	 	11	1030.7	 33.7	32.2	1.5	26.0	24.9	1.2	62.10	
-	893,		1	sov	 		1022.7	 39.8	38.0	1.8	30.8	29.4	1.4	61.90	
(893,	894)	2	sov	 	11	1021.4	 39.8	38.0	1.8	30.8	29.4	1.4	61.96	
											44.5				
	894,		1	sov	 	10	1029.0	 24.5	23.3	1.2	19.0	18.0	0.9	61.66	
(894,	895)	2	sov	 	8	1001.9	 24.4	23.3	1.2	18.9	18.0	0.9	61.81	
	005	005)				10	1010 2	20.2	36.3	1.9	20 E	28.1	1.5	61.53	
-	895,	-	1	SOV	 	12 10	1019.2 1010.3	 38.2 38.2	36.3	2.0	29.6 29.5	28.1	1.5	61.65	
(895,	896)	2	SUV	 	10	1010.3	 30.4	30.4	4.0	49.3	40.0	1.5	01.05	

,	896,	8971	1	sov	 	9	1014.2	 41.0	38.9	2.1	31.8	30.1	1.6	61.40
	-		2	sov		7	1017.8	 40.8	38.7	2.1	31.6	30.0	1.6	61.71
(896,	897)	4	SOV	 	,	1017.0	 40.0	30.7	2.1	31.0	30.0	1.0	01.71
														<i>c</i>
(897,	898)	1	sov	 	9	1018.3	 22.6	21.5	1.1	17.5	16.6	0.9	61.53
(897,	898)	2	sov	 	7	1015.3	 22.6	21.4	1.2	17.5	16.6	1.0	61.45
(898,	899)	1	sov	 	4	1020.1	 16.8	15.8	0.9	13.0	12.2	0.7	61.03
		899)	2	sov	 	3	1006.3	 16.6	15.7	0.9	12.9	12.2	0.7	61.62
`	000,	,	_	201		-				• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	
,	000	900)	1	sov	 	2	950.3	 18.2	17.3	0.9	14.1	13.4	0.7	61.68
•														
(899,	900)	2	sov	 	6	1003.2	 18.2	17.3	1.0	14.1	13.4	0.8	61.53
(899,	866)	1	sov	 	0	70.0	 7.8	7.7	0.1	6.0	5.9	0.1	54.27
(900,	901)	1	sov	 	19	965.1	 21.3	20.4	1.0	16.5	15.7	0.8	61.87
i	900	901)	2	sov	 	18	980.3	 21.4	20.3	1.1	16.6	15.7	0.9	61.58
`	,,,	302,	-	20.			20015							
,	001	0021	1	sov	 	4	1206.2	 16.8	15.8	1.0	13.0	12.2	0.8	60.99
		902)				5							0.7	61.70
		902)	2	sov	 	_	1020.7	 16.6	15.7	0.8	12.8	12.2		
(901,	902)	9	sov	 	0	12.3	 20.5	18.1	2.5	15.8	14.0	1.9	49.79
(902,	903)	1	sov	 	6	1177.1	 16.7	15.9	0.8	12.9	12.3	0.6	61.66
(902,	903)	2	sov	 	2	1060.8	 16.7	15.8	0.8	12.9	12.3	0.6	61.82
(858	901)	1	sov	 	0	316.0	 10.2	9.9	0.3	7.9	7.6	0.2	53.27
•	050,	302,	-	20.		•	5_511							
,	003	904)	1	sov	 	3	1147.1	 19.2	18.2	1.0	14.9	14.1	0.8	61.42
-	-					4	1089.6	 19.1	18.1	1.0	14.8	14.0	0.8	61.76
(903,	904)	2	sov	 	4	1089.0	 19.1	10.1	1.0	14.0	14.0	0.0	01.70
						_								
	-	905)	1	sov	 	6	1137.5	 14.9	14.1	0.8	11.5	10.9	0.6	61.41
(904,	905)	2	sov	 	7	1088.8	 14.8	14.0	0.7	11.5	10.9	0.6	61.71
(906,	907)	1	sov	 	4	1288.9	 14.4	14.1	0.3	11.1	10.9	0.2	63.99
	-	907)	2	sov	 	3	1248.0	 14.3	14.1	0.3	11.1	10.9	0.2	64.27
•	,,,	20.,	_			_								
,	007	908)	1	sov	 	10	1322.8	 22.0	21.4	0.6	17.0	16.5	0.5	63.18
							1180.2	 21.8	21.2	0.6	16.9	16.4	0.4	63.76
(907,	908)	2	sov	 	9	1180.2	 21.0	21.2	0.0	10.9	10.4	0.4	03.70
(908,	909)	1	sov	 	8	1454.5	 16.8	15.9	0.8	13.0	12.3	0.6	61.02
(908,	909)	2	sov	 	4	1043.7	 16.2	15.6	0.6	12.5	12.1	0.4	63.27
1	909-	910)	1	sov	 	3	860.1	 14.5	14.0	0.5	11.2	10.8	0.4	62.31
		910)	2	sov	 	4	1058.6	 14.3	13.8	0.5	11.0	10.7	0.4	63.31
'	303,	210,	-	501		•	_000.0				,			
,	000	050)		sov	 	0	575.0	 9.7	9.4	0.3	7.5	7.3	0.2	53.81
(909,	859)	1	SUV	 	U	5/5.0	 9.1	7.4	0.3	7.5	1.3	0.2	33.01

(910,	911)	1	sov	 	3	893.9	 17.3	16.8	0.5	13.4	13.0	0.4	62.82
(910,	911)	2	sov	 	5	1024.4	 17.3	16.6	0.7	13.4	12.9	0.5	62.86
(911.	912)	1	sov	 	7	932.2	 15.9	15.4	0.5	12.3	11.9	0.4	62.90
-		912)	2	sov	 	6	980.5	 15.9	15.3	0.6	12.3	11.8	0.5	62.66
(861,	912)	1	sov	 	0	47.0	 6.3	6.2	0.0	4.9	4.8	0.0	55.01
(912,	913)	1	sov	 	3	981.2	 16.3	15.7	0.6	12.6	12.2	0.4	62.77
Ċ	912,	913)	2	sov	 	4	979.6	 16.4	15.7	0.7	12.7	12.1	0.5	62.45
-		913)	9	sov	 	0	1.5	 19.7	18.5	1.2	15.2	14.3	0.9	52.01
,	012	014)		~~										
-	-	914)	1	sov	 	2	997.8	 17.1	16.5	0.6	13.2	12.7	0.5	62.73
(913,	914)	2	sov	 	3	971.0	 17.2	16.5	0.7	13.3	12.7	0.6	62.39
(914,	915)	1	sov	 	10	1003.7	 33.8	32.4	1.4	26.2	25.1	1.1	62.53
(914,	915)	2	sov	 	9	965.3	 33.9	32.5	1.4	26.3	25.2	1.1	62.26
(915.	916)	1	sov	 	11	997.2	 34.3	32.7	1.5	26.5	25.3	1.2	62.14
-		916)	2	sov	 	10	972.4	 34.2	32.7	1.5	26.5	25.3	1.2	62.23
`	,,,	310,	-	501			372.4	34.2	32.7	5	20.5	23.3		02.25
(916,	917)	1	sov	 	11	975.4	 31.3	29.8	1.5	24.2	23.1	1.1	61.90
(916,	917)	2	sov	 	9	992.1	 31.1	29.7	1.4	24.1	23.0	1.1	62.24
(917.	918)	1	sov	 	5	966.4	 24.5	23.3	1.2	19.0	18.0	0.9	61.85
-		918)	2	sov	 	6	1006.1	 24.4	23.2	1.2	18.9	18.0	0.9	62.03
٠						-								
(918,	919)	1	sov	 	9	978.4	 31.5	29.9	1.5	24.4	23.2	1.2	61.94
(918,	919)	2	sov	 	9	994.0	 31.5	30.0	1.5	24.4	23.2	1.2	61.89
(919,	920)	1	sov	 	9	982.3	 32.8	31.1	1.7	25.4	24.1	1.3	61.66
-	-	920)	2	sov	 	8	983.0	 32.7	31.1	1.6	25.3	24.1	1.2	61.91
	_													
(920,	921)	1	SOV	 	4	980.3	 20.0	19.0	1.0	15.5	14.7	0.7	61.92
(920,	921)	2	sov	 	2	988.0	 19.9	19.0	1.0	15.4	14.7	0.7	61.97
(921,	922)	1	sov	 	12	983.3	 19.0	18.1	1.0	14.8	14.0	0.7	61.83
(921.	922)	2	sov	 	5	987.9	 19.0	18.1	0.9	14.7	14.0	0.7	61.87
•														
	-	923)	1	sov	 	3	984.0	 19.2	18.2	1.0	14.9	14.1	0.8	61.75
(922,	923)	2	sov	 	3	988.5	 19.2	18.2	1.0	14.8	14.1	0.7	61.85
(923,	924)	1	sov	 	3	1004.4	 21.6	20.5	1.2	16.7	15.9	0.9	61.62
-	-	924)	2	sov	 	2	972.1	 21.5	20.5	1.0	16.7	15.8	0.8	61.95
-	-	-	_											
-		925)	1	sov	 	4	1083.0	 20.9	19.4	1.4	16.2	15.1	1.1	60.22
(924,	925)	2	sov	 	3	895.0	 20.5	19.3	1.2	15.9	14.9	1.0	61.26

,	925	926)	1	sov	 	8	846.0	 23.5	22.4	1.1	18.2	17.4	0.8	61.98
•		926)	2	sov	 	9	884.1	 23.3	22.3	1.0	18.1	17.3	0.8	62.35
`	,,	520,	_	501		_	00111							
(925,	876)	1	sov	 	0	251.7	 10.1	9.9	0.2	7.8	7.7	0.2	54.37
•	•													
(926,	927)	1	sov	 	3	840.5	 17.2	16.5	0.7	13.3	12.8	0.5	62.41
(926,	927)	2	sov	 	4	882.5	 17.2	16.4	0.7	13.3	12.7	0.6	62.39
(878,	927)	1	sov	 	0	68.0	 3.7	3.7	0.0	2.9	2.8	0.0	54.49
-	-	928)	1	sov	 	6	894.9	 16.4	15.7	0.7	12.7	12.2	0.5	62.21
	-	928)	2	sov	 	8	892.2	 16.4	15.7	0.7	12.7	12.2	0.5	62.41
(927,	928)	9	sov	 	0	3.0	 19.4	17.5	1.9	14.9	13.5	1.4	52.78
,	928	929)	1	sov	 	7	905.9	 15.3	14.6	0.6	11.8	11.3	0.5	62.29
		929)	2	sov	 	4	871.8	 15.3	14.6	0.6	11.8	11.3	0.5	62.37
`	320,	323,	_	501	 	•	0/1.0	 13.3	14.0	0.0	11.0	11.3	0.5	02.37
(929,	930)	1	sov	 	2	900.1	 18.9	18.0	0.8	14.6	14.0	0.6	62.30
		930)	2	sov	 	4	874.8	 18.9	18.1	0.8	14.6	14.0	0.6	62.29
(930,	931)	1	sov	 	2	889.0	 12.6	12.1	0.5	9.8	9.3	0.4	62.23
(930,	931)	2	sov	 	1	880.0	 12.6	12.1	0.5	9.7	9.4	0.4	62.44
-	-	7079)	1	sov	 	0	34.0	 4.2	3.2	1.0	3.3	2.5	0.8	42.05
(654,	7079)	2	sov	 	1	796.3	 3.6	3.3	0.4	2.8	2.5	0.3	49.07
			_											
		687)	1	sov	 	4	607.9	 6.3	6.2	0.1	4.8	4.8	0.1	51.66
(683,	687)	2	sov	 	2	631.9	 6.7	6.5	0.2	5.1	5.0	0.1	48.62
,	407	369)	1	sov	 	1	805.8	 5.0	4.7	0.3	3.9	3.6	0.2	50.16
	-	369)	2	SOV	 	1	765.6	 4.7	4.4	0.3	3.6	3.4	0.2	53.74
-	-	369)	3	sov	 	2	853.3	 4.9	4.7	0.3	3.8	3.6	0.2	50.72
`	,	505,	-	201		_	00010		- • •	•••			• • •	
(411,	416)	1	sov	 	2	364.6	 3.8	3.7	0.0	2.9	2.9	0.0	49.47
•	,	,												
(115,	117)	1	sov	 	0	310.4	 13.9	13.6	0.3	10.7	10.5	0.2	49.02
(382,	383)	1	sov	 	0	96.4	 3.7	3.4	0.3	2.9	2.7	0.2	36.29
(382,	383)	2	sov	 	2	1077.2	 4.1	3.7	0.4	3.2	2.9	0.3	33.01
						_								
(412,	414)	1	sov	 	0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.00
,	201	0271		0011		•	62.4	6.0	0.4	. .	4 7	0.3	4 2	22 66
-		937)	1	sov	 	0	62.4	 6.0	0.4	5.6	4.7	0.3	4.3	22.66
		937)	6	sov	 	2	1619.0 1039.2	 3.0	2.8 2.7	0.2	2.3	2.2 2.1	0.2	45.14 48.15
(281,	937)	7	sov	 	U	1039.2	 2.8	4.1	0.1	4.4	4.1	0.1	48.13

(383,	414)	1	sov			0	124.3		9.1	7.7	1.4	7.1	6.0	1.1	38.31
(383,		2	sov			5			9.0	7.9	1.1	6.9	6.1	0.8	39.00
(303)	/	-	501			-	101/13		3.0	,.,		0.5	0.1	0.0	33.00
(314,	553)	1	sov			4	1111.2		7.8	7.5	0.3	6.0	5.8	0.3	52.47
(553,	933)	1	sov			2	1107.6		10.4	9.8	0.5	8.0	7.6	0.4	47.94
(933,	934)	1	sov			2	1107.1		10.2	0.6	0.6		- 4		
(, , , , , , , , , , , , , , , , , , ,	,,	_	501				1107.1		10.2	9.6	0.6	7.8	7.4	0.4	47.01
/ 03F	0261					_									
(935,	-	1	sov			1	763.6		9.4	9.2	0.2	7.2	7.1	0.2	49.13
(935,	936)	2	sov			1	991.7		9.7	9.3	0.4	7.5	7.2	0.3	47.57
(934,	935)	1	sov			1	699.3		5.0	4.9	0.2	3.9	3.7	0.1	48.45
(934,	935)	6	sov			1	1056.7		5.2	4.9	0.3	4.0	3.8	0.2	47.05
(2227	,	•				_	1030.7		3.2	4. 9	0.3	4.0	3.8	0.2	47.05
/ 036	2001					•									
(936,	-	1	sov			0	814.5		7.6	7.5	0.2	5.9	5.8	0.1	49.24
(936,	309)	2	sov			3	942.0		7.9	7.6	0.3	6.1	5.9	0.3	47.35
(414,	415)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(414,	415)	9	sov			0	1169.8		4.5	4.2	0.3	3.5	3.2	0.2	41.76
·	,	-				•					0.5	3.3	3.4	0.2	41.70
/ 027	===\	1	sov				4555 0								
(937,	-					1	1567.0		4.8	4.4	0.4	3.7	3.4	0.3	48.54
(937,	555)	2	sov			2	1129.7		4.7	4.3	0.4	3.6	3.3	0.3	50.51
(111,	676)	1	SOV			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(111,	676)	6	sov			2	1573.5		8.5	8.1	0.4	6.6	6.3	0.3	52.94
(111,	676)	7	sov			1	1072.6		8.6	8.3	0.3	6.6	6.4	0.2	52.64
·/	,	•	20.			_	10,110		0.0	0.5	0.5	0.0	0.4	0.2	32.04
/ 416	161)		sov			•	260.0								
(416,	-	1				0	369.0		7.7	7.6	0.1	5.9	5.9	0.1	49.38
(416,	161)	9	sov			0	305.1		7.8	7.6	0.2	6.0	5.9	0.1	48.93
(162,	165)	1	sov			5	1531.5		9.7	9.5	0.3	7.5	7.3	0.2	63.21
(162,	165)	2	sov			5	1808.6		9.8	9.5	0.3	7.6	7.3	0.2	62.83
(162,		3	sov			4	1794.0		9.8	9.5	0.3	7.6	7.3	0.2	62.84
(162,	-	4	HOV	0	0	ō	0.0	0.0	0.0			0.0			
(102,	103)	*	HOV	U	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(165,	166)	1	sov			4	1565.7		8.1	7.9	0.2	6.2	6.1	0.2	63.31
(165,	166)	2	SOV			4	1724.5		8.1	7.9	0.2	6.3	6.1	0.2	63.18
(165,	166)	3	sov			4	1739.3		8.1	7.9	0.2	6.3	6.1	0.2	63.07
(165,	-	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(105)	100,	•	1101	v	•	•	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
/ 205	160)						4848 6								
(386,	-	1	sov			4	1717.6		8.7	8.1	0.7	6.7	6.2	0.5	58.64
(386,		2	sov			4	1738.7		8.3	7.9	0.4	6.4	6.1	0.3	61.56
(386,	167)	3	sov			4	1696.9		8.1	7.7	0.4	6.2	5.9	0.3	63.24
(386,	167)	4	HOV	17	17	0	17.0	17.0	8.0	8.0	0.0	6.2	6.2	0.0	63.61
(386,	-	9	sov			Ö	29.7		10.4	8.7	1.7	8.0	6.7	1.3	49.32
, 550,	_0,,	-	50.	_		,			-0.4	0.,		0.0	0.7	1.5	-3.34

(167,	168)	1	sov			3	1697.4		8.6	8.1	0.5	6.6	6.2	0.4	59.52
(167,	168)	2	sov			2	1766.9		8.3	7.9	0.3	6.4	6.1	0.3	61.68
(167,	168)	3	sov			3	1717.5		8.1	7.7	0.4	6.2	5.9	0.3	63.22
(167,	168)	4	HOV	17	17	0	17.0	17.0	8.0	8.0	0.0	6.2	6.2	0.0	63.69
(168,	169)	1	sov			5	1679.4		9.1	8.7	0.4	7.1	6.7	0.3	60.00
(168,	169)	2	sov			4	1762.1		8.9	8.5	0.3	6.8	6.6	0.3	61.81
(168,	169)	3	sov			4	1742.9		8.7	8.2	0.4	6.7	6.4	0.3	63.24
(168,	169)	4	HOV	17	17	0	17.0	17.0	8.6	8.6	0.0	6.6	6.6	0.0	63.66
(404,	170)	1	sov			1	287.1		3.6	3.6	0.0	2.8	2.8	0.0	54.08
(7018,	171)	1	sov			0	557.2		3.0	2.5	0.4	2.3	1.9	0.3	42.75
(171,	172)	1	sov			1	505.7		2.6	2.5	0.1	2.0	1.9	0.1	47.80
(172,	387)	1	sov			0	505.0		2.7	2.5	0.2	2.1	2.0	0.2	49.44
(7020,	174)	1	sov			0	304.6		3.3	3.0	0.3	2.5	2.3	0.2	45.80
(174,	175)	1	sov			0	281.0		3.3	3.3	0.1	2.6	2.5	0.1	49.40
(175,	386)	1	sov			1	280.4		3.8	3.6	0.2	2.9	2.8	0.1	51.86
(385,	173)	1	sov			0	825.0		3.3	3.2	0.1	2.5	2.5	0.1	53.07
(173,	7019)	1	sov			0	825.8		3.2	3.2	0.1	2.5	2.5	0.0	50.78
(170,	7017)	1	sov			0	287.4		3.7	3.7	0.0	2.9	2.9	0.0	51.22
(151,	-	1	sov			2	652.8		8.1	7.6	0.6	6.3	5.9	0.4	50.89
(151,	344)	2	sov			0	47.8		9.0	6.5	2.5	7.0	5.1	1.9	45.84
(344,	7026)	1	sov			0	11.0		4.3	3.0	1.3	3.3	2.3	1.0	33.14
(344,	7026)	2	sov			1	688.4		4.0	2.9	1.1	3.1	2.3	0.8	35.67
(7007,	208)	1	sov			0	144.3		2.9	2.5	0.4	2.3	1.9	0.3	38.66
(209,	180)	1	sov			0	130.0		3.7	3.5	0.1	2.8	2.7	0.1	51.60
(315,	-	1	sov			0	681.9		13.9	13.5	0.4	10.8	10.5	0.3	62.99
(315,		2	sov			2	1116.1		14.1	13.6	0.5	10.9	10.6	0.4	62.08
(315,		3	sov			1	1233.7		14.0	13.5	0.4	10.8	10.5	0.3	62.70
(315,	-	4	sov			3	1209.2		14.1	13.4	0.6	10.8	10.3	0.5	62.28
(315,	555)	5	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(313,	248)	1	sov			1	1546.4		12.1	11.2	0.9	9.4	8.6	0.7	59.80

(313, 248)	2	sov			3	1239.5		11.7	11.2	0.5	9.1	8.7	0.4	61.79
(313, 248)	3	sov			4	1267.8		11.5	11.2	0.3	8.9	8.7	0.3	62.63
(313, 248)	4	sov			4	1274.9		11.6	11.1	0.5	8.9	8.5	0.4	62.60
				0	_	0.0		0.0	0.0					
(313, 248)	5	HOV	0	U	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
/ 250 250)		~~~			•	1055 3		4.0	4.5					45 65
(258, 259)	1	sov			0	1057.3		4.8	4.3	0.5	3.7	3.3	0.4	45.67
(258, 259)	2	sov			1	281.9		5.0	4.6	0.3	3.8	3.6	0.3	43.79
(259, 260)	1	sov			0	911.3		9.5	9.0	0.5	7.3	6.9	0.4	51.53
(259, 260)	6	sov			1	989.5		9.3	8.9	0.4	7.2	6.9	0.3	52.84
(259, 260)	7	sov			0	541.9		9.2	9.0	0.2	7.1	7.0	0.2	53.32
(260, 261)	1	sov			0	858.2		8.8	8.4	0.4	6.8	6.5	0.3	52.65
(260, 261)	6	sov			0	1022.6		8.8	8.5	0.3	6.8	6.5	0.2	53.01
(260, 261)	7	sov			0	564.3		8.6	8.5	0.2	6.7	6.6	0.1	53.69
(261, 262)	1	sov			4	856.1		16.3	15.5	0.9	12.6	11.9	0.7	51.95
(262, 263)	1	sov			0	855.0		6.7	6.3	0.4	5.2	4.9	0.3	51.52
(263, 264)	1	sov			1	855.0		7.5	7.0	0.5	5.7	5.4	0.4	51.30
(7008, 625)	1	sov			0	1110.2		3.5	1.7	1.8	2.7	1.3	1.4	33.14
(403, 310)	1	sov			0	889.7		5.2	4.2	1.0	4.1	3.3	0.8	43.69
(403, 310)	2	sov			2	214.1		6.1	4.7	1.4	4.7	3.6	1.1	37.50
(307, 187)	1	sov			0	567.6		4.3	4.2	0.1	3.3	3.2	0.1	65.91
(307, 187)	2	sov			1	1206.6		4.6	4.4	0.2	3.6	3.5	0.2	60.67
(307, 187)	3	sov			0	1268.0		4.5	4.3	0.1	3.4	3.3	0.1	63.20
(307, 187)	4	sov			ō	1073.3		4.5	4.3	0.2	3.5	3.3	0.2	62.50
(307, 187)	5	HOV	0	0	Ö	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(307, 107,	-	1101	ŭ	•	·	0.0	0.0	0.0	0.0	0.0	0.0	•••	0.0	0.00
(264, 187)	1	sov			3	852.5		3.9	3.7	0.2	3.0	2.8	0.2	51.17
(204, 107)	-	504			3	032.3		3.3	3.,	0.2	3.0	2.0	0.2	51.17
(261, 189)	1	sov			0	986.4		7.8	7.5	0.2	6.0	5.8	0.2	52.97
(261, 189)	2	sov			ő	604.3		7.7	7.5	0.2	5.9	5.8	0.1	53.70
(201, 103)	_	504			·	004.5		,.,	7.5	0.2	3.3	3.0	0.1	33.70
(189, 265)	1	sov			1	940.0		8.3	8.0	0.3	6.4	6.2	0.2	48.89
	2	SOV			0	655.4		8.1	7.9	0.3	6.3	6.1	0.1	49.97
(189, 265)	4	SUV			U	655.4		8.1	1.9	0.2	0.3	0.1	0.1	43.3/
/ 26E 266	1	sov			0	907.2		6.6	6.4	0.2	5.1	4.9	0.2	44.25
(265, 266)	2	SOV			1	689.2		6.4	6.3	0.2	5.0	4.9	0.1	45.42
(265, 266)	4	SUV			1	009.2		0.4	0.3	0.1	5.0	4.9	0.1	43.44
/ 266 267	4	G011			•	066 1			0 5	0.3	6.0		0.2	42 10
(266, 267)	1	sov			0	866.1		8.8	8.5 8.4	0.3	6.8	6.6	0.2	43.18
(266, 267)	2	sov			0	733.7		8.5	8.4	0.2	6.6	6.5	0.1	44.43

(267,	268)	1	sov			1	846.4		8.2	7.9	0.3	6.4	6.1	0.2	43.09
(267,	268)	2	sov			2	751.6		8.0	7.8	0.2	6.2	6.0	0.2	44.31
(268,	269)	1	sov			2	747.3		13.8	12.4	1.4	10.7	9.6	1.1	44.34
(268,	269)	2	sov			1	846.1		13.9	12.1	1.8	10.7	9.4	1.4	44.14
(441,	397)	1	sov			0	625.1		3.4	3.2	0.2	2.6	2.5	0.2	50.90
(564,	399)	1	sov			5	1683.7		8.2	7.6	0.6	6.3	5.9	0.4	58.22
(564,	399)	2	sov			1	1693.2		7.8	7.4	0.4	6.0	5.7	0.3	61.37
(564,	399)	3	sov			1	958.3		7.6	7.3	0.3	5.8	5.6	0.2	63.09
(564,	399)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(564,	399)	9	sov			1	519.2		7.9	7.8	0.1	6.1	6.0	0.1	60.20
(399,	400)	1	sov			2	1173.3		4.8	4.5	0.4	3.7	3.4	0.3	59.76
(399,	400)	2	sov			3	1608.1		4.7	4.5	0.2	3.7	3.5	0.2	60.96
(399,	400)	3	sov			4	977.3		4.5	4.4	0.2	3.5	3.4	0.1	63.44
(399,	400)	4	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(269,	15)	1	sov			2	503.7		7.3	4.5	2.8	5.7	3.5	2.2	32.76
(269,	15)	2	sov			3	1088.0		6.8	4.5	2.2	5.2	3.5	1.7	35.62
(10,	401)	1	sov			0	959.3		9.3	8.6	0.7	7.2	6.7	0.5	50.86
(10,	401)	2	sov			0	214.2		9.0	8.6	0.5	7.0	6.6	0.4	52.20
(400,	10)	1	sov			5	1498.7		17.0	15.9	1.1	13.1	12.3	0.9	60.07
(400,	10)	2	sov			2	1078.5		16.1	15.5	0.6	12.4	12.0	0.5	63.62
(400,	10)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(400,	10)	9	sov			9	1176.1		17.6	16.2	1.4	13.6	12.5	1.0	58.21
(270,	7)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
	613,		1	sov			0	1184.6		2.8	2.7	0.1	2.1	2.1	0.1	52.73
(613,	7)	2	sov			0	1025.9		2.8	2.7	0.1	2.1	2.1	0.1	52.52
(1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(7,	-	6	sov			0	1225.0		2.8	2.7	0.1	2.2	2.1	0.1	52.80
(7,	8)	7	sov			0	986.0		2.8	2.8	0.1	2.2	2.1	0.1	53.00
(_	-	1	sov			0	1026.7		2.9	2.7	0.2	2.2	2.1	0.2	50.62
(-	-	2	sov			1	430.2		2.8	2.7	0.1	2.2	2.1	0.1	51.96
(8,	9)	6	sov			1	753.0		2.8	2.7	0.1	2.2	2.1	0.1	51.62
(9,	273)	1	sov			2	653.2		3.4	3.3	0.1	2.6	2.5	0.1	50.37
		274)	1	sov			1	317.7		3.5	3.5	0.0	2.7	2.7	0.0	47.35
(273,	274)	2	sov			1	333.2		3.8	3.7	0.1	2.9	2.8	0.1	44.42

(9.	271)	1	sov			2	800.6		4.0	3.9	0.1	3.1	3.0	0.1	48.25
ì		271)	2	sov			0	753.9		4.0	3.9	0.1	3.1	3.0	0.1	48.55
			_													
-	271,	-	1	sov			1	798.1		3.7	3.6	0.1	2.9	2.8	0.1	45.88
(271,	272)	2	sov			1	755.7		3.7	3.6	0.1	2.9	2.8	0.1	45.92
(415,	276)	1	sov			2	1172.0		3.7	3.4	0.3	2.9	2.6	0.2	41.96
(415,	276)	2	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(272,	276)	1	sov			1	790.9		8.4	8.1	0.2	6.4	6.3	0.2	43.56
(272,	276)	2	sov			3	761.7		8.3	8.1	0.2	6.4	6.3	0.2	43.74
•	276,		1	sov			2	1053.5		4.4	4.0	0.4	3.4	3.1	0.3	45.12
•	276,		9	sov			1	998.9		4.3	4.0	0.3	3.3	3.1	0.2	45.89
(276,	281)	10	sov			1	668.9		4.4	4.0	0.3	3.4	3.1	0.3	45.61
(937.	277)	1	sov			0	27.0		4.1	2.6	1.5	3.2	2.0	1.1	40.21
`	,,,	_,,,	-	201			·	-/.0			2.0		3.2	2.0		40.21
(264,	279)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
	_	-														
(274,	275)	1	sov			0	46.7		6.1	4.9	1.2	4.7	3.7	0.9	38.73
(274,	275)	2	sov			1	602.6		5.3	5.2	0.1	4.1	4.0	0.1	44.01
(275,	934)	1	sov			2	334.5		13.4	12.9	0.6	10.4	9.9	0.4	47.81
(275,	934)	2	sov			2	313.3		13.7	13.0	0.8	10.6	10.0	0.6	46.80
(490,	258)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
(490,	258)	6	sov			1	1339.9		3.5	3.0	0.4	2.7	2.3	0.3	42.29
,	304	259)	1	sov			2	599.3		9.4	9.0	0.4	7.3	6.9	0.3	52.75
•		259)	2	sov			0	503.8		9.5	9.2	0.3	7.4	7.1	0.2	52.53
'	304,	233,	-	501			·	303.0		5.5		0.5	,		•••	32.00
(278.	490)	1	sov			0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
`		,	_													
(27,	28)	1	sov			3	1181.2		5.4	5.1	0.3	4.2	3.9	0.3	59.57
(-	28)	2	sov			3	1388.7		5.1	4.8	0.2	3.9	3.7	0.2	63.26
(27,	28)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	_								•							
(28,	29)	1	sov			2	1175.7		4.5	4.3	0.2	3.5	3.4	0.2	60.77
(28,	29)	2	sov			3	1390.5		4.4	4.2	0.2	3.4	3.2	0.1	63.29
(28,	29)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(29,	30)	1	sov			3	1170.7		5.1	4.9	0.2	3.9	3.8	0.2	61.11
(30)	2	sov			4	1389.1		4.9	4.7	0.2	3.8	3.7	0.2	63.19
(29,	30)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00

(30,	31)	1	sov			1	1183.3		5.0	4.8	0.2	3.9	3.7	0.2	60.99
ì	30,	31)	2	sov			1	1376.2		4.8	4.6	0.2	3.7	3.6	0.2	63.08
ì	-	31)	3	HOV	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
`	50,	31,	•		•	•	•		• • • • • • • • • • • • • • • • • • • •		• • • •					
(23,	24)	1	sov			4	1679.6		7.1	6.7	0.4	5.5	5.1	0.3	60.86
ì		24)	2	sov			1	1343.8		6.9	6.6	0.3	5.3	5.1	0.3	62.63
ì	_	24)	3	HOV	0	0	ō	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(-		9	sov			1	1137.9								
,	43,	24)	9	SUV				1137.9		7.1	6.7	0.4	5.5	5.2	0.3	61.14
(31,	32)	1	sov			0	1183.4		4.1	3.9	0.2	3.1	3.0	0.1	60.85
(2	sov			1	1375.7		3.9	3.9	0.2				
(-	-	3	HOV	0	0	0	0.0	0.0				3.0	2.9	0.1	62.93
,	31,	34)	3	HOV	U	U	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
(283,	632)	1	sov			6	814.8		8.9	8.6	0.3	6.9	6.7	0.2	53.57
-	283,	-	2	sov			4	745.5		8.9	8.7	0.2	6.9	6.7	0.2	53.19
`	200,	052,	-	501			•	/45.5		0.5	0.7	0.2	0.9	0.7	0.2	33.19
(284,	283)	1	sov			4	820.1		9.6	9.3	0.3	7.4	7.2	0.2	53.56
(284,	283)	2	sov			3	740.5		9.7	9.4	0.2	7.5	7.3	0.2	53.17
•	,	,	_				_								•••	33127
(285,	284)	1	sov			1	817.7		6.8	6.6	0.2	5.2	5.1	0.1	53.74
(285,	284)	2	sov			2	743.0		6.9	6.7	0.2	5.3	5.2	0.1	53.15
(286,	285)	1	sov			1	826.1		11.6	11.3	0.3	8.9	8.7	0.2	53.89
(286,	285)	2	sov			1	733.4		11.8	11.5	0.3	9.1	8.9	0.2	53.14
(27,	286)	1	sov			6	842.1		9.1	8.8	0.2	7.0	6.8	0.2	53.97
(27,	286)	2	sov			5	720.2		9.2	9.0	0.2	7.1	7.0	0.2	53.03
(596,	111)	1	sov			2	1066.8		7.7	7.5	0.2	5.9	5.8	0.1	55.58
(596,	111)	2	sov			3	1581.1		8.4	8.0	0.4	6.5	6.2	0.3	50.78
(673,	675)	1	sov			1	1097.1		5.4	5.1	0.3	4.2	3.9	0.3	51.01
	-															
(675,	287)	1	sov			2	1082.4		9.7	9.3	0.4	7.5	7.2	0.3	52.67
		287)	9	sov			2	1086.9		9.6	9.3	0.3	7.4	7.2	0.2	53.26
(287,	289)	1	sov			4	1098.0		9.6	9.3	0.3	7.4	7.2	0.2	53.18
-	-	289)	2	sov			4	1073.0		9.7	9.3	0.4	7.5	7.2	0.3	52.51
(289.	294)	1	sov			4	1102.6		13.0	12.5	0.5	10.0	9.7	0.4	52.91
	289,		2	sov			5	1067.7		13.1	12.5	0.5	10.1	9.7	0.4	52.54
•	,	,														
(294,	296)	1	sov			3	1108.9		11.7	11.3	0.4	9.1	8.7	0.3	52.76
(294,	296)	2	sov			6	1063.2		11.8	11.3	0.5	9.1	8.7	0.4	52.41
•																
(296,	297)	1	sov			1	1121.8		17.7	16.9	0.8	13.6	13.0	0.6	52.58
-	_	297)	6	sov			0	1050.3		17.8	17.0	0.8	13.7	13.1	0.6	52.16
•		•														

CORSIM & SYNCHRO INTERSECTION DATA

•			

2018 ALTERNATIVE A AM Peak

				·
•				

BAKERSFIELD CENTENNIAL CORRIDOR TRAFFIC OPERATIONS ANALYSIS YR2018 Alt.A INTERSECTION ANALYSIS RESULTS - AM PEAK

	Demand	CORSIM Served	÷			
Location	Volume	Volume	% Served in Model	Control Delay	LOS (Approach)	LOS (Overall)
	(vph)	(vph)		(sec/veh)		,
1. I-5 SB Ramps @ Stockdale Hwy						
SB - I-5 SB Off ramp - STOP Control	195	190	97%	4.7	A	
EB - Stockdale Hwy	45	45	100%	0.0	Α	Α
WB - Stockdale Hwy	115	104	90%	0.3	Α	
Intersection Total	355	339	95%			
2. I-5 NB Ramps @ Stockdale Hwy						
NB - I-5 NB Off Ramp - STOP Control	42	40	95%	6.4	Α	
EB - Stockdale Hwy	229	220	96%	0.1	A	Α
WB - Stockdale Hwy	374	359	96%	0.0	A	
Intersection Total	645	619	96%			
4. Enos Ln @ Stockdale Hwy						
NB - Enos Ln	341	340	100%	26.5	С	
SB - Enos Ln	269	266	99%	16.5	В	
EB - Stockdale Hwy	243	240	99%	11.1	В	С
WB - Stockdale Hwy	614	577	94%	21.5	c	
Intersection Total	1,467	1,423	97%	20.5		
5. SR- 43 @ I-5 NB Ramps	 		-+ <u>-</u>	20.5		
NB - SR- 43	307	304	99%	0.1	Α	
SB - SR-43	638	638	100%	0.0	Ä	Α
WB - I-5 NB Off Ramp - STOP Control	49	45	92%	5.5	A	
Intersection Total	994	987	99%			
6. SR-43 @ I-5 SB Ramps						
NB - SR- 43	299	299	100%	0.0	Α	
SB - SR-43	574	567	99%	0.3	A	Α
B - I-5 SB Ramp - STOP Control	21	20	95%	8.1	A	
Intersection Total	894	886	99%		 	
7. Nord Rd @ Stockdale Hwy			-+		 	
NB - Nord Rd	99	99	100%	6.8	Α	
SB - Nord Rd	107	105	98%	33.7	c	_
EB - Stockdale Hwy	486	479	99%	48.4	D	D
WB - Stockdale Hwy	684	699	102%	37.8	D	
Intersection Total	1,376	1,382	100%	39.5	 -	
9. Heath Rd @ Stockdale Rd						
NB - Heath Rd	88	88	100%	8.8	Α	
SB - Heath Rd	351	347	99%	50.1	D	
EB - Stockdale Hwy	735	720	98%	5.6	A	В
WB - Stockdale Hwy	753	749	99%	9.6	A	
Intersection Total	1,927	1,904	99%	3.0		·

YR2018 Alt.A INTERSECTION ANALYSIS RESULT Location	Demand Volume	CORSIM Served Volume	% Served in Model	Control Delay	LOS (Approach)	LOS (Overall)
	(vph)	(vph)		(sec/veh)		
10. WSP @ Stockdale Off/ On						
NB - Stockdale Hwy	370	367	99%	15.6	В	
EB - Stockdale Hwy	1,139	1,102	97%	5.7	Α	Α
WB - WSP	656	655	100%	6.1	Α	
Intersection Total	2,165	2,124	98%	7.4		
14. Allen Rd @ Brihmall Rd			†			
NB - Allen Rd	1,241	1,123	90%	21.1	С	
SB - Allen Rd	1,424	1,416	99%	27.4	C	
EB - Brihmall Rd	528	529	100%	18.3	В	С
WB - Brihmall Rd	267	268	100%	19.4	В	
Intersection Total	3,460	3,336	96%	24.9		
15. Allen Rd @ WSP WB Ramps	·		†			
NB - Allen Rd	464	442	95%	55.3	E	
SB - Allen Rd	1,636	1,642	100%	6.7	Ā	В
WB - Off Ramp/On Ramp WSP WB	1,086	984	91%	7.7	A	J
Intersection Total	3,186	3,068	96%	14.0		
16. Allen Rd @ WSP EB Ramps	·		† 			
NB - Allen Rd	1,018	994	98%	8.6	Α .	
SB - Allen Rd	1,826	1,766	97%	26.3	С	В
EB - WSP EB off Ramp	60	66	110%	22.9	С	_
Intersection Total	2,904	2,826	97%	19.9		
18. Allen Rd @ Stockdale Hwy			+			
NB - Allen Rd	402	400	100%	23.3	С	
SB - Allen Rd	647	603	93%	23.7	С	_
EB - Stockdale Hwy	826	816	99%	30.0	С	С
WB - Stockdale Hwy	649	644	99%	18.8	В	
Intersection Total	2,524	2,463	98%	24.4	 -	
20. Calloway Dr @ Brimhall Rd			Ť			
NB - Calloway Dr	1,463	- 1,426	97%	28.3	С	
SB - Calloway Dr	1,406	1,411	100%	26.6	С	_
EB - Brimhall Rd	930	925	99%	25.0	С	С
WB - Brimhall Rd	482	478	99%	23.1	С	
Intersection Total	4,281	4,240	99%	26.4		
21. Calloway Dr @ WSP WB Ramps			†			
NB - Calloway Dr	1,017	1,031	101%	30.1	С	
SB - Calloway Dr	1,543	1,540	100%	17.5	В	_
EB - WSP WB on Ramp	950	949	100%	15.8	В	В
WB - WSP WB Off Ramp	650	608	94%	4.5	Α	
Intersection Total	4,160	4,128	99%	18.3		

BAKERSFIELD CENTENNIAL CORRIDOR TRAFFIC OPERATIONS ANALYSIS YR2018 AILA INTERSECTION ANALYSIS RESULTS - AM PEAK

TRZUTO ARLA INTERSECTION ANALTSIS RESCET	Demand	CORSIM Served		Cantral Dalan		
Location	Volume	Volume	% Served in Model	Control Delay	LOS (Approach)	LOS (Overall)
	(vph)	(vph)		(sec/veh)		
22. Calloway Dr @ WSP EB Ramps						
NB - Calloway Dr	912	912	100%	7.0	Α	
SB - Calloway Dr	1,636	1,647	101%	15.9	В	В
EB - WSP EB off Ramp	526	553	105%	19.6	В	
Intersection Total	3,074	3,112	101%	15.6		
23. Calloway Dr @ Stockdale Hwy	T		T			
NB - Calloway Dr	1,542	1,543	100%	45.9	D	
SB - Calloway Dr	2,057	2,015	98%	44.2	D	5
EB - Stockdale Hwy	1,345	1,325	99%	34.4	С	D
WB - Stockdale Hwy	548	542	99%	30.5	С	
Intersection Total	5,492	5,425	99%	47.6		
25. Coffee Rd @ Brimhall Rd			T			
NB - Coffee Rd	1,345	1,422	106%	23.1	С	
SB - Coffee Rd	1,526	1,527	100%	22.5	С	
EB - Brimhall Rd	614	609	99%	17.6	В	С
WB - Brimhall Rd	1,670	1,695	101%	23.4	С	
Intersection Total	5,155	5,253	102%	22.4		
27. Coffee Rd @ WSP EB Ramp	-					
NB - Coffee Rd	1,061	1,062	100%	27.0	С	
SB - Coffee Rd	2,015	2,057	102%	8.9	Α	В
EB - WSP EB off Ramp	641	673	105%	16.4	В	
Intersection Total	3,717	3,792	102%	16.9		
28. Coffee Rd @ Truxtun Ave			T			
NB - Coffee Rd	1,804	1,808	100%	9.0	Α	
SB - Coffee Rd	1,411	1,474	104%	14.2	В	В
WB - Truxtun Ave	508	504	99%	25.9	С	
Intersection Total	3,723	3,786	102%	13.3		
31. Mohawk St @ WSP WB Ramps			T			
NB - Mohawk St						
SB - Mohawk St						
Intersection Total						
32. Mohawk St @ WSP EB Ramps						
NB - Mohawk St	927	923	100%	10.6	В	
SB - Mohawk St	451	431	96%	30.8	С	С
EB - WSP EB off Ramp	1,205	1,166	97%	9.8	Α	
Intersection Total	2,583	2,520	98%	21.5		

Location	Demand Volume	CORSIM Served Volume	% Served in Model	Control Delay	LOS (Approach)	LOS (Overall)
	(vph)	(vph)		(sec/veh)	1	
33. Mohawk St @ Truxtun Ave						
NB - Mohawk St	1,522	1,525	100%	30.0	С	
SB - Mohawk St	1,305	1,257	96%	20.7	С	•
EB - Truxtun Ave	499	495	99%	23.6	С	С
WB - Truxtun Ave	449	450	100%	36.7	D	
Intersection Total	3,775	3,727	99%	26.8		
36. Airport Dr & State Rd/SR204 WB Ramp		 _	+			
NB - Airport Dr	1,377	1,351	98%	30.1	С	
SB - Airport Dr	1,433	1,423	99%	32.4	C	
EB - State Rd	211	211	100%	14.1	В	С
WB - SR204 WB Off Ramp	711	703	99%	14.9	В	
Intersection Total	3,732	3,688	99%	23.6	<u>-</u>	
37. Buck Owens Blvd & SR99 NB Ramp			+			
NB - SR99 NB Off Ramp	1,505	1,471	98%	8.7	Α	
WB - Buck Owens Blvd	487	470	97%	9.8	A	Α
Intersection Total	1,992	1,941	97%	- 9.3	⊣−−−	
38. Rio Mirada Dr & Buck Owens Blvd			+			
NB - Buck Owens Blvd	476	481	101%	31.2	С	
SB - Buck Owens Blvd	117	115	98%	36.7	D	
EB - Rio Mirada Dr	730	747	102%	15.9	В	С
WB - Rio Mirada Dr	147	146	99%	26.0	C	
Intersection Total	1,470	1,489	101%	23.4	<u>-</u>	
39. SR99 NB Ramps/Sillect Ave & Buck Owens Blvd			+			
NB - Buck Owens Blvd	948	855	90%	27.2	С	
SB - Buck Owens Blvd	422	409	97%	47.5	D	
EB - SR99 NB Off Ramp	590	511	87%	33.7	C	С
WB - Sillect Ave	192	193	101%	40.0	D	
Intersection Total	2,152	1,968	91%	34.4	 	
40. Rosedale Hwy & Camino del Rio Ct	· 		+	<u>-</u>	 -	
NB - Camino del Rio Ct	216	213	99%	34.3	С	
SB - Camino del Rio Ct	145	140	97%	47.2	D	
EB - Rosedale Hwy	2,469	2,462	100%	17.1	В	С
WB - Rosedale Hwy	2,303	2,239	97%	19.1	В	
Intersection Total	5.133	5,054	98%	27.1		

	Demand	CORSIM Served		Control Delay		
Location	Volume	Volume	% Served in Model		LOS (Approach)	LOS (Overall)
	(vph)	(vph)		(sec/veh)		
41. Rosedale Hwy & SR99 SB Ramp						
SB - SR99 SB Off Ramp	660	673	102%	17.4	В	
EB - Rosedale Hwy	1,873	1,865	100%	11.3	В	В
WB - Rosedale Hwy	1,883	1,823	97%	24.2	c	
Intersection Total	4,416	4,361	99%	17.6		
42. Rosedale Hwy & SR99 NB Ramp/Buck Owens Blvd						
NB - SR99 NB Off Ramp	1,880	1,746	93%	45.0	D	
SB - Buck Owens Blvd	491	465	95%	18.2	В	С
EB - Rosedale Hwy	2,112	2,107	100%	15.7	В	C
WB - 24th St	2,127	2,108	99%	43.3	D	
Intersection Total	6,610	6,426	97%	25.9	 	
43. 24th St & Oak St			T		 	
NB - Oak St	1,273	1,282	101%	34.3	С	
SB - Oak St	76	78	103%	54.9	D	•
EB - 24th St	2,753	2,672	97%	41.9	D	С
WB - 24th St	2,656	2,627	99%	20.5	С	
Intersection Total	6,758	6,659	99%	32.1		
45. Oak St @ Truxtun Ave						
NB - Oak St	1,599	1,650	103%	27.5	С	
SB - Oak St	1,277	1,284	101%	25.5	С	С
EB - Truxtun Ave	1,591	1,541	97%	31.4	С	C
WB - Truxtun Ave	587	588	100%	45.5	· D	
Intersection Total	5,054	5,063	100%	30.3		
46. California Ave & Chester Ln						
NB - Chester Ln	164	161	98%	31.8	С	
SB - Chester Ln	155	153	99%	35.4	D	С
EB - California Ave	1,467	1,465	100%	22.6	С	Ū
WB - California Ave	1,714	1,801	105%	17.2	ВВ	
Intersection Total	3,500	3,580	102%	20.8		
47. California Ave & SR99 SB Ramps/Real Rd						
NB - Real Rd	526	524	100%	23.5	С	
SB - SR99 SB Off Ramp	1,170	1,208	103%	18.6	В	D
EB - California Ave	1,583	1,581	100%	71.4	E	J
WB - California Ave	1,088	1,170	108%	40.4	D	
Intersection Total	4,367	4,483	103%	43.5		

	Demand	CORSIM Served	1	Control Delay		
Location	Volume	Volume	% Served in Model	Control Delay	LOS (Approach)	LOS (Overall)
	(vph)	(vph)		(sec/veh)		
18. California Ave & SR99 NB Ramps						
NB - SR99 NB Off Ramp	970	1,044	108%	13.6	В	
SB - Extended Stay Hotel	57	58	102%	28.5	С	С
EB - California Ave	1,117	1,302	117%	23.8	C	C
NB - California Ave	1,313	1,281	98%	37.1	D	
ntersection Total	3,457	3,685	107%	25.6		
19. California Ave & Oak St			T			
NB - Oak St	1,117	1,111	99%	41.2	D	
SB - Oak St	829	851	103%	17.2	В	6
EB - California Ave	1,756	1,949	111%	22.8	С	C ,
VB - California Ave	857	856	100%	32.2	С	
ntersection Total	4,559	4,767	105%	27.8		
51. Stockdale Hwy & Real Rd						
NB - Real Rd	240	240	100%	48.1	D	
SB - Real Rd	439	441	100%	33.1	С	D
B - Stockdale Hwy	1,214	1,211	100%	29.6	С	U
VB - Stockdale Hwy	1,114	1,126	101%	40.5	D	
ntersection Total	3,007	3,018	100%	39.9		
53. Stockdale Hwy & Oak St/Wible Rd						
NB - Wible Rd	555	554	100%	32.4	С	
SB - Oak St	429	430	100%	21.1	С	С
EB - Stockdale Hwy	1,151	1,122	97%	16.9	В	C
NB - Stockdale Hwy	887	877	99%	27.9	С	
ntersection Total	3,022	2,983	99%	23.6		
57. Ming Ave & Real Rd						
NB - Real Rd	311	309	99%	26.6	С	
SB - Real Rd	445	440	99%	34.9	С	С
EB - Ming Ave	1,662	1,666	100%	26.2	С	
NB - Ming Ave	1,602	1,554	97%	34.5	C	<u></u>
ntersection Total	4,020	3,969	99%	30.4		
58. Ming Ave & SR99 SB Ramps	<u>-</u>					
EB - Ming Ave	1,887	1,888	100%	9.3	Α	Α
NB - Ming Ave	987	982	99%	4.4	A	
ntersection Total	2,874	2,870	100%	7.6		
59. Ming Ave & Wible Rd						
NB - Wible Rd	657	663	101%	21.6	С	
6B - Wible Rd	362	362	100%	27.6	С	В
EB - Ming Ave	2,198	2,157	98%	12.8	В	Ð
NB - Ming Ave	1,064	1,054	99%	13.3	ВВ	
Intersection Total	4,281	4,236	99%	15.6		

BAKERSFIELD CENTENNIAL CORRIDOR TRAFFIC OPERATIONS ANALYSIS YR2018 AILA INTERSECTION ANALYSIS RESULTS - AM PEAK

	Demand	CORSIM Served		Control Delay	100 mm (100 mm	
Location	Volume	Volume	% Served in Model	Control Delay	LOS (Approach)	LOS (Overall)
	(vph)	(vph)		(sec/veh)		
60. Ming Ave & SR99 NB Ramps						
NB - Sears	65	63	97%	27.3	С	
SB - SR99 SB Off Ramp	740	711	96%	16.9	В	С
EB - Ming Ave	2,033	2,070	102%	32.0	С	C
WB - Ming Ave	779	783	101%	11.1	В	
Intersection Total	3,617	3,627	100%	24.4		
61. Ming Ave & Castro Ln						
NB - Castro Ln	82	81	99%	15.2	В	
SB - Castro Ln	180	177	98%	13.7	В	
EB - Ming Ave	1,292	1,267	98%	25.7	С	С
WB - Ming Ave	676	674	100%	44.0	D	
Intersection Total	2,230	2,199	99%	30.0		
66. Brundage Ln & H St			† 			
NB - H St	1,169	1,190	102%	16.4	В	
SB - H St	440	441	100%	32.1	С	_
EB - Brundage Ln	739	738	100%	30.0	С	С
WB - Brundage Ln	577	582	101%	26.7	С	
Intersection Total	2,925	2,951	101%	24.2		
67. SR58 WB Ramp & H St			†			
NB - H St	1,109	1,096	99%	4.1	Α	
SB - H St	689	688	100%	41.8	D	С
WB - Richland St	805	813	101%	35.5	D	
Intersection Total	2,603	2,597	100%	23.9		
68. SR58 EB Ramp & H St						
NB - H St	1,200	1,197	100%	21.2	С	
SB - H St	739	785	106%	9.1	Α	С
EB - SR58 EB Off Ramp	625	629	101%	50.4	D	
Intersection Total	2,564	2,611	102%	24.6		
70. Brundage Ln & Chester Ave						
NB - Chester Ave	893	871	98%	18.9	В	
SB - Chester Ave	418	416	100%	38.8	D	_
EB - Brundage Ln	654	675	103%	33.3	С	С
WB - Brundage Ln	542	539	99%	28.6	С	
Intersection Total	2,507	2,501	100%	31.1		
71. SR58 WB Ramp & Chester Ave			†			
NB - Chester Ave	790	813	103%	4.2	Α	
SB - Chester Ave	559	548	98%	31.0	c	В
WB - Richland St	975	922	95%	25.8	C	
Intersection Total	2,324	2,283	98%	20.0	-	

	Demand	CORSIM Served		Control Delay		
Location	Volume	Volume	% Served in Model	danaorbalay	LOS (Approach)	LOS (Overall)
	(vph)	(vph)		(sec/veh)		
72. SR58 EB Ramp & Chester Ave						
NB - Chester Ave	808	804	100%	28.6	C	
SB - Chester Ave	692	628	91%	11.4	В	С
EB - Frontage Rd	773	806	104%	34.0	c	
Intersection Total	2,273	2,238	98%	25.7		
74. Brundage Ln & Union Ave			T			
NB - Union Ave	1,564	1,496	96%	43.2	D	
SB - Union Ave	1,576	1,576	100%	32.5	С	
EB - Brundage Ln	437	435	100%	43.0	D	С
WB - Brundage Ln	1,008	1,030	102%	13.2	В	
Intersection Total	4,585	4,537	99%	32.7		
75. Brundage Ln & SR58 WB Ramps (Union Ave)			· †			
NB - SR58 WB Off Ramp	670	670	100%	8.0	Α	
SB - Liggett St	86	89	103%	28.0	C	,
EB - Brundage Ln	435	413	95%	26.3	С	С
WB - Brundage Ln	506	508	100%	71.9	E	
Intersection Total	1,697	1,680	99%	32.9		
76. SR58 EB Ramp & Union Ave			†			
NB - Union Ave	1,375	1,370	100%	16.8	В	
SB - Union Ave	993	1,043	105%	11.1	В	В
EB - SR58 EB Off Ramp	780	711	91%	12.5	В	
Intersection Total	3,148	3,124	99%	13.9	 -	
77.Cottonwood Rd & Brundage Ln			·†		†	
NB - Cottonwood Rd	609	580	95%	15.3	В	
SB - Cottonwood Rd	187	185	99%	31.4	C ·	
EB - Brundage Ln	213	214	100%	33.1	С	С
WB - Brundage Ln	492	485	99%	24.8	С	8 8 8 8 8 8 8
Intersection Total	1,501	1,464	98%	23.1		
78. Brundage Ln & SR58 WB Ramps (Cottonwood Rd)			T			<u> </u>
NB - SR58 WB Off Ramp	255	255	100%	22.2	С	2
SB - Driveway	17	16	94%	38.6	D	С
EB - Brundage Ln	569	512	90%	20.4	С	C
WB - Brundage Ln	375	371	99%	26.8	С	
Intersection Total	1,216	1,154	95%	23.1		
79. Cottonwood Rd & SR 58 EB Off Ramp						
NB - Cottonwood Rd	627	627	100%	12.0	В	
SB - Cottonwood Rd	364	376	103%	8.4	Α	В
EB - SR-58 EB off Ramp	415	419	101%	12.4	В	
Intersection Total	1,406	1,422	101%	11.2	 -	

	۶	-	•	•	4-	*	4	†	1	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1/1/2	ተተተ	77	75	ተተ	74	14.14	ተተ _ጉ		ايوليو	ተተጉ	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lane Util. Factor	0.97	0.91	1.00	0.97	0.95	1.00	0.97	0.91		0.97	0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.97		1.00	0.99	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	3433	4803	1538	3213	3112	1442	3367	4748		3155	4903	
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	3433	4803	1538	3213	3112	1442	3367	4748		3155	4903	
Volume (vph)	112	429	161	225	275	122	175	675	203	132	996	46
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	122	466	175	245	299	133	188	726	218	142	1071	49
RTOR Reduction (vph)	0	0	10	0	0	19	0	0	0	0	0	0
Lane Group Flow (vph)	122	466	165	245	299	114	188	944	0	142	1120	0
Heavy Vehicles (%)	2%	8%	5%	9%	16%	12%	4%	5%	7%	11%	5%	7%
Turn Type	Prot		Perm	Prot		Perm	Prot			Prot		
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			2			6						
Actuated Green, G (s)	6.8	33.0	33.0	11.3	37.5	37.5	9.3	29.6		8.0	28.3	
Effective Green, g (s)	8.1	36.0	36.0	12.6	40.5	40.5	10.2	32.6		8.9	31.3	
Actuated g/C Ratio	0.08	0.34	0.34	0.12	0.38	0.38	0.10	0.31		0.08	0.30	
Clearance Time (s)	5.3	7.0	7.0	5.3	7.0	7.0	4.9	7.0		4.9	7.0	
Vehicle Extension (s)	2.0	6.0	6.0	2.0	5.3	5.3	2.0	3.1		2.0	2.4	
Lane Grp Cap (vph)	262	1630	522	382	1188	550	324	1459		265	1446	
v/s Ratio Prot	c0.04	0.10		c0.08	0.10		c0.06	0.20		0.05	c0.23	
v/s Ratio Perm			0.11			0.09						
v/c Ratio	0.47	0.29	0.32	0.64	0.25	0.21	0.58	0.65		0.54	0.77	
Uniform Delay, d1	46.9	25.6	25.9	44.6	22.4	22.0	45.9	31.8		46.6	34.2	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.5	0.4	1.6	2.8	0.5	0.9	1.7	1.0		1.0	2.5	
Delay (s)	47.4	26.1	27.5	47.3	22.9	22.9	47.6	32.8		47.7	36.7	
Level of Service	D	С	С	D	С	С	D	С		D	D	
Approach Delay (s)		29.8			31.8			35.2			37.9	
Approach LOS		С			С			D			D	
Intersection Summary												
HCM Average Control D	elay		34.4	H	ICM Le	vel of Se	ervice		С			
HCM Volume to Capacit	ty ratio		0.59									
Actuated Cycle Length (s)		106.1	S	Sum of I	ost time	(s)		20.0			
Intersection Capacity Ut			53.4%			el of Ser			Α			
Analysis Period (min)			15									

5.	*	-	7	1	-		1	1	-	-	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ሻ	4		7	111	7	4	111	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util, Factor		1.00	(1)	1.00	1.00	Situal	1.00	0.91	1.00	1.00	0.91	1.00
Frt		0.98		1.00	0.85		1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected		0.96	13	0.95	1.00	最大工	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1748	20.7.7	1770	1585		1770	5085	1583	1770	5085	1583
Flt Permitted	250	0.46	3855UP	0.73	1.00	SEPTIME.	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)		833		1359	1585		1770	5085	1583	1770	5085	1583
Volume (vph)	120	15.13	25	25	35613	166	25	731	53	87	596	46
Peak-hour factor, PHF	0.84	0.84	0.84	88.0	0.88	0.88	0.93	0.93	0.93	0.92	0.92	0.92
Adj. Flow (vph)	143	125.1	30	28	1	189	27	786	57	95	648	50
RTOR Reduction (vph)	0	10	0	0	153	0	0	0	12	0	0	4
Lane Group Flow (vph)	0	164	0	28	37	0	27	786	45	95	648	46
Turn Type	Perm			Perm			Prot		Perm	Prot		Perm
Protected Phases		4		200	8	3-100	- 5	2	N. T.	1	6	
Permitted Phases	4			8	0.0				2			6
Actuated Green, G (s)		19.3		19.3	19.3		4.8	52.7	52.7	16.0	63.9	63.9
Effective Green, g (s)		19.3		19.3	19.3		4.8	52.7	52.7	16.0	63.9	63.9
Actuated g/C Ratio		0.19	-	0.19	0.19		0.05	0.53	0.53	0.16	0.64	0.64
Clearance Time (s)		4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Vehicle Extension (s)	-	3.0	10 h	3.0	3.0	- Para	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)		161		262	306		85	2680	834	283	3249	1012
v/s Ratio Prot		56	YPL	1	0.12		0.02	c0.15		c0.05	0.13	SET.
v/s Ratio Perm		c0.21		0.02					0.04		2007.00	0.03
v/c Ratio		1.02	Foder	0.11	0.12		0.32	0.29	0.05	0.34	0.20	0.05
Uniform Delay, d1		40.4		33.2	33.4		46.0	13.2	11.5	37.3	7.5	6.7
Progression Factor		1.00	50 100	1.00	1.00	(16.00)	1.25	0.87	0.90	1.00	1.00	1.00
Incremental Delay, d2		76.4		0.2	0.2		1.7	0.2	0.1	0.7	0.1	0.1
Delay (s)		116.8		33.4	33.5	162 = 4	59.1	11.7	10.4	38.0	7.6	6.8
Level of Service		F		C	C		. E	В	В	D	Α	A
Approach Delay (s)		116.8		-1	33.5			13.1			11.2	- 11
Approach LOS		F			C			В			В	
Intersection Summary	1				Mark I	200					STATE OF THE PARTY.	
HCM Average Control D		10 0000	23.3	F	1CM Le	vel of S	ervice		C			
HCM Volume to Capaci			0.47	State	车相		1000		-87	1115	17-11 2	7-
Actuated Cycle Length	(s)		100.0		Sum of I	ost time	(s)		12.0			
Intersection Capacity Ut			50.8%	7	CU Lev	el of Se	rvice		Α	1 10		4
Analysis Period (min)			15									
c Critical Lane Group												

	۶	-	•	1	←	*	4	†	<i>></i>	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሕ ሻ	ተተተ	74	ሻሻ	ተተተ	75	ሻሻ	ተ ቀጉ		الوالم	ተተተ	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Lane Util. Factor	0.97	0.91	1.00	0.97	0.91	1.00	0.97	0.91		0.97	0.91	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.96		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	3433	4673	1583	3183	4396	1468	3155	4739		3273	4940	1468
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	3433	4673	1583	3183	4396	1468	3155	4739		3273	4940	1468
Volume (vph)	152	1106	267	234	627	115	203	817	281	363	916	101
Peak-hour factor, PHF	0.94	0.94	0.94	0.93	0.93	0.93	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	162	1177	284	252	674	124	216	869	299	386	974	107
RTOR Reduction (vph)	0	0	23	0	0	14	0	0	0	0	0	10
Lane Group Flow (vph)	162	1177	261	252	674	110	216	1168	0	386	974	97
Heavy Vehicles (%)	2%	11%	2%	10%	18%	10%	11%	5%	6%	7%	5%	10%
Turn Type	Prot		Perm	Prot		Perm	Prot			Prot		Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			2			6						4
Actuated Green, G (s)	12.3	34.8	34.8	6.0	28.5	28.5	8.1	34.0		8.8	34.7	34.7
Effective Green, g (s)	14.6	37.7	37.7	8.3	31.4	31.4	10.3	37.0		11.0	37.7	37.7
Actuated g/C Ratio	0.13	0.34	0.34	0.08	0.29	0.29	0.09	0.34		0.10	0.34	0.34
Clearance Time (s)	6.3	6.9	6.9	6.3	6.9	6.9	6.2	7.0		6.2	7.0	7.0
Vehicle Extension (s)	2.0	5.9	5.9	2.0	6.5	6.5	2.0	4.3		2.0	4.3	4.3
Lane Grp Cap (vph)	456	1602	543	240	1255	419	295	1594		327	1693	503
v/s Ratio Prot	0.05	c0.25		c0.08	0.15		0.07	c0.25		c0.12	0.20	
v/s Ratio Perm			0.18			0.08						0.07
v/c Ratio	0.36	0.73	0.48	1.05	0.54	0.26	0.73	0.73		1.18	0.58	0.19
Uniform Delay, d1	43.4	31.8	28.4	50.9	33.2	30.4	48.5	32.1		49.5	29.6	25.4
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	0.2	2.4	1.8	71.8	1.2	1.1	7.8	3.0		108.2	1.4	0.9
Delay (s)	43.6	34.2	30.3	122.7	34.3	31.4	56.3	35.2		157.7	31.0	26.3
Level of Service	D	С	С	F	С	С	Е	D		F	С	С
Approach Delay (s)		34.4			55.2			38.5			64.0	
Approach LOS		С			Е			D			E	
Intersection Summary												
HCM Average Control D	elav		47.3	Н	CM Lev	el of Se	rvice		D			
HCM Volume to Capacit			0.78						-			
Actuated Cycle Length (s	-		110.0	S	um of lo	ost time	(s)		12.0			
Intersection Capacity Uti			73.8%			el of Ser			D			
Analysis Period (min)			15									
c Critical Lane Group			_									
•												

	*		•	•	←	•	4	†	1	-	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	لولو	ተተተ	7	إيراي	ተተተ	7	ايوايوايو		77	إولو	ተተተ	75
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	0.97	0.91	1.00	0.97	0.91	1.00	0.94	0.91	1.00	0.97	0.91	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	3213	4803	1482	3335	4550	1538	4586	4940	1538	3335	4940	1417
FIt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	3213	4803	1482	3335	4550	1538	4586	4940	1538	3335	4940	1417
Volume (vph)	244	1161	323	260	801	136	334	1253	543	295	934	50
Peak-hour factor, PHF	0.94	0.94	0.94	0.93	0.93	0.93	0.95	0.95	0.95	0.94	0.94	0.94
Adj. Flow (vph)	260	1235	344	280	861	146	352	1319	572	314	994	53
RTOR Reduction (vph)	0	0	40	0	0	17	0	0	46	0	0	7
Lane Group Flow (vph)	260	1235	304	280	861	129	352	1319	526	314	994	46
Heavy Vehicles (%)	9%	8%	9%	5%	14%	5%	11%	5%	5%	5%	5%	14%
Turn Type,	Prot		Perm	Prot		Perm	Prot		Perm	Prot		Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			2			6			8			4
Actuated Green, G (s)	10.3	37.7	37.7	8.3	35.7	35.7	9.7	37.5	37.5	9.5	37.3	37.3
Effective Green, g (s)	12.6	40.7	40.7	10.6	38.7	38.7	11.9	41.0	41.0	11.7	40.8	40.8
Actuated g/C Ratio	0.10	0.34	0.34	0.09	0.32	0.32	0.10	0.34	0.34	0.10	0.34	0.34
Clearance Time (s)	6.3	7.0	7.0	6.3	7.0	7.0	6.2	7.5	7.5	6.2	7.5	7.5
Vehicle Extension (s)	2.0	4.6	4.6	2.0	4.9	4.9	2.0	6.0	6.0	2.0	6.0	6.0
Lane Grp Cap (vph)	337	1629	503	295	1467	496	455	1688	525	325	1680	482
v/s Ratio Prot	0.08	c0.26		c0.08	0.19		0.08	0.27		c0.09	0.20	
v/s Ratio Perm			0.23			0.09			0.37			0.04
v/c Ratio	0.77	0.76	0.61	0.95	0.59	0.26	0.77	0.78	1.00	0.97	0.59	0.10
Uniform Delay, d1	52.3	35.3	33.0	54.4	34.0	30.1	52.7	35.5	39.5	54.0	32.7	27.0
Progression Factor	1.00	1.00	1.00	1.05	1.13	1.31	0.89	0.83	0.83	1.00	1.00	1.00
Incremental Delay, d2	9.6	3.4	5.3	34.6	1.5	1.1	6.4	3.2	36.9	40.3	1.5	0.4
Delay (s)	61.9	38.6	38.3	91.9	39.9	40.5	53.3	32.7	69.8	94.2	34.3	27.4
Level of Service	E	D	D	F	D	D	D	С	E	F	С	С
Approach Delay (s)		41.9			51.3			45.4			47.8	
Approach LOS		D			D			D			D	
Intersection Summary												
HCM Average Control D			46.1	Н	CM Lev	el of Se	rvice		D			
HCM Volume to Capacit	·	10.1000030: 0000003000000 ******************	0.93	000000000000000000000000000000000000000								
Actuated Cycle Length (2)		120.0	S	um of lo	st time	(s)		16.0			
Intersection Capacity Uti												7722232222222
Analysis Period (min)			75.8% 15			of Ser			D			

c Critical Lane Group

	≯	-	•	•	4	*	4	1	-	-	↓	1		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		
Lane Configurations	أبوابو	<u> ተ</u>	7	ኻኻ	ተተተ	7	14.14	ተ ቀጉ	***************************************	ኻኻ	<u> </u>	7		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0		
Lane Util. Factor	0.97	0.91	1.00	0.97	0.91	1.00	0.97	0.91		0.97	0.91	1.00		
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98		1.00	1.00	0.85		
FIt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00		
Satd. Flow (prot)	3433	4988	1495	3367	4940	1495	3433	4995		3400	4988	1553		
FIt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00		
Satd. Flow (perm)	3433	4988	1495	3367	4940	1495	3433	4995		3400	4988	1553		
Volume (vph)	229	568	70	247	268	318	281	1355	169	357	891	371		
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.95	0.95	0.95	0.94	0.94	0.94		
Adj. Flow (vph)	246	611	75	266	288	342	296	1426	178	380	948	395		
RTOR Reduction (vph)	0	0	10	0	0	26	0	0	0	0	0	36		
Lane Group Flow (vph)	246	611	65	266	288	316	296	1604	0	380	948	359		
Heavy Vehicles (%)	2%	4%	8%	4%	5%	8%	2%	2%	3%	3%	4%	4%		
Turn Type	Prot		Perm	Prot		Perm	Prot			Prot		Perm		
Protected Phases	3	8		7	4		1	6		5	2			
Permitted Phases			8			4						2		
Actuated Green, G (s)	8.0	16.9	16.9	14.1	23.0	23.0	10.6	36.4		12.6	38.4	38.4		
Effective Green, g (s)	8.0	18.9	18.9	14.1	25.0	25.0	10.6	38.4		12.6	40.4	40.4		
Actuated g/C Ratio	0.08	0.19	0.19	0.14	0.25	0.25	0.11	0.38		0.13	0.40	0.40		
Clearance Time (s)	4.0	6.0	6.0	4.0	6.0	6.0	4.0	6.0		4.0	6.0	6.0		
Vehicle Extension (s)	1.0	2.0	2.0	1.0	2.0	2.0	1.0	2.0		1.0	2.0	2.0		
Lane Grp Cap (vph)	275	943	283	475	1235	374	364	1918		428	2015	627		
v/s Ratio Prot	c0.07	0.12		0.08	0.06		0.09	c0.32		c0.11	0.19			
v/s Ratio Perm			0.05			0.23						0.25		
v/c Ratio	0.89	0.65	0.23	0.56	0.23	0.84	0.81	0.84		0.89	0.47	0.57		
Uniform Delay, d1	45.6	37.5	34.4	40.1	29.9	35.6	43.7	27.9		43.0	21.9	23.1		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00		
Incremental Delay, d2	28.0	1.2	0.2	0.9	0.0	15.3	12.3	4.5		19.0	0.8	3.8		
Delay (s)	73.6	38.6	34.5	41.0	29.9	50.9	56.1	32.5		62.0	22.7	26.9		
Level of Service	Ε	D	С	D	С	D	E	C		E	С	С		
Approach Delay (s)		47.5			41.2			36.1			32.3			
Approach LOS		D			D			D			С			
Intersection Summary														
HCM Average Control D	elay		37.7	Н	ICM Lev	rel of Se	ervice		D					
HCM Volume to Capacit	y ratio		0.83											
Actuated Cycle Length (100.0			ost time			12.0					
Intersection Capacity Uti	lization			IC	CU Leve	el of Ser	vice		С					
Analysis Period (min)			15				71.5% ICU Level of Service							

	٦	-	•	1	-	*	4	†	-	\		1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሽኘ	ተተተ	7	لولولو	ተተተ	7	444	ተተተ	7	77	十十十	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	0.97	0.91	1.00	0.94	0.91	1.00	0.94	0.91	1.00	0.97	0.91	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	3433	5085	1583	4990	5085	1583	4990	5085	1583	3433	5085	1583
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	3433	5085	1583	4990	5085	1583	4990	5085	1583	3433	5085	1583
Volume (vph)	16	1575	448	395	1330	42	328	18	502	18	13	15
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.93	0.93	0.93	0.80	0.80	0.80
Adj. Flow (vph)	17	1658	472	416	1400	44	353	19	540	22	16	19
RTOR Reduction (vph)	0	0	40	0	0	25	0	0	26	0	0	4
Lane Group Flow (vph)	17	1658	432	416	1400	19	353	19	514	22	16	15
Turn Type	Prot		Perm	Prot		Perm	Prot		Perm	Prot		Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			2			6			8			4
Actuated Green, G (s)	2.4	37.0	37.0	15.5	50.1	50.1	13.6	38.9	38.9	3.6	28.9	28.9
Effective Green, g (s)	4.7	39.3	39.3	17.8	52.4	52.4	15.8	41.1	41.1	5.8	31.1	31.1
Actuated g/C Ratio	0.04	0.33	0.33	0.15	0.44	0.44	0.13	0.34	0.34	0.05	0.26	0.26
Clearance Time (s)	6.3	6.3	6.3	6.3	6.3	6.3	6.2	6.2	6.2	6.2	6.2	6.2
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	134	1665	518	740	2220	691	657	1742	542	166	1318	410
v/s Ratio Prot	0.00	c0.33		0.08	c0.28		c0.07	0.00		0.01	0.00	
v/s Ratio Perm			0.30			0.03			0.34			0.01
v/c Ratio	0.13	1.00	0.83	0.56	0.63	0.03	0.54	0.01	0.95	0.13	0.01	0.04
Uniform Delay, d1	55.7	40.3	37.3	47.5	26.3	19.3	48.7	26.0	38.4	54.7	33.0	33.3
Progression Factor	0.99	1.25	1.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.2	14.8	8.0	1.0	1.4	0.1	8.0	0.0	25.9	0.4	0.0	0.0
Delay (s)	55.6	65.3	56.4	48.5	27.6	19.3	49.5	26.0	64.3	55.1	33.0	33.3
Level of Service	Е	Е	E	D	С	В	D	С	Е	Е	С	С
Approach Delay (s)		63.3			32.1			57.8			41.6	
Approach LOS		Е			С			Е			D	
Intersection Summary										***************************************		
HCM Average Control Do			50.4	Н	ICM Lev	el of Se	ervice		D			
HCM Volume to Capacity			0.90	_	_		, ,					
Actuated Cycle Length (s			120.0		um of lo				12.0			
Intersection Capacity Util	ızation		76.5%	IC	CU Leve	of Ser	vice		D			
Analysis Period (min)			15									
c Critical Lane Group												

	•	*	*	ሻ	†	<i>></i>	>		W	•	\	>
Movement	WBL	WBR	WBR2	NBL	NBT	NBR	SBL	SBT	SBR	SEL2	SEL	SER
Lane Configurations	<u>L</u>	Ã		ليالي	ተተ _ጉ		75	ተተተ	75	ሻ	Ä	7777
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	1.00		0.97	0.91		1.00	0.91	1.00	0.95	0.95	0.88
Frt	1.00	0.85		1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	0.95	1.00
Satd. Flow (prot)	1770	1540		3400	5003		1770	5085	1583	1681	1667	2787
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	0.95	1.00
Satd. Flow (perm)	1770	1540		3400	5003		1770	5085	1583	1681	1667	2787
Volume (vph)	39	32	13	928	1137	96	89	748	388	528	150	585
Peak-hour factor, PHF	0.84	0.84	0.84	0.95	0.95	0.95	0.93	0.93	0.93	0.94	0.94	0.94
Adj. Flow (vph)	46	38	15	977	1197	101	96	804	417	562	160	622
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	25	0	0	57
Lane Group Flow (vph)	46	53	0	977	1298	0	96	804	392	364	358	566
Heavy Vehicles (%)	2%	6%	2%	3%	2%	8%	2%	2%	2%	2%	4%	2%
Turn Type	Split			Prot			Prot		Perm	Split		om+ov
Protected Phases	3	3		5	2		1	6		4	4	5
Permitted Phases									6			4
Actuated Green, G (s)	4.8	4.8		36.0	61.5		9.2	34.7	34.7	26.2	26.2	62.2
Effective Green, g (s)	4.8	4.8		36.0	62.5		9.2	35.7	35.7	27.5	27.5	63.5
Actuated g/C Ratio	0.04	0.04		0.30	0.52		0.08	0.30	0.30	0.23	0.23	0.53
Clearance Time (s)	4.0	4.0		4.0	5.0		4.0	5.0	5.0	5.3	5.3	4.0
Vehicle Extension (s)	1.5	1.5		1.0	2.0		1.0	2.0	2.0	2.0	2.0	1.0
Lane Grp Cap (vph)	71	62		1020	2606		136	1513	471	385	382	1568
v/s Ratio Prot	0.03	c0.03		c0.29	0.26		0.05	0.16		c0.22	0.21	0.12
v/s Ratio Perm									0.26			0.10
v/c Ratio	0.65	0.85		0.96	0.50		0.71	0.53	0.83	0.95	0.94	0.36
Uniform Delay, d1	56.8	57.3		41.3	18.6		54.1	35.2	39.4	45.5	45.4	16.4
Progression Factor	1.00	1.00		0.74	0.40		1.15	0.30	0.27	1.00	1.00	1.00
Incremental Delay, d2	14.2	63.4		14.2	0.5		10.3	1.1	13.0	31.6	29.9	0.1
Delay (s)	71.0	120.6		44.8	8.0		72.6	11.6	23.6	77.1	75.3	16.5
Level of Service	Е	F		D	Α		Ε	В	С	E	Е	В
Approach Delay (s)	97.5				23.8	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		19.9			48.6	
Approach LOS	F				С			В			D	
Intersection Summary												
HCM Average Control D	elay		30.8	Н	ICM Lev	rel of Se	rvice		С			
HCM Volume to Capacity			0.93									
Actuated Cycle Length (s	s)		120.0	S	um of lo	st time	(s)		16.0			
Intersection Capacity Uti			76.4%	IC	CU Leve	of Ser	vice		D			
Analysis Period (min)			15									
o Critical Lana Group												

c Critical Lane Group

	*	-	*	•	-	*	1	†	<i>></i>	-	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ليولي	ተ ቀڼ		ليوليو	ተተተ	7	ليولي	የ ቀሱ		ት ች	ተተተ	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Lane Util. Factor	0.97	0.91		0.97	0.91	1.00	0.97	0.91		0.97	0.91	1.00
Frt	1.00	0.98		1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	3433	5003		3433	5085	1583	3433	5037		3433	5085	1583
Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	3433	5003		3433	5085	1583	3433	5037		3433	5085	1583
Volume (vph)	550	1037	125	77	875	87	235	1236	83	214	720	332
Peak-hour factor, PHF	0.94	0.94	0.94	0.93	0.93	0.93	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	585	1103	133	83	941	94	250	1315	88	228	766	353
RTOR Reduction (vph)	0	0	0	0	0	44	0	0	0	0	0	27
Lane Group Flow (vph)	585	1236	0	83	941	50	250	1403	0	228	766	326
Turn Type	Prot			Prot		Perm	Prot			Prot		Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases					~~~~	8						6
Actuated Green, G (s)	23.9	47.8		6.0	29.9	29.9	10.9	37.7		9.9	36.7	36.7
Effective Green, g (s)	23.9	49.1	***************	6.0	31.2	31.2	10.9	39.0		9.9	38.0	38.0
Actuated g/C Ratio	0.20	0.41		0.05	0.26	0.26	0.09	0.32		0.08	0.32	0.32
Clearance Time (s)	4.0	5.3		4.0	5.3	5.3	4.0	5.3		4.0	5.3	5.3
Vehicle Extension (s)	0.5	2.0		0.5	2.0	2.0	0.5	2.0		0.5	2.0	2.0
Lane Grp Cap (vph)	684	2047		172	1322	412	312	1637		283	1610	501
v/s Ratio Prot	c0.17	0.25		0.02	c0.19		c0.07	c0.28		0.07	0.15	
v/s Ratio Perm		A. Shadii Bhannaireann ann ann ann				0.06						0.22
v/c Ratio	0.86	0.60		0.48	0.71	0.12	0.80	0.86		0.81	0.48	0.65
Uniform Delay, d1	46.4	27.8	*******************************	55.5	40.3	33.9	53.5	37.9		54.1	33.0	35.3
Progression Factor	1.00	1.00		0.82	1.12	1.54	1.00	1.00		0.62	0.58	0.53
Incremental Delay, d2	9.9	1.3		0.7	2.9	0.5	13.0	6.0		12.5	0.9	5.5
Delay (s)	56.2	29.1		45.9	48.2	52.6	66.5	43.9		46.2	20.1	24.0
Level of Service	Е	С		D	D	D	Е	D		D	С	С
Approach Delay (s)		37.9			48.4			47.3			25.6	
Approach LOS		D			D			D			С	
Intersection Summary												
HCM Average Control D			39.7	F	ICM Lev	vel of S	ervice		D			
HCM Volume to Capacit			0.79									
Actuated Cycle Length (120.0		Sum of l				12.0			
Intersection Capacity Ut	ilization		77.8%						D			
Analysis Period (min)			15									
c Critical Lane Group												

	1	-	•	•	←	•	4	†	<i>></i>	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	ተተጉ		*	ት ትር»		ሻ	₽		ኻ	43-	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	0.91		1.00	0.91		1.00	1.00		0.95	0.95	
Frt	1.00	1.00		1.00	0.99		1.00	0.86		1.00	0.90	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.99	
Satd. Flow (prot)	1770	5080		1770	5041	b	1770	1593		1681	1568	
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.99	
Satd. Flow (perm)	1770	5080		1770	5041		1770	1593		1681	1568	
Volume (vph)	121	1641	11	40	1301	80	28	3	91	46	3	25
Peak-hour factor, PHF	0.95	0.95	0.95	0.94	0.94	0.94	0.84	0.84	0.84	0.84	0.84	0.84
Adj. Flow (vph)	127	1727	12	43	1384	85	33	4	108	55	4	30
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	127	1739	0	43	1469	0	33	112	0	46	43	0
Turn Type	Prot			Prot			Split			Split		
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases												
Actuated Green, G (s)	11.6	43.9		4.0	36.3		20.1	20.1		16.0	16.0	
Effective Green, g (s)	11.6	43.9		4.0	36.3		20.1	20.1		16.0	16.0	
Actuated g/C Ratio	0.12	0.44		0.04	0.36		0.20	0.20		0.16	0.16	
Clearance Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	205	2230		71	1830		356	320		269	251	
v/s Ratio Prot	0.07	c0.34		0.02	c0.29		0.02	c0.07		0.03	c0.03	
v/s Ratio Perm												
v/c Ratio	0.62	0.78		0.61	0.80		0.09	0.35		0.17	0.17	
Uniform Delay, d1	42.1	23.9		47.2	28.6		32.5	34.3		36.3	36.3	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	5.5	1.8		13.7	2.6		0.5	3.0		1.4	1.5	
Delay (s)	47.6	25.7		61.0	31.3		33.0	37.3		37.6	37.8	
Level of Service	D	С		Е	С		С	D		D	D	
Approach Delay (s)		27.2			32.1			36.4			37.7	
Approach LOS		С			С			, D			D	
Intersection Summary												
HCM Average Control De	elay		29.9	H	ICM Lev	el of Se	rvice		С			
HCM Volume to Capacity	y ratio		0.56									
Actuated Cycle Length (s	s)		100.0			ost time			12.0			
Intersection Capacity Util	ization		54.1%	10	CU Leve	of Ser	vice		Α			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	-	•	•	←	•	4	†	-	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	J.	†		7	†			4	7	-	43	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0			4.0	4.0		4.0	
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00	1.00		1.00	
Frt	1.00	0.99		1.00	0.99			1.00	0.85		0.97	
Flt Protected	0.95	1.00		0.95	1.00			0.98	1.00		0.98	
Satd. Flow (prot)	1770	3514		1770	3519			1820	1583		1777	
Flt Permitted	0.95	1.00		0.95	1.00			0.98	1.00		0.98	
Satd. Flow (perm)	1770	3514		1770	3519			1820	1583		1777	
Volume (vph)	27	1063	52	108	943	38	82	94	136	77	72	36
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.90	0.90	0.90	0.88	0.88	0.88
Adj. Flow (vph)	29	1143	56	116	1014	41	91	104	151	88	82	41
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	17	0	0	0
Lane Group Flow (vph)	29	1199	0	116	1055	0	0	195	134	0	211	0
Turn Type	Prot			Prot			Split		Perm	Split		
Protected Phases	5	2		1	6		3	3		4	4	
Permitted Phases									3			
Actuated Green, G (s)	3.9	56.7	100	13.3	66.1			17.1	17.1		17.9	
Effective Green, g (s)	3.4	57.2		12.8	66.6			16.6	16.6		17.4	
Actuated g/C Ratio	0.03	0.48		0.11	0.55			0.14	0.14		0.14	
Clearance Time (s)	3.5	4.5		3.5	4.5	en.v.e.ee.v.ee.e.v.e.e.e.		3.5	3.5		3.5	*******
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0	3.0		3.0	
Lane Grp Cap (vph)	50	1675		189	1953			252	219	*******************************	258	
v/s Ratio Prot	0.02	c0.34		c0.07	c0.30			c0.11			c0.12	
v/s Ratio Perm				*******************************					0.10			
v/c Ratio	0.58	0.72		0.61	0.54			0.77	0.61		0.82	
Uniform Delay, d1	57.6	24.9		51.2	17.0			49.9	48.7		49.8	
Progression Factor	0.83	0.35		1.00	1.00			1.00	1.00		1.00	
Incremental Delay, d2	12.7	2.2		5.8	1.1			13.7	5.0		17.9	**********
Delay (s)	60.3	10.8		57.0	18.0			63.6	53.6		67.7	
Level of Service	Е	В	VXXXVXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	E	В			Е	D		Е	
Approach Delay (s)		12.0			21.9			59.3			67.7	
Approach LOS		В			С			Е			Е	
Intersection Summary												
HCM Average Control D			25.4	ŀ	HCM Le	vel of Se	ervice		С			
HCM Volume to Capacit			0.70									
Actuated Cycle Length (s)		120.0			ost time			12.0			
Intersection Capacity Ut	ilization		63.9%	ı	CU Lev	el of Ser	vice		В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	-	4	4	†	<i>></i>	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	ተ ቀڼ		ايوليو	ተተ _ጉ		ايولي	ተተተ	74	ሽሻ	ተቀ _ጮ	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
Lane Util. Factor	0.97	0.91		0.97	0.91		0.97	0.91	1.00	0.97	0.91	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	0.99	1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Frt	1.00	0.99		1.00	0.98		1.00	1.00	0.85	1.00	0.94	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot) FIt Permitted	3433 0.95	5010 1.00		3433	4966		3433	5085	1561	3433	4774	
	3433	5010		0.95 3433	1.00 4966		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	testisas santa		4.40			4.40	3433	5085	1561	3433	4774	000
Volume (vph)	526 0.95	1507	149 0.95	115	851	142	299	1111	90	83	344	206
Peak-hour factor, PHF	554	0.95 1586	157	0.93 124	0.93 915	0.93 153	0.94	0.94 1182	0.94	0.92	0.92	0.92
Adj. Flow (vph) RTOR Reduction (vph)	0	0	0	0	915	155	318 0	0	96 11	90	374 0	224
Lane Group Flow (vph)	554	1743	0	124	1068	0	318	1182	85	0 90	598	0
Confl. Peds. (#/hr)	004	1143	2	124	1000	2	310	1102	2	90	290	2
Turn Type	Prot			Prot			Prot		Perm	Prot		
Protected Phases	5	2		1	6		3	8	reiiii	7	4	
Permitted Phases	Ü	_			U		3	U	8	,	7	
Actuated Green, G (s)	17.7	39.8		4.6	26.7		10.1	27.1	27.1	4.6	21.6	
Effective Green, g (s)	17.7	41.1		4.6	28.0		10.1	28.4	28.4	4.6	22.9	
Actuated g/C Ratio	0.19	0.43		0.05	0.30		0.11	0.30	0.30	0.05	0.24	
Clearance Time (s)	4.0	5.3		4.0	5.3		4.0	5.3	5.3	4.0	5.3	
Vehicle Extension (s)	0.5	2.0		0.5	2.0		0.5	2.0	2.0	0.5	2.0	
Lane Grp Cap (vph)	642	2174		167	1468		366	1525	468	167	1154	
v/s Ratio Prot	c0.16	c0.35		0.04	0.22		c0.09	c0.23		0.03	0.13	
v/s Ratio Perm									0.06			
v/c Ratio	0.86	0.80		0.74	0.73		0.87	0.78	0.18	0.54	0.52	
Uniform Delay, d1	37.3	23.3		44.5	29.9		41.6	30.2	24.6	44.0	31.1	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	************
Incremental Delay, d2	11.2	3.2		14.4	3.2		18.5	2.3	0.1	1.7	0.2	
Delay (s)	48.5	26.5		58.8	33.1		60.2	32.5	24.6	45.7	31.3	
Level of Service	D	С		Ε	С		Е	С	С	D	С	
Approach Delay (s)		31.8			35.8			37.6			33.2	
Approach LOS		С			D			D			С	
Intersection Summary												
HCM Average Control D	elay		34.4	Н	CM Lev	el of Se	rvice		С			
HCM Volume to Capacit	y ratio		0.78									
Actuated Cycle Length (s)		94.7	S	um of lo	st time	(s)		8.0			
Intersection Capacity Uti	lization		77.3%	IC	CU Leve	l of Ser	vice		D			
Analysis Period (min)			15									
c Critical Lane Group												

	1	-	*	•	-	•	4	†	~	1	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሽኘ	ተ ተ ጮ		ሕ ሻ	**	7	ሽኘ	ተ ተ	7	እካ	^	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	0.97	*0.90		0.97	0.91	1.00	0.97	0.95	1.00	0.97	0.95	1.00
Frpb, ped/bikes	1.00 1.00	1.00 1.00		1.00 1.00	1.00	0.99	1.00	1.00	0.99	1.00	1.00	0.99
Flpb, ped/bikes Frt	1.00	0.99		1.00	1.00	1.00 0.85	1.00 1.00	1.00	1.00 0.85	1.00 1.00	1.00	1.00 0.85
Fit Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	3367	4810		3400	4848	1561	2968	3505	1546	3242	3374	1487
Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	3367	4810		3400	4848	1561	2968	3505	1546	3242	3374	1487
Volume (vph)	113	1817	93	345	1337	167	73	259	455	290	198	87
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.93	0.93	0.93	0.92	0.92	0.92
Adj. Flow (vph)	119	1913	98	363	1407	176	78	278	489	315	215	95
RTOR Reduction (vph)	0	0	0	0	0	39	0	0	81	0	0	8
Lane Group Flow (vph)	119	2011	0	363	1407	137	78	278	408	315	215	87
Confl. Peds. (#/hr)			2			2			2			2
Heavy Vehicles (%)	4%	6%	2%	3%	7%	2%	18%	3%	3%	8%	7%	7%
Turn Type	Prot			Prot		Perm	Prot		Perm	Prot		Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases						6			8			4
Actuated Green, G (s)	8.0	42.1		9.0	43.1	43.1	21.7	30.0	30.0	9.9	18.2	18.2
Effective Green, g (s)	8.0	43.8		9.0	44.8	44.8	21.7	31.3	31.3	9.9	19.5	19.5
Actuated g/C Ratio	0.07	0.40		0.08	0.41	0.41	0.20	0.28	0.28	0.09	0.18	0.18
Clearance Time (s)	4.0	5.7		4.0	5.7	5.7	4.0	5.3	5.3	4.0	5.3	5.3
Vehicle Extension (s)	1.0	2.0		1.0	2.0	2.0	1.0	2.0	2.0	1.0	2.0	2.0
Lane Grp Cap (vph)	245	1915		278	1974	636	586	997	440	292	598	264
v/s Ratio Prot	0.04	c0.42		c0.11	0.29		0.03	0.08		c0.10	0.06	
v/s Ratio Perm	0.40	4.05		4.04	~ = 4	0.11			0.32			0.06
v/c Ratio	0.49	1.05		1.31	0.71	0.22	0.13	0.28	0.93	1.08	0.36	0.33
Uniform Delay, d1	49.0	33.1		50.5	27.2	21.2	36.4	30.6	38.2	50.0	39.8	39.5
Progression Factor	1.00 0.6	1.00 35.2		1.00 161.2	1.00	1.00 0.8	1.00 0.0	1.00 0.1	1.00	1.00	1.00	1.00
Incremental Delay, d2	49.6	68.3		211.7	29.5	22.0		30.6	25.3	75.2	0.1 39.9	0.3
Delay (s) Level of Service	49.0 D	00.3 E		F F	29.5 C	ZZ.0	36.4 D	30.0 C	63.5 E	125.3 F	აჟ.ჟ D	39.8 D
Approach Delay (s)	D	67.2		•	62.8	O .	U	50.2	L	'	82.9	U
Approach LOS		E			E	,		D			F	
Intersection Summary												
HCM Average Control Do	elay		64.8	Н	CM Lev	el of Se	ervice		Е			
HCM Volume to Capacity	y ratio		1.05									
Actuated Cycle Length (s			110.0			ost time	` '		12.0			
Intersection Capacity Uti	lization	ç	97.0%	IC	CU Leve	el of Ser	vice		F			
Analysis Period (min)			15		SANCON SCIENCE AND ADMINISTRA	>						
c Critical Lane Group												

	۶	-	•	•	-	•	1	†	-	/	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		tttt	7		ተተ _ጉ					16.64		77
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0	4.0	-	4.0					4.0		4.0
Lane Util. Factor		0.86	1.00		0.91					0.97		0.88
Frpb, ped/bikes		1.00	1.00		1.00					1.00		1.00
Flpb, ped/bikes Frt		1.00	1.00 0.85		1.00 0.97					1.00 1.00		1.00
Flt Protected		1.00	1.00		1.00					0.95		0.85 1.00
Satd. Flow (prot)		6225	1509	-	4651					3433		2707
Flt Permitted		1.00	1.00		1.00					0.95		1.00
Satd. Flow (perm)		6225	1509		4651					3433		2707
Volume (vph)	0	2192	370	0	832	175	0	0	0	402	0	1018
Peak-hour factor, PHF	0.96	0.96	0.96	0.93	0.93	0.93	0.93	0.93	0.93	0.94	0.94	0.94
Adj. Flow (vph)	0	2283	385	0	895	188	0	0	0	428	0	1083
RTOR Reduction (vph)	0	0	134	0	35	0	0	0	0	0	0	72
Lane Group Flow (vph)	0	2283	251	0	1048	0	0	0	0	428	0	1011
Confl. Peds. (#/hr)				-		2						
Heavy Vehicles (%)	2%	5%	7%	2%	8%	9%	2%	2%	2%	2%	2%	5%
Turn Type			Perm						C	ustom	C	ustom
Protected Phases		2	_		6					4		
Permitted Phases			2							4		4
Actuated Green, G (s)		37.8	37.8		37.8					36.8		36.8
Effective Green, g (s)		40.1	40.1		40.1					38.4		38.4
Actuated g/C Ratio		0.46 6.3	0.46 6.3		0.46 6.3					0.44		0.44
Clearance Time (s) Vehicle Extension (s)		4.3	4.3		4.9					5.6 3.4		5.6 3.4
Lane Grp Cap (vph)		2886	700		2156					1524		
v/s Ratio Prot		c0.37	700		0.23					0.12		1202
v/s Ratio Perm		60.07	0.26		0.20					0.12		0.40
v/c Ratio		0.79	0.36		0.49			•		0.28		0.40
Uniform Delay, d1		19.7	14.9		16.1					15.3		21.3
Progression Factor		1.00	1.00		1.00					1.00		1.00
Incremental Delay, d2		1.7	0.5		0.4					0.1		5.6
Delay (s)		21.3	15.4		16.4					15.4		26.9
Level of Service		С	В		В					В		С
Approach Delay (s)		20.5			16.4			0.0			23.7	
Approach LOS		С			В			Α			С	
Intersection Summary												
HCM Average Control De			20.6	Н	ICM Lev	el of Se	rvice		С			
HCM Volume to Capacity			0.84									
Actuated Cycle Length (s			86.5			ost time	` '		8.0		6000000	
Intersection Capacity Util	ization		62.3%	10	CU Leve	of Sen	vice		В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	-	*	•	+	4	4	1	1	-	‡	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተተ _ጉ	7		ተተተ	۳	ሻ		7			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0	4.0		4.0	4.0	4.0		4.0			
Lane Util. Factor		0.86	0.86		0.91	1.00	1.00		1.00			
Frpb, ped/bikes		1.00	1.00		1.00	0.98	1.00		1.00			
Flpb, ped/bikes		1.00	1.00		1.00	1.00	1.00		1.00			
Frt		0.94	0.85		1.00	0.85	1.00		0.85			
Flt Protected		1.00 4318	1.00 1286		1.00 4848	1.00 1492	0.95 1703		1.00 1455			
Satd. Flow (prot) Flt Permitted		1.00	1.00		1.00	1.00	0.95		1.00			
Satd. Flow (perm)		4318	1286		4848	1492	1703		1455			
	0	964	1630	0	557	705	450	. 0	231	0	0	0
Volume (vph) Peak-hour factor, PHF	0.96	0.96	0.96	0.94	0.94	0.94	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0.90	1004	1698	0.94	593	750	489	0.92	251	0.92	0.92	0.92
RTOR Reduction (vph)	0	185	0	0	0	0	0	0	17	0	0	0
Lane Group Flow (vph)	0	1474	1043	0	593	750	489	0	234	0	0	0
Confl. Peds. (#/hr)	•		1010	•	000	2	100	•		•	•	•
Heavy Vehicles (%)	2%	6%	8%	2%	7%	6%	6%	2%	11%	2%	2%	2%
Turn Type			Free		-	Free	Prot		ustom			
Protected Phases		2			6		8					
Permitted Phases		•	Free		_	Free			8			
Actuated Green, G (s)		23.3	55.7		23.3	55.7	22.3		22.3			
Effective Green, g (s)		24.2	55.7		24.2	55.7	23.5		23.5			
Actuated g/C Ratio		0.43	1.00		0.43	1.00	0.42		0.42			
Clearance Time (s)		4.9			4.9		5.2		5.2			
Vehicle Extension (s)		5.7			5.7		5.3		5.3			
Lane Grp Cap (vph)		1876	1286		2106	1492	719		614			
v/s Ratio Prot		0.38			0.12		0.29					
v/s Ratio Perm			0.81			0.50			0.17			
v/c Ratio		0.79	0.81		0.28	0.50	0.68		0.38			
Uniform Delay, d1		13.5	0.0		10.1	0.0	13.1		11.1			
Progression Factor		1.00	1.00		1.00	1.00	1.00		1.00			
Incremental Delay, d2		2.7	5.6		0.2	1.2	3.6		0.9			
Delay (s)		16.3	5.6		10.3	1.2	16.6		12.0			
Level of Service		B	Α		В	, A	В	45.4	В			
Approach Delay (s)		12.2			5.2			15.1			0.0	
Approach LOS		В			Α			В			А	
Intersection Summary												
HCM Average Control De			10.7	Н	ICM Lev	el of Se	ervice		В			
HCM Volume to Capacity			0.81									
Actuated Cycle Length (s			55.7			ost time			0.0			
Intersection Capacity Util	ization	(62.4%	IC	CU Leve	el of Ser	vice		В			
Analysis Period (min)			15						4		Note the second	
c Critical Lane Group												

	•		•	•	-	*	1	†	1	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	Ä	ተተ		ħ	ተ ተ ጮ	•	ħ	个个	7	ካ	^ \$	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
Lane Util, Factor	1.00	0.91		1.00	0.91		1.00	0.95	1.00	1.00	0.95	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	0.98	1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Frt	1.00	0.97		1.00	0.99		1.00	1.00	0.85	1.00	0.90	
Fit Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1736	4715		1752	4781		1752	3471	1389	1736	3099	
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1736	4715		1752	4781		1752	3471	1389	1736	3099	
Volume (vph)	195	781	194	62	748	49	296	195	48	52	104	193
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.92	0.92	0.92	0.90	0.90	0.90
Adj. Flow (vph)	210	840	209	67	804	53	322	212	52	58	116	214
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	3	0	0	C
Lane Group Flow (vph)	210	1049	0	67	857	0	322	212	49	58	330	C
Confl. Peds. (#/hr)			2			3			5			3
Heavy Vehicles (%)	4%	7%	4%	3%	7%	13%	3%	4%	14%	4%	6%	3%
Turn Type	Prot			Prot			Prot		Perm	Prot		
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases									8			
Actuated Green, G (s)	15.5	44.9		7.2	36.6		23.1	33.2	33.2	6.1	16.2	
Effective Green, g (s)	15.5	46.2		7.2	37.9		23.1	34.5	34.5	6.1	17.5	
Actuated g/C Ratio	0.14	0.42		0.07	0.34		0.21	0.31	0.31	0.06	0.16	
Clearance Time (s)	4.0	5.3		4.0	5.3		4.0	5.3	5.3	4.0	5.3	
Vehicle Extension (s)	1.0	2.0		1.0	2.0		1.0	2.0	2.0	1.0	2.0	
Lane Grp Cap (vph)	245	1980		115	1647		368	1089	436	96	493	
v/s Ratio Prot	c0.12	c0.22		0.04	c0.18		c0.18	0.06		0.03	c0.11	
v/s Ratio Perm									0.04			
v/c Ratio	0.86	0.53		0.58	0.52		0.88	0.19	0.11	0.60	0.87dr	
Uniform Delay, d1	46.2	23.8		49.9	28.8		42.1	27.6	26.8	50.8	43.5	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	23.6	1.0		4.8	1.2		19.5	0.0	0.0	7.2	2.7	
Delay (s)	69.7	24.8		54.7	30.0		61.5	27.6	26.9	57.9	46.2	
Level of Service	Е	С		D	С		Ε	С	С	Е	D	
Approach Delay (s)		32.3			31.8			46.2			48.0	
Approach LOS		С			С			D			D	
Intersection Summary												
HCM Average Control D	elav		36.6	Н	CM Lev	al of Sc	rvice		D			
HCM Volume to Capacit			0.67	П	OW LEV	51 UI 3E	NICE		U			
Actuated Cycle Length (******************************		110.0	c	um of lo	et time	(s)		12.0			
Intersection Capacity Uti			59.1%		CU Leve				12.0 C			
Analysis Period (min)	nzauvii		15	1(JO LEVE	01 361	VICE		U			
dr Defacto Right Lane.	Recod	e with 1		ilane ar	a right	lane						
c Critical Lane Group	Necou	C WILLI	alough	i iai io as	anyılı	iano.						
Cillical Lane Group												

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBR Lane Configurations Ideal Flow (vphpl) 1900 <
Ideal Flow (vphpl) 1900
Total Lost time (s) 4.0
Lane Util. Factor 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.99 1.00 0.85 1.00 0.98 1.00 0.98 1.00 0.95
Frpb, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 Flpb, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 0.98 1.00 0.95 1.00 0.85 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 1.
Flpb, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.85 Flt Protected 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 1.00 Satd. Flow (prot) 1770 3331 1736 3196 1703 3426 1770 3471 1501 Flt Permitted 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 1.00
Frt 1.00 0.99 1.00 0.98 1.00 0.98 1.00 1.00 0.85 Flt Protected 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00
Fit Protected 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 1.00 Satd. Flow (prot) 1770 3331 1736 3196 1703 3426 1770 3471 1501 Flt Permitted 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 1.00
Satd. Flow (prot) 1770 3331 1736 3196 1703 3426 1770 3471 1501 Flt Permitted 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00
Flt Permitted 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 1.00
Satd. Flow (perm) 1770 3331 1736 3196 1703 3426 1770 3471 1501
Volume (vph) 197 570 38 97 369 69 52 661 87 52 393 161
Peak-hour factor, PHF 0.93 0.93 0.93 0.92 0.92 0.92 0.93 0.93 0.93 0.92 0.92
Adj. Flow (vph) 212 613 41 105 401 75 56 711 94 57 427 175
RTOR Reduction (vph) 0 0 0 0 0 0 0 0 0 9
Lane Group Flow (vph) 212 654 0 105 476 0 56 805 0 57 427 166
Confl. Peds. (#/hr) 2 3 2 2
Heavy Vehicles (%) 2% 7% 11% 4% 10% 10% 6% 3% 6% 2% 4% 6%
Turn Type Prot Prot Prot Perm
Protected Phases 7 4 3 8 5 2 1 6
Permitted Phases 4 6
Actuated Green, G (s) 13.3 24.3 7.9 18.9 5.6 34.4 4.8 33.6 33.6
Effective Green, g (s) 13.3 25.6 7.9 20.2 5.6 35.7 4.8 34.9 34.9
Actuated g/C Ratio 0.15 0.28 0.09 0.22 0.06 0.40 0.05 0.39 0.39
Clearance Time (s) 4.0 5.3 4.0 5.3 4.0 5.3 5.3
Vehicle Extension (s) 1.0 4.0 1.0 4.0 1.0 4.0 4.0
Lane Grp Cap (vph) 262 947 152 717 106 1359 94 1346 582
v/s Ratio Prot c0.12 c0.20 0.06 c0.15 c0.03 c0.23 0.03 0.12
v/s Ratio Perm 0.12
v/c Ratio 0.81 0.69 0.69 0.66 0.53 0.59 0.61 0.32 0.28
Uniform Delay, d1 37.1 28.7 39.9 31.8 40.9 21.4 41.7 19.2 19.0
Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Incremental Delay, d2 15.8 2.4 10.4 2.6 2.2 1.9 7.4 0.6 1.2
Delay (s) 52.9 31.0 50.3 34.4 43.1 23.3 49.0 19.9 20.2
Level of Service D C D C D C D B C Approach Delay (s) 36.4 37.2 24.6 22.5
Approach Delay (s) 36.4 37.2 24.6 22.5 Approach LOS D D C C
Intersection Summary
HCM Average Control Delay 30.0 HCM Level of Service C
HCM Volume to Capacity ratio 0.60
Actuated Cycle Length (s) 90.0 Sum of lost time (s) 8.0
Intersection Capacity Utilization 63.1% ICU Level of Service B
Analysis Period (min) 15
c Critical Lane Group

-	۶	-	•	•	+	4	1	†	<i>></i>	-	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ä	ት ጉ		ħ	ት ጐ		ă	♠₽		à	^	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	0.99
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00 0.95	0.97 1.00		1.00 0.95	0.98		1.00	0.99		1.00	1.00	0.85
Fit Protected	1736	3230		1719	3153		0.95 1626	3375		0.95 1736	1.00 3471	1.00
Satd. Flow (prot) Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1474 1.00
Satd. Flow (perm)	1736	3230		1719	3153		1626	3375		1736	3471	1474
Volume (vph)	218	380	93	66	334	47	90	444	35	28	256	1474
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.92	0.92	0.92	0.90	0.90	0.90
Adj. Flow (vph)	234	409	100	71	359	51	98	483	38	31	284	163
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	16
Lane Group Flow (vph)	234	509	0	71	410	0	98	521	0	31	284	147
Confl. Peds. (#/hr)			2		,,,	5	00	OL.	4	01	204	2
Heavy Vehicles (%)	4%	7%	13%	5%	13%	6%	11%	5%	14%	4%	4%	8%
Turn Type	Prot			Prot			Prot			Prot		Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	-				6							4
Actuated Green, G (s)	14.5	49.8		6.3	41.6		6.9	22.1		3.6	18.8	18.8
Effective Green, g (s)	14.5	50.7		6.3	42.5		6.9	23.4		3.6	20.1	20.1
Actuated g/C Ratio	0.14	0.51		0.06	0.42		0.07	0.23		0.04	0.20	0.20
Clearance Time (s)	4.0	4.9		4.0	4.9		4.0	5.3		4.0	5.3	5.3
Vehicle Extension (s)	1.0	2.0		1.0	2.0		1.0	2.0		1.0	2.0	2.0
Lane Grp Cap (vph)	252	1638		108	1340		112	790		62	698	296
v/s Ratio Prot	c0.13	c0.16		0.04	0.13		c0.06	c0.15		0.02	80.0	
v/s Ratio Perm				***************************************					****************			0.11
v/c Ratio	0.93	0.31		0.66	0.31		0.88	0.66		0.50	0.41	0.50
Uniform Delay, d1	42.2	14.4		45.8	19.0		46.1	34.7		47.3	34.8	35.5
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	37.0	0.5		10.5	0.6		47.0	1.5		2.3	0.1	0.5
Delay (s)	79.2	14.9		56.3	19.6		93.1	36.2		49.6	34.9	35.9
Level of Service	Е	B		Е	В		F	D		D	C	D
Approach LOS		35.2			25.0			45.2			36:2	
Approach LOS		D			С			D			D	
Intersection Summary					-							
HCM Average Control D	elay		36.0	Н	CM Lev	el of Se	ervice		D			
HCM Volume to Capacit			0.54									
Actuated Cycle Length (200000000000000000000000000000000000000	100.0		um of lo				12.0			
Intersection Capacity Ut	ilization	-	71.4%	IC	CU Leve	of Ser	vice		С			
Analysis Period (min)			15	000 a 500 d a 50								
c Critical Lane Group												

2018 ALTERNATIVE A PM Peak

BAKERSFIELD CENTENNIAL CORRIDOR TRAFFIC OPERATIONS ANALYSIS YR2018 Alt.A INTERSECTION ANALYSIS RESULTS - PM PEAK

	Demand	CORSIM Served		Control Delay		
Location	Volume	Volume	% Served in Model	Control Delay	LOS (Approach)	LOS (Overall)
	(vph)	(vph)		(sec/veh)		
1. I-5 SB Ramps @ Stockdale Hwy				· · · · · · · · · · · · · · · · · · ·		
SB - I-5 SB Off ramp - STOP Control	345	326	94%	8.8	A	
EB - Stockdale Hwy	129	128	99%	0.0	Α	Α
WB - Stockdale Hwy	183	167	91%	0.0	ΑΑ	
Intersection Total	657	621	95%			
2. I-5 NB Ramps @ Stockdale Hwy						
NB - I-5 NB Off Ramp - STOP Control	52	47	90%	8.4	Α	
EB - Stockdale Hwy	462	442	96%	0.0	A	Α
WB - Stockdale Hwy	389	358	92%	0.0	Α	
Intersection Total	903	847	94%			
4. Enos Ln @ Stockdale Hwy		†				
NB - Enos Ln	547	547	100%	11.4	В	
SB - Enos Ln	236	236	100%	21.6	c	
EB - Stockdale Hwy	513	472	92%	35.7	D	С
WB - Stockdale Hwy	611	612	100%	31.2	D	
Intersection Total	1,907	1,867	98%	23.6		
5. SR- 43 @ I-5 NB Ramps						
NB - SR- 43	713	726	102%	0.0	Α	
SB - SR-43	452	448	99%	0.0	A	A
WB - I-5 NB Off Ramp - STOP Control	62	59	95%	11.1	В	
Intersection Total	1,227	1,233	100%		+	
6. SR-43 @ I-5 SB Ramps		+				
NB - SR- 43	592	591	100%	0.0	Α	,
SB - SR-43	400	390	98%	1.0	A	Α
EB - I-5 SB Ramp - STOP Control	154	150	97%	15.8	С	
Intersection Total	1,146	1,131	99%		†	
7. Nord Rd @ Stockdale Hwy		+				
NB - Nord Rd	75	75	100%	16.3	В	
SB - Nord Rd	76	76	100%	25.7	C	
EB - Stockdale Hwy	847	856	101%	37.1	D	С
WB - Stockdale Hwy	826	779	94%	23.0	С	
Intersection Total	1,824	1,786	98%	29.6		
9. Heath Rd @ Stockdale Rd					<u> </u>	
NB - Heath Rd	51	52	102%	9.9	A	
SB - Heath Rd	233	232	100%	45.3	D	
EB - Stockdale Hwy	1,028	1,020	99%	22.4	c	В
WB - Stockdale Hwy	1,155	1,134	98%	8.8	Ā	
Intersection Total	$\frac{1,100}{2,467}$	2,438	99%			

TRZUTO AILA INTERSECTION ANALTSIS RESU	Demand	CORSIM Served		Control Delay		
Location	Volume	Volume	% Served in Model	Obnition Delay	LOS (Approach)	LOS (Overall)
	(vph)	(vph)		(sec/veh)		
10. WSP @ Stockdale Off/ On						
NB - Stockdale Hwy	286	· 284	99%	19.8	В	
EB - Stockdale Hwy	1,244	1,241	100%	4.1	Α	В
WB - WSP	1,166	1,101	94%	33.3	С	
Intersection Total	2,696	2,626	97%	18.0		
14. Allen Rd @ Brihmall Rd					<u> </u>	
NB - Allen Rd	1,836	1,749	95%	33.3	С	
SB - Allen Rd	1,396	1,399	100%	36.3	D	
EB - Brihmall Rd	366	362	99%	18.3	В	С
WB - Brihmall Rd	436	431	99%	23.6	С	
Intersection Total	4,034	3,941	98%	31.9		
15. Allen Rd @ WSP WB Ramps						
NB - Allen Rd	572	549	96%	61.9	E	
SB - Allen Rd	1,517	1,530	101%	42.5	D	С
WB - Off Ramp/On Ramp WSP WB	1,815	1,739	96%	7.7	Α	
Intersection Total	3,904	3,818	98%	<u></u>		
16. Allen Rd @ WSP EB Ramps		†				
NB - Allen Rd	912	862	95%	8.4	Α	
SB - Allen Rd	2,004	1,989	99%	14.5	В	Α
EB - WSP EB off Ramp	85	82	96%	3.8	Α	
Intersection Total	3,001	2,933	98%	8.2		
18. Allen Rd @ Stockdale Hwy		†				
NB - Allen Rd	290	289	100%	24.9	С	
SB - Allen Rd	962	1,032	107%	25.3	С	_
EB - Stockdale Hwy	730	726	99%	34.8	С	С
WB - Stockdale Hwy	955	950	99%	20.4	С	
Intersection Total	2,937	2,997	102%	26.0		
20. Calloway Dr @ Brimhall Rd		† <u></u>				****** (****** (***********************
NB - Calloway Dr	1,849	1,790	97%	33.3	. с	
SB - Calloway Dr	1,609	1,608	100%	31.4	C	_
EB - Brimhall Rd	668	670	100%	26.1	C	С
WB - Brimhall Rd	1,079	1,082	100%	27.4	C	
Intersection Total	5,205	5,150	99%	30.5		
21. Calloway Dr @ WSP WB Ramps					 	
NB - Calloway Dr	1,252	1,272	102%	10.3	В	
SB - Calloway Dr	1,768	1,785	101%	37.0	D	_
EB - WSP WB on Ramp	1,235	1,195	97%	13.5	В	В
WB - WSP WB Off Ramp	885	840	95%	6.7	A	
Intersection Total		5.092	99%	15.8		

	Demand	CORSIM Served		Control Delay		
Location	Volume	Volume	% Served in Model		LOS (Approach)	LOS (Overall)
	(vph)	(vph)		(sec/veh)		
22. Calloway Dr @ WSP EB Ramps						
NB - Calloway Dr	1,118	1,133	101%	8.0	Α	
SB - Calloway Dr	2,090	2,075	99%	6.4	Α	Α
EB - WSP EB off Ramp	475	465	98%	10.4	B	
Intersection Total	3,683	3,673	100%	7.4		
23. Calloway Dr @ Stockdale Hwy						
NB - Calloway Dr	1,719	1,712	100%	30.3	С	
SB - Calloway Dr	2,431	2,381	98%	31.0	С	
EB - Stockdale Hwy	1,135	1,136	100%	36.3	D	С
WB - Stockdale Hwy	1,108	1,109	100%	29.0	СС	
Intersection Total	6,393	6,338	99%	31.4		
25. Coffee Rd @ Brimhall Rd						
NB - Coffee Rd	1,719	1,760	102%	24.5	С	
SB - Coffee Rd	2,095	2,097	100%	28.3	С	С
EB - Brimhall Rd	702	699	100%	20.5	С	· ·
WB - Brimhall Rd	1,855	1,769	95%	28.3	C	
Intersection Total	6,371	6,325	99%	26.4		
27. Coffee Rd @ WSP EB Ramp						
NB - Coffee Rd	2,343	2,393	102%	9.4	Α	
SB - Coffee Rd	2,296	2,332	102%	3.8	Α	Α
EB - WSP EB off Ramp	595	544	91%	12.5	B	
Intersection Total	5,234	5,269	101%	7.2		
28. Coffee Rd @ Truxtun Ave						
NB - Coffee Rd	2,396	2,395	100%	13.5	В	
SB - Coffee Rd	1,595	1,619	102%	11.4	В	В
WB - Truxtun Ave	918	911	99%	27.1	С	
Intersection Total	4,909	4,925	100%	15.3		
31. Mohawk St @ WSP WB Ramps				COURT COURT COURT COURT COURT		
NB - Mohawk St						
SB - Mohawk St					<u>L</u>	
Intersection Total						
32. Mohawk St @ WSP EB Ramps						
NB - Mohawk St	1,525	1,519	100%	25.2	С	
SB - Mohawk St	633	589	93%	10.3	В	В
EB - WSP EB off Ramp	825	788	96%	5.9	Α	
Intersection Total	2,983	2,896	97%	<u></u>		

	Demand	CORSIM Served		Control Delay		
Location	Volume	Volume	% Served in Model	Control Delay	LOS (Approach)	LOS (Overall)
	(vph)	(vph)		(sec/veh)		
33. Mohawk St @ Truxtun Ave						
NB - Mohawk St	1,914	1,914	100%	32.4	С	
SB - Mohawk St	1,204	1,145	95%	19.0	В	
EB - Truxtun Ave	672	672	100%	22.8	С	С
WB - Truxtun Ave	932	912	98%	29.4	С	
Intersection Total	4,722	4,643	98%	27.1		
36. Airport Dr & State Rd/SR204 WB Ramp			i			,
NB - Airport Dr	1,786	1,734	97%	19.4	В	
SB - Airport Dr	1,435	1,435	100%	19.7	В	•
EB - State Rd	237	207	87%	14.5	В	С
WB - SR204 WB Off Ramp	1,117	1,109	99%	31.5	С	
Intersection Total	4,575	4,485	98%	22.3		
37. Buck Owens Blvd & SR99 NB Ramp						
NB - SR99 NB Off Ramp	1,365	1,269	93%	17.7	В	_
WB - Buck Owens Blvd	827	851	103%	3.6	Α	В
Intersection Total	2,192	2,120	97%	12.0		
38. Rio Mirada Dr & Buck Owens Blvd		Ţ -				
NB - Buck Owens Blvd	747	747	100%	29.0	С	
SB - Buck Owens Blvd	65	62	95%	16.7	В	
EB - Rio Mirada Dr	496	495	100%	14.4	В	С
WB - Rio Mirada Dr	365	364	100%	25.3	С	
Intersection Total	1,673	1,668	100%			
39. SR99 NB Ramps/Sillect Ave & Buck Owens Blvd		† 				
NB - Buck Owens Blvd	1,228	1,201	98%	41.6	D	
SB - Buck Owens Blvd	609	611	100%	50.4	D	
EB - SR99 NB Off Ramp	365	368	101%	45.2	D	D
WB - Sillect Ave	549	535	97%	39.9	D	
Intersection Total	2,751	2,715	99%	43.7		
40. Rosedale Hwy & Camino del Rio Ct						
NB - Camino del Rio Ct	370	376	102%	38.4	D	
SB - Camino del Rio Ct	463	449	97%	57.2	E	
EB - Rosedale Hwy	2,397	2,409	101%	29.2	С	D
WB - Rosedale Hwy	2,764	2,721	98%	27.3	С	
Intersection Total	5,994	5,955	99%	38.5		
41. Rosedale Hwy & SR99 SB Ramp		Ţ 				
SB - SR99 SB Off Ramp	709	714	101%	20.2	С	
EB - Rosedale Hwy	1,804	1,817	101%	8.8	Α	В
WB - Rosedale Hwy	2,254	2,200	98%	22.3	С	
Intersection Total	4,767	4,731	99%	16.8		

	Demand	CORSIM Served	harman .	Control Delay		
Location	Volume	Volume	% Served in Model		LOS (Approach)	LOS (Overall)
	(vph)	(vph)		(sec/veh)		
42. Rosedale Hwy & SR99 NB Ramp/Buck Owens Blvd						
NB - SR99 NB Off Ramp	1,764	1,706	97%	54.2	D	
SB - Buck Owens Blvd	1,027	951	93%	21.0	С	С
EB - Rosedale Hwy	2,004	2,015	101%	22.9	С	G
NB - 24th St	2,716	2,719	100%	20.3	C	
Intersection Total	7,511	7,391	98%	28.9		Control Control Control State() State()
43. 24th St & Oak St		·			T	
NB - Oak St	1,973	1,937	98%	35.8	D	
SB - Oak St	91	89	98%	55.1	E	•
EB - 24th St	2,635	2,640	100%	39.2	D	С
WB - 24th St	2,782	2,800	101%	22.3	С	
Intersection Total	7,481	7,466	100%	32.2		
45. Oak St @ Truxtun Ave		· 	· 			
NB - Oak St	1,275	1,238	97%	43.0	D	
SB - Oak St	1,697	1,706	101%	36.6	D	
EB - Truxtun Ave	1,732	1,805	104%	59.0	E	D
WB - Truxtun Ave	1,256	1,258	100%	34.9	С	
Intersection Total	5,960	6,007	101%	44.3	<u></u>	
46. California Ave & Chester Ln	-	·			T	
NB - Chester Ln	202	137	68%	79.6	E	
SB - Chester Ln	558	408	73%	51.0	D	
EB - California Ave	1,559	1,399	90%	87.5	F	D
WB - California Ave	1,735	1,817	105%	20.9	c	
Intersection Total	4,054	3,761	93%	53.6		
47. California Ave & SR99 SB Ramps/Real Rd	- 					
NB - Real Rd	593	588	99%	25.5	С	
SB - SR99 SB Off Ramp	1,395	1,375	99%	16.6	В	-
EB - California Ave	1,910	1,520	80%	109.1	F F	E
WB - California Ave	1,371	1,428	104%	87.0	F	
Intersection Total	<u> </u>	4,911	93%	65.9		
48. California Ave & SR99 NB Ramps		· +				
NB - SR99 NB Off Ramp	630	626	99%	23.9	С	
SB - Extended Stay Hotel	97	95	98%	43.1	D	•
EB - California Ave	1,370	1,310	96%	13.1	В	С
WB - California Ave	2,282	2,171	95%	11.0	В	
Intersection Total	$-\frac{2,202}{4,379}$	4,202	96%	25.8	+	

	Demand	CORSIM Served		Control Delay		
Location	Volume	Volume	% Served in Model	Control Delay	LOS (Approach)	LOS (Overall)
	(vph)	(vph)		(sec/veh)		
19. California Ave & Oak St						
NB - Oak St	1,272	1,266	100%	38.9	D	
SB - Oak St	1,659	1,569	95%	34.7	С	D
EB - California Ave	1,593	1,543	97%	44.8	D	U
WB - California Ave	1,479	1,474	100%	45.4	D	
ntersection Total	6,003	5,852	97%		†	
51. Stockdale Hwy & Real Rd					<u> </u>	
NB - Real Rd	312	311	100%	51.5	D	
SB - Real Rd	616	614	100%	30.6	С	_
EB - Stockdale Hwy	1,483	1,486	100%	36.9	D	D
NB - Stockdale Hwy	1,296	1,348	104%	46.8	D	
Intersection Total	3,707	3,759	101%	40.6		
53. Stockdale Hwy & Oak St/Wible Rd		· 			+	
NB - Wible Rd	750	752	100%	32.0	С	
SB - Oak St	930	928	100%	29.6	С	•
EB - Stockdale Hwy	1,453	1,411	97%	22.6	С	С
NB - Stockdale Hwy	1,089	1,087	100%	31.1	С	
ntersection Total	4,222	4,178	99%	28.1	†	
57. Ming Ave & Real Rd						
NB - Real Rd	334	332	99%	29.9	С	
SB - Real Rd	727	724	100%	37.7	D	
EB - Ming Ave	1,811	1,815	100%	25.3	С	С
WB - Ming Ave	2,295	2,229	97%	31.7	С	
Intersection Total	5,167	5,100	99%	30.2	+	
58. Ming Ave & SR99 SB Ramps						
EB - Ming Ave	1,999	2,005	100%	2.4	Α	
WB - Ming Ave	1,654	1,661	100%	3.3	Α	A
Intersection Total	3,653	3,666	100%	2.8	+	
59. Ming Ave & Wible Rd	- 	. -				
NB - Wible Rd	728	730	100%	25.5	С	
SB - Wible Rd	875	874	100%	36.7	D	_
EB - Ming Ave	2,442	2,368	97%	28.7	С	С
WB - Ming Ave	1,685	1,690	100%	16.6	В	
Intersection Total	5,730	5,662	99%	25.9	+	
60. Ming Ave & SR99 NB Ramps		·			<u> </u>	
NB - Sears	309	305	99%	29.9	С	-
SB - SR99 SB Off Ramp	835	851	102%	18.2	В	_
EB - Ming Ave	2,200	2,249	102%	28.3	С	С
NB - Ming Ave	1,419	1,407	99%	50.4	D	
Intersection Total	4,763	4,812	101%	33.1		

YR2018 AIT.A INTERSECTION ANALYSIS RESU	Demand	CORSIM Served		Control Delay		
Location	Volume	Volume	% Served in Model	Control Delay	LOS (Approach)	LOS (Overall)
	(vph)	(vph)		(sec/veh)		
61. Ming Ave & Castro Ln						
NB - Castro Ln	396	393	99%	26.0	С	
SB - Castro Ln	267	265	99%	19.3	В	•
EB - Ming Ave	1,562	1,599	102%	27.1	С	С
WB - Ming Ave	1,168	1,169	100%	37.5	D	
Intersection Total	3,393	3,426	101%	29.9		
66. Brundage Ln & H St		· ¬				
NB - H St	717	728	102%	47.3	D	
SB - H St	883	889	101%	42.9	D	_
EB - Brundage Ln	911	903	99%	28.9	С	D
WB - Brundage Ln	917	859	94%	42.4	D	
Intersection Total	3,428	3,379	99%	40.0		
67. SR58 WB Ramp & H St		 				
NB - H St	770	766	99%	15.8	В	
SB - H St	1,236	1,231	100%	29.4	С	D
WB - Richland St	759	683	90%	107.4	F	
Intersection Total	2,765	2,680	97%	45.4		
68. SR58 EB Ramp & H St		·				
NB - H St	896	900	100%	26.2	С	
SB - H St	1,173	1,130	96%	14.9	В	С
EB - SR58 EB Off Ramp	700	722	103%	20.1	С	
Intersection Total	2,769	2,752	99%	21.0	<u> </u>	
70. Brundage Ln & Chester Ave					†	
NB - Chester Ave	745	763	102%	35.6	D	
SB - Chester Ave	1,246	1,229	99%	61.8	E	_
EB - Brundage Ln	744	732	98%	32.5	С	D
WB - Brundage Ln	846	727	86%	79.2	E	
Intersection Total	3,581	3,451	96%	40.5		
71. SR58 WB Ramp & Chester Ave		+				
NB - Chester Ave	756	735	97%	25.2	C	
SB - Chester Ave	1,304	1,187	91%	20.4	С	D
WB - Richland St	900	882	98%	32.1	C	
Intersection Total	$\frac{3}{2,960}$	2,804	95%	24.9		
72. SR58 EB Ramp & Chester Ave	<u>-</u>	· +			 	COLOR DESCRIPTION DESCRIPTION CONTRACTOR COLOR
NB - Chester Ave	1,039	1,037	100%	25.9	С	
SB - Chester Ave	1,470	1,357	92%	7.7	A	В
EB - Frontage Rd	582	590	101%	23.9	C	_
Intersection Total	$\frac{302}{3.091}$	2.984	97%	20.0	<u> </u>	

	Demand	CORSIM Served		Control Delay		
Location	Volume	Volume	% Served in Model	oontroi belay	LOS (Approach)	LOS (Overall)
	(vph)	(vph)		(sec/veh)		
74. Brundage Ln & Union Ave						
NB - Union Ave	1,404	1,443	103%	17.2	В	
SB - Union Ave	2,234	2,252	101%	34.6	C	С
EB - Brundage Ln	659	655	99%	41.0	D	C
WB - Brundage Ln	1,193	1,150	96%	23.5	С	
Intersection Total	5,490	5,500	100%	28.5		
75. Brundage Ln & SR58 WB Ramps (Union Ave)					†	
NB - SR58 WB Off Ramp	900	887	99%	11.5	В	
SB - Liggett St	77	76	99%	33.9	С	•
EB - Brundage Ln	744	737	99%	24.8	С	С
WB - Brundage Ln	436	437	100%	38.4	D	
Intersection Total	2,157	2,137	99%	22.4		
76. SR58 EB Ramp & Union Ave	-				 	
NB - Union Ave	1,408	1,418	101%	11.3	В	
SB - Union Ave	1,264	1,281	101%	11.3	В	В
EB - SR58 EB Off Ramp	715	751	105%	16.7	В	
Intersection Total	3,387	3,450	102%	12.5		
77.Cottonwood Rd & Brundage Ln						_ ==
NB - Cottonwood Rd	652	628	96%	22.5	С	
SB - Cottonwood Rd	296	298	101%	24.5	С	С
EB - Brundage Ln	338	339	100%	28.0	C	C
WB - Brundage Ln	583	593	102%	37.4	D	
Intersection Total	1,869	1,858	99%	25.9		
78. Brundage Ln & SR58 WB Ramps (Cottonwood Rd)						
NB - SR58 WB Off Ramp	260	267	103%	23.5	С	
SB - Driveway	36	36	100%	33.4	С	C
EB - Brundage Ln	587	538	92%	22.7	С	C
WB - Brundage Ln	544	534	98%	33.6	C	
Intersection Total	1,427	1,375	96%	27.3		
79. Cottonwood Rd & SR 58 EB Off Ramp						
NB - Cottonwood Rd	733	735	100%	18.0	В	
SB - Cottonwood Rd	522	534	102%	27.8	С	В
EB - SR-58 EB off Ramp	440	425	97%	10.6	В	
Intersection Total	1.695	1,694	100%	19.2	<u> </u>	

	۶	→	•	•	4	4	4	†	~	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	الوالو	ተተተ	74	ሽኘ	ተተ	7	ሻሻ	ተተ _ጉ		ሻሻ	ተተቡ	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lane Util. Factor	0.97	0.91	1.00	0.97	0.95	1.00	0.97	0.91		0.97	0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98		1.00	1.00	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	3400	4803	1568	3303	3085	1509	3273	4867		3183	5001	
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	3400	4803	1568	3303	3085	1509	3273	4867		3183	5001	
Volume (vph)	134	668	130	375	450	237	239	1143	169	181	900	31
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.94	0.94	0.94	0.93	0.93	0.93
Adj. Flow (vph)	144	718	140	403	484	255	254	1216	180	195	968	33
RTOR Reduction (vph)	0	0	14	0	0	31	0	0	0	0	0	0
Lane Group Flow (vph)	144	718	126	403	484	224	254	1396	0	195	1001	0
Heavy Vehicles (%)	3%	8%	3%	6%	17%	7%	7%	4%	8%	10%	3%	9%
Turn Type	Prot		Perm	Prot		Perm	Prot			Prot		
Protected Phases	5	2		1	6		3	8	***************************************	7	4	
Permitted Phases			2			6						
Actuated Green, G (s)	8.1	32.6	32.6	16.7	41.2	41.2	12.6	35.6		9.6	32.6	
Effective Green, g (s)	9.4	35.6	35.6	18.0	44.2	44.2	13.5	38.6		10.5	35.6	
Actuated g/C Ratio	0.08	0.30	0.30	0.15	0.37	0.37	0.11	0.33		0.09	0.30	
Clearance Time (s)	5.3	7.0	7.0	5.3	7.0	7.0	4.9	7.0		4.9	7.0	
Vehicle Extension (s)	2.0	6.0	6.0	2.0	5.3	5.3	2.0	3.1		2.0	2.4	
Lane Grp Cap (vph)	269	1440	470	501	1149	562	372	1583		282	1500	
v/s Ratio Prot	0.04	c0.15		c0.12	0.16		c0.08	c0.29		0.06	0.20	
v/s Ratio Perm			0.09			0.17						
v/c Ratio	0.54	0.50	0.27	0.80	0.42	0.40	0.68	0.88		0.69	0.67	
Uniform Delay, d1	52.5	34.2	31.6	48.6	27.7	27.4	50.5	37.9		52.5	36.4	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	1.0	1.2	1.4	8.6	1.1	2.1	4.1	6.2		5.8	1.0	
Delay (s)	53.6	35.4	33.0	57.3	28.9	29.5	54.6	44.1		58.3	37.4	
Level of Service	D	D	С	Е	С	С	D	D		Е	D	
Approach Delay (s)		37.7			39.0			45.7			40.8	
Approach LOS		D			D			D			D	
Intersection Summary												
HCM Average Control D	elav		41.4	F	ICM Le	vel of Se	ervice		D			
HCM Volume to Capacit			0.73									
Actuated Cycle Length (118.7	S	Sum of le	ost time	(s)		16.0			
Intersection Capacity Uti			68.0%		CU Leve				C			
Analysis Period (min)			15	•					_			
c Critical Lane Group			.0									
5 Childa Lano Croup												

	1	→	*	1	-	4	4	1	-	1	+	1
Movement	ESL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		7	7+		7	† ††	ř	7	111	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor		1.00	23.7	1.00	1.00		1.00	0.91	1.00	1.00	0.91	1.00
Frt		0.97		1.00	0.85		1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected		0.96	100	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1740		1770	1585		1770	5085	1583	1770	5085	1583
Fit Permitted	91752	0.47		0.72	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)		846		1346	1585		1770	5085	1583	1770	5085	1583
Volume (vph)	88	1	25	56		135	25	688	51	158	881	108
Peak-hour factor, PHF	0.84	0.84	0.84	0.88	88.0	0.88	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	105	1	30	64	PERM	153	27	740	55	170	947	116
RTOR Reduction (vph)	0	11	0	0	130	0	0	0	4	0	0	9
Lane Group Flow (vph)	0	125	0	64	24	0	27	740	.51	170	947	107
Turn Type	Perm			Perm	200		Prot		Perm	Prot		Perm
Protected Phases		4	3-15°	100	8	534 ·	5	2	MAN .	-	6	
Permitted Phases	4			8					2			6
Actuated Green, G (s)		18.0	0	18.0	18.0	2	4.9	68.7	68.7	21.3	85.1	85.1
Effective Green, g (s)		18.0		18.0	18.0		4.9	68.7	68.7	21.3	85.1	85.1
Actuated g/C Ratio		0.15		0.15	0.15		0.04	0.57	0.57	0.18	0.71	0.71
Clearance Time (s)		4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Vehicle Extension (s)		3.0	_	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)		127		202	238		72	2911	906	314	3606	1123
v/s Ratio Prot					0.10		0.02	0.15	100	c0.10	c0.19	11/2
v/s Ratio Perm		c0.16		0.05					0.03			0.07
v/c Ratio		0.98		0.32	0.10	4 E 11	0.38	0.25	0.06	0.54	0.26	0.10
Uniform Delay, d1		50.9		45.5	44.0		56.1	12.8	11.3	44.9	6.2	5.4
Progression Factor		1.00		1.00	1.00	1	1.44	0.67	0.63	1.11	0.74	0.67
Incremental Delay, d2		74.4		0.9	0.2		2.8	0.2	0.1	1.9	0.2	0.2
Delay (s)		125.2		46.4	44.2		83.5	8.7	7.2	51.9	4.8	3.8
Level of Service		F		D	D		F	A	A	D	A	A
Approach Delay (s)		125.2			44.9	Section 1	***	11.1	THE	5 SE	11.2	SEE
Approach LOS		F			D			В			В	
Intersection Summary	1,0000	100	00.6		1CMA	al of C				2 5		
HCM Average Control E	elay		20.6		1CM Le	vei of S	ervice		С	TO BE WELL		
HCM Volume to Capaci	ty ratio		0.46			- 1	(-)				\$ Self P	-14
Actuated Cycle Length	(S)		120.0		Sum of I				12.0			
Intersection Capacity Ul	dization		50.2%	1	CU Lev	el of Se	LAICE		A	.334	Phy.	
Analysis Period (min) c Critical Lane Group			15	19							F- 17	4.00

	۶	-	*	•	4-	4	4	†	-	-	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሽካ	ተቀተ	7	ايراير	ተ ተተ	7	16.56	ተ ሳ ች		ليوليو	ተተተ	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	-	4.0	4.0	4.0
Lane Util. Factor	0.97	0.91	1.00	0.97	0.91	1.00	0.97	0.91		0.97	0.91	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	3400	4550	1583	3367	4673	1538	3367	4832		3303	4940	1553
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	3400	4550	1583	3367	4673	1538	3367	4832		3303	4940	1553
Volume (vph)	189	781	219	239	926	155	235	1235	211	232	1116	110
Peak-hour factor, PHF	0.93	0.93	0.93	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	203	840	235	254	985	165	250	1314	224	247	1187	117
RTOR Reduction (vph)	0	0	20	0	0	17	0	0	0	0	0	12
Lane Group Flow (vph)	203	840	215	254	985	148	250	1538	0	247	1187	105
Heavy Vehicles (%)	3%	14%	2%	4%	11%	5%	4%	5%	5%	6%	5%	4%
Turn Type	Prot		Perm	Prot		Perm	Prot			Prot		Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			2			6						4
Actuated Green, G (s)	6.8	31.8	31.8	8.9	33.9	33.9	7.8	34.6	-	7.2	34.0	34.0
Effective Green, g (s)	9.1	34.7	34.7	11.2	36.8	36.8	10.0	37.6		9.4	37.0	37.0
Actuated g/C Ratio	0.08	0.32	0.32	0.10	0.34	0.34	0.09	0.35		0.09	0.34	0.34
Clearance Time (s)	6.3	6.9	6.9	6.3	6.9	6.9	6.2	7.0		6.2	7.0	7.0
Vehicle Extension (s)	2.0	5.9	5.9	2.0	6.5	6.5	2.0	4.3		2.0	4.3	4.3
Lane Grp Cap (vph)	284	1450	504	346	1579	520	309	1668		285	1678	528
v/s Ratio Prot	0.06	0.18	-	c0.08	c0.21		0.07	c0.32		c0.07	0.24	
v/s Ratio Perm			0.15			0.11						0.08
v/c Ratio	0.71	0.58	0.43	0.73	0.62	0.29	0.81	0.92	•	0.87	0.71	0.20
Uniform Delay, d1	48.6	31.0	29.2	47.4	30.2	26.4	48.5	34.2		49.1	31.2	25.5
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	6.9	1.1	1.6	6.8	1.4	1.0	13.6	9.9		22.4	2.5	0.8
Delay (s)	55.6	32.1	30.8	54.2	31.7	27.4	62.1	44.2		71.5	33.8	26.3
Level of Service	Е	С	С	D	С	С	Е	D		Е	С	С
Approach Delay (s)		35.6			35.2			46.7	-		39.2	
Approach LOS		D			D			D			D	
Intersection Summary												
HCM Average Control De	elay		39.7	H	ICM Le	vel of Se	ervice		D			
HCM Volume to Capacity	33		0.76									
Actuated Cycle Length (s			108.9	S	Sum of l	ost time	(s)		12.0			
Intersection Capacity Uti			71.8%			el of Ser			С			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	-	•	•	4	*	1	†	<i>></i>	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	إيراي	ተተተ	7"	ሻሻ	ተተተ	74	ايوليولي	ተተተ	. 7	إواي	ተተተ	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	0.97	0.91	1.00	0.97	0.91	1.00	0.94	0.91	1.00	0.97	0.91	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
FIt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	3335	4550	1538	3367	4715	1553	4848	4940	1538	3303	4940	1538
FIt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	3335	4550	1538	3367	4715	1553	4848	4940	1538	3303	4940	1538
Volume (vph)	176	1296	652	570	1045	322	539	1552	469	193	843	130
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.96	0.96	0.96	0.93	0.93	0.93
Adj. Flow (vph)	185	1364	686	600	1100	339	561	1617	489	208	906	140
RTOR Reduction (vph)	0	0	42	0	0	26	0	0	40	0	0	17
Lane Group Flow (vph)	185	1364	644	600	1100	313	561	1617	449	208	906	123
Heavy Vehicles (%)	5%	14%	5%	4%	10%	4%	5%	5%	5%	6%	5%	5%
Turn Type	Prot		Perm	Prot		Perm	Prot		Perm	Prot		Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			2			6			8			4
Actuated Green, G (s)	9.1	39.5	39.5	9.7	40.1	40.1	6.8	37.4	37.4	6.4	37.0	37.0
Effective Green, g (s)	11.4	42.5	42.5	12.0	43.1	43.1	9.0	40.9	40.9	8.6	40.5	40.5
Actuated g/C Ratio	0.10	0.35	0.35	0.10	0.36	0.36	0.08	0.34	0.34	0.07	0.34	0.34
Clearance Time (s)	6.3	7.0	7.0	6.3	7.0	7.0	6.2	7.5	7.5	6.2	7.5	7.5
Vehicle Extension (s)	2.0	4.6	4.6	2.0	4.9	4.9	2.0	6.0	6.0	2.0	6.0	6.0
Lane Grp Cap (vph)	317	1611	545	337	1693	558	364	1684	524	237	1667	519
v/s Ratio Prot	0.06	0.30		c0.18	0.23		c0.12	c0.33		0.06	0.18	
v/s Ratio Perm			0.45			0.22			0.32			0.09
v/c Ratio	0.58	0.85	1.18	1.78	0.65	0.56	1.54	0.96	0.86	0.88	0.54	0.24
Uniform Delay, d1	52.0	35.7	38.8	54.0	32.1	30.9	55.5	38.8	36.8	55.2	32.2	28.6
Progression Factor	1.00	1.00	1.00	0.90	0.89	0.90	0.86	0.85	0.81	1.00	1.00	1.00
Incremental Delay, d2	1.8	5.7	99.4	356.5	0.9	1.8	253.4	11.5	12.6	27.7	1.3	1.1
Delay (s)	53.8	41.4	138.2	404.9	29.4	29.5	301.0	44.6	42.4	82.9	33.5	29.7
Level of Service	D	D	F	F	С	С	F	D	D	F	С	С
Approach Delay (s)		72.2			139.9			98.1			41.3	***************************************
Approach LOS		E			F			F			D	
Intersection Summary												
HCM Average Control D	elay		92.7	Н	ICM Lev	el of S	ervice		F			
HCM Volume to Capacity			1.19									
Actuated Cycle Length (s			120.0	S	um of lo	ost time	(s)		12.0			
Intersection Capacity Uti			90.1%		CU Leve				Е			***************************************
Analysis Period (min)			15									
Critical Lana Croup												

c Critical Lane Group

	>	-	*	1	-	*	1	†	*	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7575	ተተተ	7	ሻሻ	ተተተ	7	75.75	ተተ _ጉ		777	ተተተ	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Lane Util. Factor	0.97	0.91	1.00	0.97	0.91	1.00	0.97	0.91		0.97	0.91	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	3433	4988	1495	3367	4940	1495	3433	4976		3400	4988	1553
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	3433	4988	1495	3367	4940	1495	3433	4976		3400	4988	1553
Volume (vph)	455	639	120	250	591	428	203	1465	229	304	1463	162
Peak-hour factor, PHF	0.93	0.93	0.93	0.94	0.94	0.94	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	489	687	129	266	629	455	214	1542	241	320	1540	171
RTOR Reduction (vph)	0	0	16	0	0	29	0	0	0	0	0	19
Lane Group Flow (vph)	489	687	113	266	629	426	214	1783	0	320	1540	152
Heavy Vehicles (%)	2%	4%	8%	4%	5%	8%	2%	2%	3%	3%	4%	4%
Turn Type	Prot		Perm	Prot		Perm	Prot			Prot		Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases			8			4						2
Actuated Green, G (s)	17.0	20.2	20.2	27.8	31.0	31.0	10.0	41.0		11.0	42.0	42.0
Effective Green, g (s)	17.0	22.2	22.2	27.8	33.0	33.0	10.0	43.0		11.0	44.0	44.0
Actuated g/C Ratio	0.14	0.18	0.18	0.23	0.28	0.28	0.08	0.36		0.09	0.37	0.37
Clearance Time (s)	4.0	6.0	6.0	4.0	6.0	6.0	4.0	6.0		4.0	6.0	6.0
Vehicle Extension (s)	1.0	2.0	2.0	1.0	2.0	2.0	1.0	2.0		1.0	2.0	2.0
Lane Grp Cap (vph)	486	923	277	780	1359	411	286	1783		312	1829	569
v/s Ratio Prot	c0.14	0.14		0.08	0.13		0.06	c0.36		c0.09	0.31	
v/s Ratio Perm			0.09			0.30						0.11
v/c Ratio	1.01	0.74	0.41	0.34	0.46	1.04	0.75	1.00	b.:::::################################	1.03	0.84	0.27
Uniform Delay, d1	51.5	46.2	43.1	38.5	36.1	43.5	53.8	38.5		54.5	34.8	26.7
Progression Factor	1.07	1.01	1.02	1.00	1.00	1.00	1.00	1.00		0.74	0.52	0.44
Incremental Delay, d2	42.0	2.8	0.3	0.1	0.1	54.1	9.0	21.3		54.7	4.4	1.0
Delay (s)	97.1	49.7	44.4	38.6	36.2	97.6	62.8	59.8	····	95.3	22.5	12.7
Level of Service	F	D	D	D	D	F	Е	E		F	С	В
Approach Delay (s)		66.9			57.4			60.1			33.2	
Approach LOS		Е			Е			E			С	
Intersection Summary												
HCM Average Control D			52.7	Н	ICM Lev	vel of Se	ervice		D			
HCM Volume to Capacit			1.00									
Actuated Cycle Length (120.0			ost time			12.0			
Intersection Capacity Ut	ilization		82.9%	IC	CU Leve	el of Ser	vice		Е			
Analysis Period (min)			15									

	۶	-	*	•	-	•	4	†	/	-	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሽኘ	<u> ተ</u>	7	Jalaka.	ተተተ	77	444	ተተተ	7	الداير	ተተተ	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	0.97	0.91	1.00	0.94	0.91	1.00	0.94	0.91	1.00	0.97	0.91	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	3242	4803	1495	4713	4803	1495	4713	4803	1495	3242	4803	1455
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	3242	4803	1495	4713	4803	1495	4713	4803	1495	3242	4803	1455
Volume (vph)	49	1710	521	674	1542	18	510	34	441	37	18	25
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.93	0.93	0.93	0.84	0.84	0.84
Adj. Flow (vph)	52	1800	548	709	1623	19	548	37	474	44	21	30
RTOR Reduction (vph)	0	0	35	0	0	11	0	0	34	0	0	7
Lane Group Flow (vph)	52	1800	513	709	1623	8	548	37	440	44	21	23
Heavy Vehicles (%)	8%	8%	8%	8%	8%	8%	8%	8%	8%	8%	8%	11%
Turn Type	Prot		Perm	Prot		Perm	Prot		Perm	Prot		Perm
Protected Phases	5	2		1	6		3	8		7	4	7
Permitted Phases			2			6			8			4
Actuated Green, G (s)	5.0	42.0	42.0	10.9	47.9	47.9	8.8	36.8	36.8	5.3	33.3	33.3
Effective Green, g (s)	7.3	44.3	44.3	13.2	50.2	50.2	11.0	39.0	39.0	7.5	35.5	35.5
Actuated g/C Ratio	0.06	0.37	0.37	0.11	0.42	0.42	0.09	0.32	0.32	0.06	0.30	0.30
Clearance Time (s)	6.3	6.3	6.3	6.3	6.3	6.3	6.2	6.2	6.2	6.2	6.2	6.2
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	197	1773	552	518	2009	625	432	1561	486	203	1421	430
v/s Ratio Prot	0.02	c0.37		c0.15	0.34		c0.12	0.01		0.01	0.00	
v/s Ratio Perm			0.37			0.01			0.32			0.02
v/c Ratio	0.26	1.02	0.93	1.37	0.81	0.01	1.27	0.02	0.91	0.22	0.01	0.05
Uniform Delay, d1	53.8	37.9	36.4	53.4	30.7	20.4	54.5	27.5	38.7	53.5	29.9	30.2
Progression Factor	1.27	1.17	1.19	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.5	21.3	18.2	178.0	3.6	0.0	138.1	0.0	20.3	0.5	0.0	0.1
Delay (s)	68.6	65.7	61.4	231.4	34.3	20.4	192.6	27.6	59.0	54.0	29.9	30.3
Level of Service	E	E	Е	F	С	С	F	С	E	D	С	С
Approach Delay (s)		64.8			93.6			127.0			41.2	
Approach LOS		Е			F			F			D	
Intersection Summary												
HCM Average Control D	elay		87.0	F	ICM Le	vel of So	ervice		F			
HCM Volume to Capacity	y ratio		1.08									
Actuated Cycle Length (s	s)		120.0			ost time			16.0			
Intersection Capacity Util	ization		75.3%			el of Ser			D			
Analysis Period (min)			15									
c Critical Lane Group												

	•	*	*	ሻ	†	<i>></i>	-	1	» J	•	\	>
Movement	WBL	WBR	WBR2	NBL	NBT	NBR	SBL	SBT	SBR	SEL2	SEL	SER
Lane Configurations	ሻ	Z.		ሻሻ	ተተ _ጉ		ሻ	ተ ተተ	7	ሻ	Ä	77
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	1.00		0.97	0.91		1.00	0.91	1.00	0.95	0.95	0.88
Frt	1.00	0.85		1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85
FIt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	0.95	1.00
Satd. Flow (prot)	1770	1583		3433	5045		1770	5085	1583	1681	1676	2787
FIt Permitted	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	0.95	1.00
Satd. Flow (perm)	1770	1583		3433	5045		1770	5085	1583	1681	1676	2787
Volume (vph)	104	133	11	1063	922	51	88	1407	478	483	86	964
Peak-hour factor, PHF	0.88	0.88	0.88	0.95	0.95	0.95	0.95	0.95	0.95	0.94	0.94	0.94
Adj. Flow (vph)	118	151	12	1119	971	54	93	1481	503	514	91	1026
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	25	0	0	64
Lane Group Flow (vph)	118	163	0	1119	1025	0	93	1481	478	304	301	962
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	3%	2%
Turn Type	Split			Prot			Prot		Perm	Split		pm+ov
Protected Phases	3	3		5	2		1	6		4	4	5
Permitted Phases	-			-	_				6	•	•	4
Actuated Green, G (s)	11.0	11.0		28.8	52.0		7.7	30.9	30.9	21.0	21.0	49.8
Effective Green, g (s)	11.0	11.0		28.8	53.0		7.7	31.9	31.9	22.3	22.3	51.1
Actuated g/C Ratio	0.10	0.10		0.26	0.48		0.07	0.29	0.29	0.20	0.20	0.46
Clearance Time (s)	4.0	4.0		4.0	5.0		4.0	5.0	5.0	5.3	5.3	4.0
Vehicle Extension (s)	1.5	1.5		1.0	2.0		1.0	2.0	2.0	2.0	2.0	1.0
Lane Grp Cap (vph)	177	158		899	2431		124	1475	459	341	340	1396
v/s Ratio Prot	0.07	c0.10		c0.33	0.20		0.05	0.29	,00	c0.18	0.18	0.19
v/s Ratio Perm	0.01	00.10		00.00	0.20		0.00	0.20	0.32	00.10	0.10	0.18
v/c Ratio	0.67	1.03		1.24	0.42		0.75	1.00	1.04	0.89	0.89	0.69
Uniform Delay, d1	47.7	49.5		40.6	18.5		50.2	39.0	39.0	42.7	42.6	23.2
Progression Factor	1.00	1.00		0.83	0.63		0.73	0.65	0.62	1.00	1.00	1.00
Incremental Delay, d2	7.1	80.2		117.3	0.4		14.7	20.7	46.6	23.5	22.4	1.00
Delay (s)	54.9	129.7		151.1	12.0		51.3	46.0	70.7	66.2	65.0	24.3
Level of Service	D	123.7 F		F	12.0 B		D	70.0 D	70.7 E	60.2 E	00.0 E	24.3 C
Approach Delay (s)	98.3				84.6		ע	52.2	L.	L	39.6	· ·
	90.5				04.U			D			59.0 D	
Approach LOS								U			U	
Intersection Summary HCM Average Control De	olov		62.3	L	ICM Lo	rel of Se	mico		E			
HCM Volume to Capacity			1.09		IOW LEV	rei ui se	NICE		L .			
Actuated Cycle Length (s			110.0	Q	um of k	st time	/e\		16.0			
Intersection Capacity Util			92.4%			el of Ser			10.U			
	nzaliUN			IC	JO LEVE	101 OEL	VICE		Г			
Analysis Period (min)			15									
c Critical Lane Group												

,	۶	-	•	•	←	*	4	†	1	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	14.54	<u>ቀ</u> ቀڼ		ايولير	ተተተ	7	ليراي	ተተ		16.16	ተተተ	7*
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Lane Util. Factor	0.97	0.91		0.97	0.91	1.00	0.97	0.91		0.97	0.91	1.00
Frt	1.00	0.97		1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	3433	4869		3433	5085	1583	3433	5015		3433	5085	1583
Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	3433	4869		3433	5085	1583	3433	5015		3433	5085	1583
Volume (vph)	569	1087	239	175	1144	102	374	1075	102	303	1505	557
Peak-hour factor, PHF	0.95	0.95	0.95	0.94	0.94	0.94	0.94	0.94	0.94	0.95	0.95	0.95
Adj. Flow (vph)	599	1144	252	186	1217	109	398	1144	109	319	1584	586
RTOR Reduction (vph)	0	0	0	0	0	44	0	0	0	0	0	27
Lane Group Flow (vph)	599	1396	0	186	1217	65	398	1253	0	319	1584	559
Heavy Vehicles (%)	2%	4%	2%	2%	`2%	2%	2%	2%	3%	2%	2%	2%
Turn Type	Prot			Prot		Perm	Prot			Prot		Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases						8						6
Actuated Green, G (s)	16.0	36.7		8.0	28.7	28.7	11.0	33.7		13.0	35.7	35.7
Effective Green, g (s)	16.0	38.0		8.0	30.0	30.0	11.0	35.0		13.0	37.0	37.0
Actuated g/C Ratio	0.15	0.35		0.07	0.27	0.27	0.10	0.32		0.12	0.34	0.34
Clearance Time (s)	4.0	5.3		4.0	5.3	5.3	4.0	5.3		4.0	5.3	5.3
Vehicle Extension (s)	0.5	2.0		0.5	2.0	2.0	0.5	2.0		0.5	2.0	2.0
Lane Grp Cap (vph)	499	1682		250	1387	432	343	1596		406	1710	532
v/s Ratio Prot	c0.17	0.29		0.05	c0.24		c0.12	0.25		0.09	0.31	
v/s Ratio Perm						0.07						0.37
v/c Ratio	1.20	0.83		0.74	0.88	0.15	1.16	0.79		0.79	0.93	1.05
Uniform Delay, d1	47.0	33.0		50.0	38.2	30.3	49.5	34.1		47.1	35.2	36.5
Progression Factor	1.00	1.00		0.45	0.93	1.16	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	108.2	4.9		1.0	8.0	0.1	99.7	4.0		8.9	10.1	53.3
Delay (s)	155.2	37.9		23.5	36.3	35.4	149.2	38.0		56.1	45.3	89.8
Level of Service	F	D		С	D	D	F	D		E	D	F
Approach Delay (s)		73.1			34.6			64.8			57.2	
Approach LOS		Ε	•		С			E			E	
Intersection Summary												
HCM Average Control D			58.5	F	ICM Lev	rel of Si	ervice		E			
HCM Volume to Capacit			1.05									
Actuated Cycle Length (110.0		ium of lo				16.0			
Intersection Capacity Ut	ilization	9	91.4%	10	CU Leve	el of Sei	vice		F			
Analysis Period (min)			15									

c Critical Lane Group

	۶	→	*	•	+	1	4	†	<i>></i>	1	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	J.	ተተጉ		75	ተተ _ጮ		J _k	1₃		75	43	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	0.91		1.00	0.91		1.00	1.00		0.95	0.95	
Frt	1.00	1.00		1.00	1.00		1.00	0.85		1.00	0.87	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.99	
Satd. Flow (prot)	1770	5084		1770	5065		1770	1583		1681	1529	
FIt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.99	
Satd. Flow (perm)	1770	5084		1770	5065		1770	1583		1681	1529	
Volume (vph)	51	1635	4	31	1895	52	12	0	33	219	1	154
Peak-hour factor, PHF	0.94	0.94	0.94	0.95	0.95	0.95	0.80	0.80	0.80	0.90	0.90	0.90
Adj. Flow (vph)	54	1739	4	33	1995	55	15	0	41	243	1	171
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	54	1743	0	33	2050	0	15	41	0	219	196	0
Turn Type	Prot			Prot			Split	-	***************************************	Split		
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases							1					
Actuated Green, G (s)	5.6	52.0		3.6	50.0		18.4	18.4		20.0	20.0	
Effective Green, g (s)	5.6	52.0		3.6	50.0		18.4	18.4	-	20.0	20.0	
Actuated g/C Ratio	0.05	0.47		0.03	0.45		0.17	0.17		0.18	0.18	
Clearance Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	90	2403		58	2302		296	265		306	278	
v/s Ratio Prot	0.03	c0.34		0.02	c0.40		0.01	c0.03		c0.13	0.13	
v/s Ratio Perm			******************									
v/c Ratio	0.60	0.73		0.57	0.89		0.05	0.15		0.72	0.71	
Uniform Delay, d1	51.1	23.3		52.4	27.5		38.5	39.2		42.3	42.2	
Progression Factor	1.00	1.00		0.95	0.76		1.00	1.00		1.00	1.00	
Incremental Delay, d2	10.3	1.1		6.6	2.6		0.3	1.2		13.4	14.0	
Delay (s)	61.4	24.4		56.4	23.5		38.8	40.4		55.7	56.2	
Level of Service	Е	С		Е	С		D	D		Е	Е	
Approach Delay (s)		25.5			24.0			40.0			56.0	
Approach LOS		С		-	С			D			Е	
Intersection Summary												
HCM Average Control Delay			27.9	- H	ICM Lev	el of Se	rvice		С			
HCM Volume to Capacity ratio			0.69									
Actuated Cycle Length (s)			110.0						12.0			
Intersection Capacity Utilization			66.5%	Į į	CU Leve	el of Ser	vice		С			
Analysis Period (min)			15									
c Critical Lane Group												

	*		*	•	-	4	4	†	1	-	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ₽		ጓ	1			र्भ	7			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0			4.0	4.0		4.0	
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00	1.00		1.00	
Frt	1.00	0.99		1.00	0.99			1.00	0.85		0.98	
Flt Protected	0.95	1.00		0.95	1.00			0.98	1.00		0.98	
Satd. Flow (prot)	1770	3500		1770	3511			1822	1583		1799	
Flt Permitted	0.95	1.00		0.95	1.00			0.98	1.00		0.98	
Satd. Flow (perm)	1770	3500		1770	3511			1822	1583		1799	
Volume (vph)	11	1264	101	181	1260	70	84	102	213	66	116	30
Peak-hour factor, PHF	0.94	0.94	0.94	0.95	0.95	0.95	0.90	0.90	0.90	0.88	0.88	0.88
Adj. Flow (vph)	12	1345	107	191	1326	74	93	113	237	75	132	34
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	17	0	0	0
Lane Group Flow (vph)	12	1452	0	191	1400	0	0	206	220	0	241	0
Turn Type	Prot			Prot			Split		Perm	Split		
Protected Phases	5	2		1	6		3	3		4	4	
Permitted Phases									3			
Actuated Green, G (s)	0.9	38.7		14.3	52.1			16.2	16.2		15.8	
Effective Green, g (s)	0.4	39.2		13.8	52.6			15.7	15.7		15.3	
Actuated g/C Ratio	0.00	0.39		0.14	0.53			0.16	0.16		0.15	
Clearance Time (s)	3.5	4.5		3.5	4.5			3.5	3.5		3.5	
Vehicle Extension (s)	3.0	3.0	***************************************	3.0	3.0			3.0	3.0		3.0	
Lane Grp Cap (vph)	7	1372		244	1847			286	249		275	
v/s Ratio Prot	0.01	c0.41		c0.11	c0.40			0.11			c0.13	
v/s Ratio Perm									0.15			
v/c Ratio	1.71	1.06		0.78	0.76			0.72	88.0		0.88	
Uniform Delay, d1	49.8	30.4		41.7	18.7	r		40.1	41.3		41.4	
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00		1.00	
Incremental Delay, d2	634.2	41.3		15.0	3.0			8.6	28.7		25.3	
Delay (s)	684.0	71.7		56.7	21.7			48.7	70.0		66.7	
Level of Service	F	E		Е	С			D	E		Е	(A)
Approach Delay (s)		76.8			25.9			60.1			66.7	
Approach LOS		Е			С			E			Е	
Intersection Summary								topic				
HCM Average Control Delay			52.5	F	ICM Lev	el of Ser	vice		D			
HCM Volume to Capacity ratio			0.92									
Actuated Cycle Length (s)			100.0	` /					12.0	0.000		
Intersection Capacity Ut		76.4%	10	CU Leve	el of Serv	ice		D				
Analysis Period (min)			15	0.0000								
c Critical Lane Group												